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Fig. 3 Preoperative and postoperative neurological status using the
maodified Frankel grading system

Of the five patients with Frankel grade C, two improved to
grade D2 and 3 to grade E. Of the two patients with Frankel
grade D2, one improved to grade D3 and the other to grade
E. In seven patients with Frankel grade D1 and D3, all
improved to grade E. Although all patients preoperatively
had gait disturbance, all of them could walk with or
without a cane at the latest follow-up. In all six patients
with bladder dysfunction, their urinary symptoms were
relieved after surgery.

Case presentation
Case 6
An 83-year-old woman suffered back pain after falling

down at home, and then muscle weakness of her legs and
bladder dysfunction gradually developed. When she was

admitted to our institate 2 months after the onset of her
symptoms, she was unable to walk independently. She had
moderate back pain, and neurological deficits of modified
Frankel grade C. Flexion and extension radiographs
showed dynamic mobility of T12 vertebral collapse
(Fig. 4a, b). CT-myelogram and MRI images revealed
retropulsed bone fragments in the spinal canal, which
impinged the spinal cord anteriorly (Fig. e, h, arrow). The
spinal canal occupation was 27%. Posterior instrumented
fusion was performed from T9 to L2 without decompres-
sion of the spinal cord. Local kyphosis was corrected to 10°
Jjust after surgery and 14° at the final follow-up (28 months
after surgery; Fig. 4c, d). Four weeks after surgery,
resorption of the bone fragments had already begun and
anterior compression of the spinal cord was reduced
(Fig. 4f, i, arrowhead). Further remodeling of the spinal
canal had occurred, and no residual spinal canal stenosis
was noted at the latest follow-up of 28 months after sur-
gery (Fig. 4g, double arrow). At this stage, solid union of
TI2 vertebral body was achieved, without any implant-
related complications. At the final follow-up, neurological
deficit was completely recovered to grade E.

Discussion

The present results demonstrate that the main factor caus-
ing delayed neurological deficits following vertebral
collapse in the osteoporotic thoracolumbar spine is insta-
bility of the spinal column at the fracture site rather than
mechanical compression of the spinal cord by the bone
fragments. In this series, all 14 patients possessed marked
instability at the fractured vertebra, and the posterior spinal
fusion obtained bony fusion and spinal stability that
resulted in apparent neurological improvement even with-
out any decompressive procedures.

Various operative procedures have been reported to be
successful in effecting neurological improvement in
patients with neurological deficits due to osteoporotic
vertebral collapse. Kaneda et al. [7] and Uchida et al. [19]
emphasized the importance of anterior decompression and
reconstruction with use of anterior instrumentation, but
implant-related complications and pseudoarthrosis occur-
red in some patients because of the poor bone quality.
Other investigators have insisted that anterior decompres-
sion and fusion should not be used alone, recommending
additional posterior reinforcement to increase the rate of
arthrodesis [10, 12]. An anterior approach is considered to
increase the risk of injury to the chest or abdomen, which
might be especially hazardous in elderly patients. In con-
trast, Shikata et al. [15] and Kim et al. [8] performed
posterolateral decompression and posterior reconstruction
using the posterior egg-shell procedure. Recently, posterior
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Fig. 4 Preoperative flexion (a) and extension (b) radiographs of an
83-year-old woman with T2 osteoporotic vertebral collapse (case 6)
demonstrates marked instability at TI2. ¢ Immediately after surgery.
the local kyphosis was corrected to 10°, d At the final follow-up of
28 months after surgery, bone union of T12 vertebral body was
achieved and local kyphosis was 14°, Preoperative CT-myelogram (e)
shows retropulsed bone fragments (arrow). A CT image at 4 weeks
after surgery shows the resorption of the bone fragments (f,
arrowhead). A CT image at 28 months afler surgery shows that
remodeling of the spinal canal has progressed (g, double arrow). T2-
weighted midsagittal MRI images show that the anterior impingement
of the spinal cord was present before surgery (h, arrow), but it was
reduced at 4 weeks after surgery (i, arrowhead)

