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Abstract

Hereditary tyrosinemia | (HT I is a genetic disorder of tyrosine metabolism characterized by progressive liver damage from
infancy and by a high risk for hepatocellular carcinoma. HT | is due to mutations in the fumarylacetoacetate hydrolase (Fah)
gene, which encodes the last enzyme in the tyrosine catabolic pathway. Disturbances in tyrosine metabolism lead to
increased levels of succinylacetone and succinylacetoacetate. However, the mechanisms causing liver failurs, cirrhosis,
renal tubular dysfunction, and hepatocarcinoma are still unknown. Lethal albino deletion ¢14CoS mice and mice with target-
disrupted Fah ars models for HT |. They die in the perinatal period, although with a different phenotype from that seenin HT |
in humans. In addition, 2 mouse strains that carry N-athyl-N-nitrosourea-induced mutations in the Fah gene have been
described. Mice with a splice mutation exhibit the milder features of the clinical phenotype. In mice that carry both Fah and
4-hydroxyphenylpyruvate dioxygenase gene mutations, administration of homogentisate results in rapid apoptosis of
hepatocytes, Simultaneously, renal tubular epithelial cells are injured, resulting in Fanconi syndrome. These are central
features of visceral injury in patients with HT |, Apoptosis of hepatocyte and renal tubular cells is prevented by the caspase
inhibitors acetyl-Tyr-Val-Ala-Asp-CHO or scety-Asp-Glu-Val-Asp-CHO. Apoptosis of hepatocytes and renal tubular epithelial
calls are central features of this di Alterations in gene expression found in the liver of patients with HT | are responsible
for the pathogenesis of this disease, for example, acute liver failure. Therefore, gene expression analysis allows a better
understanding of the specific pathogenesis. Cell fusion of hematopoietic stem cells with hepatocytes leads to liver regen-
eration after liver injury. This finding was possible after using the liver injury model of HT | in Fah null mice. Thus, animal
modeis of tyrosinemia are unique and useful tools to reveal mechanisms of interest to both dlinical and basic science.

J. Nutr. 137: 16665-15608S, 2007,

Hereditary tyrosinemia 1 (HT I)* is an amino acid metabolism
disorder with an autosomal recessive trait. HT 1 is due to defects
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in the fumarylacetoacetate (FAA) hydrolase (Fah) gene (Fig. 1),
located in g23-g25 of chromosome 15 in humans (1,2) and in
chromosome 7 in mice (3). HT I patients display a variety of
clinical symptoms, such as liver damage from infancy that ad-
vances to cirrhosis; reduced coagulation factors; hypoglycemia;
high concentrations of methionine, phenylalanine, and amino-
levulinic acid in serum plasmay; high risk of hepatocellular carci-
noma; and tubular and glomerular renal dysfunction. Pathological
features of the liver in HT 1 patients are characteristic but not
diagnostic. In its severe form, a pattern of progressive liver
damage begins from early infancy. In its mild form, chronic liver
damage with a high incidence of hepatoma is characteristic.
Renal De Toni Fanconi syndrome and developmental hypophos-
phatemic rickets are features of the kidney involvement. Or-
ganic acid analysis of urine demonstrates increased excretion
of 4-hydroxyphenylpyruvic acid, 4-hydroxyphenyllactic acid, and
4-hydroxyphenylacetic acid, and the presence of succinylacetone
is diagnostic (3). 2-(2-Nitro-4-triflucromethylbenzoyl) -1,3-
cyclohexanedione (NTBC) is an inhibitor for 4-hydroxyphenyl-
pyruvate dioxygenase and administration of this compound is
very effective in ameliorating liver and kidney damage in patents
with this disease (4). Although such features are presumably
related to events leading to hepatocyte injury and