closing wedge osteotomy including posterior spinal short-
ening has been performed for both neural decompression
and correction of kyphotic deformity [14, 16]. Although
posterior procedures offer better kyphosis correction
compared with anterior procedures, they have the risk of
neural tissue damage, such as dural tear and spinal cord
kinking due to shortening of the spinal column. Further-
more, a problem remains that the strength of the implant
fixation in osteoporotic bone is not sufficient for recon-
struction of a spine with marked instability. Laminectomy
and resection of all posterolateral components including
the pedicle may highly destabilize the spinal column in this
unstable condition. Actually, previous reports on the spinal
shortening described 15-58% rate of implant failure. In the
present study, we first reporied that posterior instrumented
fusion alone allowed apparent neurological recovery of
patients with neurological deficits following osteoporotic
vertebral collapse. We believe that our procedure has a
number of advantages. The simple posterior fixation
without neural decompression is not only technically
undemanding, but also much safer, because the risks of the
anterior approach and potential damage to neural tissue
from the posterolateral decompressive procedure can be
avoided. In addition, the posterior elements of the spine
important for maintaining spinal stability in this condition
are preserved. This also provides enough space for bone
grafting on the lamina of the affected vertebra, Thus, solid
bony fusion and stabilization of the spinal column can be
achieved.

Risks of implant failure are significant when instru-
mentation surgery is used to treat the osteoporotic spine.
Several authors have suggested that correction of kyphotic
deformity and restoration of anatomic alignment may
reduce instrumentation failure [4, 14, 16]. However, the
interface between the implant and osteoporotic bone may
not be mechanically able to support the spinal column. In
elderly patients whose thoracolumbar kyphosis was
extensively corrected without any anterior support, flexion
moment during standing or sitting may produce a posteri-
orly directed force that pulls out the implant. In this series,
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we did not apply any correction force to the implants. Thus
no intraoperative procedure to correct kyphosis was con-
ducted, and excessive kyphosis correction was thereby
avoided. We performed fixation of the spinal column in the
alignment achieved by posture reduction. Consequently, no
implant dislodgement was found, and no additional oper-
ation was required. We found that local kyphosis angle was
corrected to 5.8° just after surgery and correction loss was
9.9° at the final follow-up, which was comparable to the
correction in the previous reports on anterior decompres-
sion and reconstruction [7, 19], Although subsequent
vertebral fractures were found after surgery in 50% of the
present cases, they were well managed conservatively and
no junctional kyphosis developed. No patients in the cur-
rent study complained of residual back pain or any
difficulty in activities of daily living at final follow-up.
Thus, it is suggested that extensive correction of kyphotic
deformity has few advantages in elderly patients with
OSIeOpOrosis.

In conclusion, this study introduces the concept that
incomplete neurological deficits following vertebral col-
lapse in the osteoporotic thoracolumbar spine are mainly
caused by instability of the fractured vertebra rather than
neural compression. Although this series is relatively
small, current results indicate that posterior instrumented
fusion without neural decompression can provide signifi-
cant neurological improvement and relief of back pain
without major complications. We suggest that neural
decompression of the spinal cord is not necessary for the
treatment of neurological impairment in patients with
osteoporotic vertebral collapse with dynamic mobility.
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C1 dome-like laminotomy and posterior C1-C2 polyaxial
screw-rod fixation for a patient with cervical myelopathy due to a
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Abstract

A 49-year-old man presented with progressive cervical myelopathy caused by a retro-odontoid mass, with associated developmental
canal stenosis at C1, and C1-C2 instability. Surgery was scheduled for a dome-like laminotomy at C1, posterior C1-C2 fixation using C1
lateral mass screws and C2 pedicle screws, and structural bone grafting between Cl and C2. Prior to surgery, we produced a 3-
dimensional full-scale model of the patient’s cervical spine and performed a simulation of the scheduled surgery. Through the simulation,
we accurately evaluated the laminotomy sites and the screw insertion points. During the actual surgery, all procedures were successful. After
surgery, the patient’s neurological deficits markedly improved. Successful C1-C2 fusion, adequate decompression of the spinal cord, and
spontancous regression of the retro-odontoid mass were achieved by this procedure without any apparent restriction in neck movement.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Retro-odontoid pseudotumor; Atlantoaxial fixation;, Laminotomy, Surgical simulation; Three-di

ional full-scale model

1. Introduction

Non-traumatic cervical myelopathy caused by retro-
odontoid pseudotumor that is unassociated with rheuma-
toid arthritis is uncommon.'” When spinal cord impinge-
ment by the retro-odontoid mass and the Cl posterior
arch persists after reduction of the C1-C2 joint, most sur-
geons will select C1 laminectomy and occipito-cervical pos-
terior fusion,”™®” In most cases, myelopathy subsequently
improves, together with spontaneous regression of the
retro-odontoid mass, following this procedure. However,
many patients experience a restricted range of neck move-
ment after posterior occipito-cervical fusion.*”

Recently, posterior C1-C2 fusion with a polyaxial screw-
rod system has been used for C1-C2 subluxation.'” How-
ever, the applicability of this approach to patients who need

* Corresponding author. Tel.: +81 43 226 2117; fax: +81 43 226 2116.
E-mail address: masashiy@faculty chiba-u jp (M. Yamazaki),

0967-5868/S - see front matter © 2008 Elsevier Lid. All rights reserved.
doi:10. 1016/ jocn.2008.01,024

decompression of the spinal cord at the C1 level is uncertain
because of the limited surface area for bone grafting at
C1 following laminectomy. Although Harms and Melcher
described a technique of intra-articular bone grafting after
decorticating the C1-C2 joints,'” there is a risk of significant
bleeding from the venous plexus around the C1-C2 joints.
We describe a surgical technique of dome-like laminotomy
of C1 combined with posterior C1-C2 fixation using a poly-
axial screw-rod system in a patient with cervical myelopathy
due to a retro-odontoid pseudotumor. We were able to
decompress the spinal cord while preserving sufficient sur-
face area at C1 1o allow for a bone graft.

2. Materials and results
2.1. Clinical profile

A 49-year-old man was admitted to our hospital with a
5-month history of sensory and motor disturbances of the
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upper and lower extremities. On admission, the patient
exhibited bilateral clumsiness in the hands and had diffi-
culty fastening cuff buttons. His gait was spastic and he
needed support when walking up or down stairs. The pa-
tient also demonstrated urinary retardation and pollakiuria
and had sensory losses on the trunk and upper and lower
extremities, exhibiting grade 7-8 hypalgesia. Both Achilles
tendons were hyper-reflexic, and transient ankle clonus was
present bilaterally. The Babinski sign was negative. The
patient complained of severe neck pain upon cervical
extension. The patient had a normal stature with no sign
of congenital skeletal anomalies. No evidence of previous
trauma or rheumatoid arthritis was observed.

2.2, Radiological findings

A plain lateral radiograph showed that the space avail-
able for the spinal cord (SAC) at CI was 14 mm; the atlanto-
dental interval (ADI) was 2 mm. Flexion and extension
radiographs showed that SAC and ADI were 12 mm and
4 mm versus 15 mm and 1 mm, respectively. Mild to mod-
erate spondylotic changes were observed in the subaxial
cervical spine. Mid-sagittal Tl-weighted and T2-weighted
MRIs showed compression of the spinal cord posteriorly
by the Cl posterior arch (Figs. 1A, B, arrows), accompa-
nied by an intramedullary T2-weighted hyperintense lesion
in the posterior column of the spinal cord slightly below the
posterior arch of Cl1. MRI also showed a retro-odontoid
mass compressing the spinal cord anteriorly (Figs. 1A, B,
arrowheads). The retro-odontoid mass had an intermediate
intensity on Tl-weighted MRI (Fig. 1A) and low intensity
on T2-weighted MRI (Fig. 1B).

Extension and flexion ascending myelograms did not
show any apparent block of contrast media at Cl. A recon-

structed mid-sagittal CT myelogram, however, showed that
the spinal cord was pinched by the Cl posterior arch
(Fig. 1C, arrow) and by the mass lesion behind the dens
(Fig. 1C, arrowhead). A three-dimensional (3-D) CT angi-
ogram showed that both vertebral arteries had normal
anatomy at the C1 and C2 levels (Fig. 2A).

2.3. Surgical simulation

The surgical procedure we initially planned consisted of
a dome-like laminotomy of the C1 posterior arch in con-
junction with posterior C1-C2 fusion using polyaxial
screw-rod fixation. To evaluate the anatomical structural
details of the patient’s craniovertebral junction (CVI]), we
created a 3-D full-scale model of the CVJ from the patient’s
CT scan data using a rapid prototyping technique (Figs.
2B, C). This model clearly showed the morphology of the
C1 posterior arch and the C2 lamina,

Prior 1o surgery, we performed a simulation using the
model. First, we identified the insertion points of the CI
lateral mass screws and C2 pedicle screws on the model
(Fig. 2B). By comparing the 3-D CT angiography image
(Fig. 2A) with the 3-D full-scale model (Fig. 2B), we could
better understand the anatomy of the vertebral arteries
and the C1 posterior arch as they related to each other.
This information enabled us to determine the appropriate
insertion points. After we inserted the screws, C1-C2 fix-
ation was performed using a polyaxial screw-rod system
(Fig. 2C). We initially attempted dome-like laminotomy
of the caudal portion of the Cl posterior arch alone,
but discovered that we would also have to excise the cra-
nial portion of the C2 lamina in order to successfully com-
plete the Cl laminotomy. Thus we decided to perform
dome-like laminotomy not only at the Cl posterior arch

Fig. I. Mid-sagittal (A) Tl-weighted and (B) T2-weighted MRIs, showing compression of the spinal cord posteriorly (arrows) and anteriorly (arrowheads)
at C1. The T2-weighted MRI shows an intramedullary hyperintense lesion in the posterior column of the spinal cord slightly below the posterior arch of
C1. (C) A mid-sagittal reconstructed image of a CT myelogram showing posterior compression of the spinal cord by the C1 posterior arch (arrow) and
anterior compression of the cord by the mass lesion behind the dens (arrowhead).
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Fig. 2, (A) Posterior three-dimensional (3-D) CT angiogram showing the anatomy of the vertebral arteries and the C1 posterior arch in relation 1o each
other. (B, C) A 3-D full-scale model of the cervical spine produced using the patient’s CT scan data, which we used to perform a simulation of the planned
surgery. (B) On the model, the insertion points of the C1 lateral mass screws and C2 pedicle screws were marked with black ink. (C) After we inserted the
screws, C1-C2 fixation was performed with the polyaxial screw-rod system. Dome-like laminotomy was performed at the caudal portion of the Cl
posterior arch (arrowheads) and the cranial portion of the C2 lamina (arrows). (ID) This midsagittal reconstructed CT scan demonstrates the results of the
surgical simulation performed on the 3-D full-scale model, indicating that excision of the caudal portion of the Cl posterior arch was appropriately
performed (arrow). This figure can be viewed in colour on ScienceDirect at www.sciencedirect.com.

(Fig. 2C. arrowheads) but also at the C2 lamina (Fig. 2C,  excision of the caudal portion of the Cl posterior arch
aArrows). had been appropriately performed (Fig. 2D, arrow) and

We analyzed the results of the surgical simulation using  that the screw trajectories at C1 and C2 had been properly
CT scans. The CT scans from the model indicated that positioned,

Fig. 3. Intraoperative photographs showing key points in the surgery. (A) After exposure of the Cl posterior arch and C2 lamina, we made insertion holes
for the screws with an air drill at C1 (arrowheads) and C2 (arrows). { B) C1-C2 fixation was performed using a polyaxial screw-rod system, and then dome-
like laminotomy was performed at the caudal portion of C1 {arrowheads) and the cranial portion of C2 (arrows). The asterisk mdicates the remaining
cranial portion of C1. (C) A mid-sagittal CT scan of the reconstruction | week after surgery shows that the dome-like laminotomy was accomplished
successfully at Cl (arrow) and that the autograft from the iliac crest was appropriately positioned over the remaining portions of Cl and C2 (arrowhead)
d = dura mater. This figure can be viewed in colour on ScienceDirect al www sciencedirect.com
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2.4. Operation

During the surgery, we exposed the Cl posterior arch
and C2 lamina using a posterior approach and made inser-
tion holes for the screws with an air drill at Cl (Fig. 3A,
arrowheads) and C2 (Fig. 3A, arrows). After inserting
the CI lateral mass screws and C2 pedicle screws, we per-
formed C1-C2 fixation using a polyaxial screw-rod system,
and we then performed dome-like laminotomy at the cau-
dal portion of C1 (Fig. 3B, arrowheads) and the cranial
portion of C2 (Fig. 3B, arrows). Utilizing the results of
the surgical simulation, we could correctly locate the inser-
tion points for the screws and the excision areas of C1 and
C2. Decompression of the spinal cord was confirmed by
intraoperative ultrasonography. A strut bone was har-
vested from the left iliac crest and grafted between the
remaining cranial portions of the Cl posterior arch
(Fig. 3B, asterisk) and the C2 lamina.

2.5. Post-operative course

Alfter surgery. the patient did not require cervical ortho-
sis. CT images obtained one week post-surgery showed that
the dome-like laminotomy was accomplished successfully
at Cl (Fig. 3C, arrow) and that the autograft from the iliac
crest was appropriately positioned over the remaining por-
tions of Cl and C2 (Fig. 3C, arrowhead). The CT scans
also showed that the C1 lateral mass screws were posi-
tioned properly. Post-operatively, the patient experienced
relief from myelopathy and returned to work | month after
surgery. At his 1-year follow-up, the patient’s neurologic
deficits were markedly improved, and the patient described
no restriction ol neck movement. Post-operative cervical
radiographs showed successful CI-C2 fusion with the
instrumentation system and grafted bone from the iliac

crest (Fig. 4A). MRI performed 1 year after surgery dem-
onstrated adequate decompression of the spinal cord at
C1 (Figs. 4B, C), and regression of the retro-odontoid mass
(Figs. 4B, C, arrowheads).

3. Discussion

Previous investigations of the pathogenesis of retro-
odontoid pseudotumors have found that decreased range
of motion at the lower cervical levels may increase the
mechanical stress at the C1-C2 facet, resulting in the for-
mation of fibrous granulation tissue or a fibrocartilagenous
mass behind the dens. usually in association with C1-C2
subluxation."*® Qur patient had no history of trauma
and no evidence of rheumatoid arthritis, but spondylotic
changes were observed in the lower cervical spine, and
slight instability at C1-C2 was seen. These findings suggesi
that the pathogenic mechanism described above may have
been responsible for the development of the retro-odontoid
mass in the present case.

Previous reports have shown that the normal sagittal
canal diameter (corresponding to SAC) at the level of Cl
is 16 mm to 20 mm in Asians,'" ' In the present case,
the C1-C2 subluxation was reduced at the neutral position
of the patient’s cervical spine; the SAC at Cl in this posi-
tion was 14 mm, indicating the presence of developmental
canal stenosis at Cl. In addition, because of a retro-
odontoid pseudotumor, spinal cord impingement by the
retro-odontoid mass and the CI posterior arch persisted
even after the C1-C2 alignment was reduced.

In patients with myelopathy due to a retro-odontoid
pseudotumor, elimination of spinal cord impingement fol-
lowing reduction of the C1-C2 joint is generally considered
an indication for C1-C2 fixation using C1-C2 transarticu-

lar screws.”'® However, in patients whose spinal cord

Fig. 4. (A) Plain lateral radiograph obtained | year afier surgery, showing successful C1-C2 fusion with the instrumentation system and grafied bone
from the iliac crest. Mid-sagittal (B) T1-weighted and (C) T2-weighted MRIs obtained 1 year after surgery showing adequate decompression of the spinal

cord at Cl and regression of the retro-odontoid mass (arrowheads).
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impingement persists following reduction of the CI-C2
joint, C1 laminectomy and occipito-cervical posterior
fusion has been the standard treatment procedure.”*%’
Both procedures bring about satisfactory neurological
recovery and spontancous repression of the post-odontoid
mass.” *7* However, biomechanical analyses have shown
that the range of neck movement post-operatively is more
restricted after posterior occipito-cervical fusion than after
posterior C1-C2 fixation.*'* In the present case, we recog-
nized that decompression of the spinal cord at C1 and sta-
bilization of C1-C2 was necessary o improve symptoms.
Had we followed conventional wisdom, we would have
selected Cl laminectomy and occipito-cervical posterior
fusion as the surgical procedure. However, in order to
minimize post-operative restriction of our patient’s neck
movement, we decided to investigate whether we could per-
form CI1-C2 fixation.

To obtain sufficient stability with posterior C1-C2 fixa-
tion using C1-C2 transarticular screws, the fixation must
be combined with structural bone grafting using wires or
cables, for example the Brooks method.'*'® However, we
could not use C1-C2 transarticular screws because they re-
quire an intact C1 posterior arch. In addition, insertion of
wires or cables under a hypoplastic C1 posterior arch entails
the risk of spinal cord injury. Recently, several authors have
reported satisfactory clinical results from C1-C2 fixation
techniques using C1 lateral mass screws and C2 pedicle
screws. Goel et al. reported on a screw-plate system,'’
Harms et al. described a polyaxial screw-rod system,'” and
Tan et al. discussed the possibility of inserting C1 lateral
mass screws via the C1 posterior arch.'® One advantage of
C1-C2 fixation with CI lateral mass screws and C2 pedicle
screws is that insertion of wires or cables under the C1 pos-
terior arch is not necessary for stable fixation. In the present
case, we initially planned to perform C1 dome-like laminot-
omy in conjunction with posterior C1-C2 polyaxial screw-
rod fixation using C1 lateral mass screws (Tan’s method)
and C2 pedicle screws. With this procedure, we expected
to be able to decompress the spinal cord at the C1 level while
preserving sufficient surface area at C1 for bone grafting.
Since we were unaware of any previous reports describing
this particular technique, we created a 3-D full-scale model
of our patient’s cervical spine before the surgery and per-
formed a simulation of the scheduled surgery on this model.

3-D full-scale modeling via the rapid prototyping tech-
nique is being increasingly used in surgical planning. In
spine surgery, previous reports have demonstrated the use-
fulness of 3-D full-scale modeling for aiding morphological
assessment and intraoperative navigation in surgeries for
complex spinal deformities, congenital skeletal anomalies
and spine tumors.'”?® Surgical simulation using the 3-D
full-scale model enabled us to evaluate the details of the
bony structures of the C1 posterior arch compressing the
spinal cord and to pinpoint the bone excision site at Cl.
By this simulation, we determined that excision of the
cranial part of the C2 lamina would also be necessary to
successfully perform the dome-like C1 laminotomy. In

addition, we accurately located the screw insertion points
at Cl and C2. During the actual surgery, we accurately
accomplished dome-like laminotomy of Cl1, created a
structural bone graft between the remaining cranial portion
of the C1 posterior arch and the C2 lamina, and performed
rigid C1-C2 fixation using C1 lateral mass screws and C2
pedicle screws. Consequently, excellent neurological
improvement and spontaneous regression of the retro-
odontoid mass were obtained after surgery without any
apparent restriction of the patient’s neck movement.
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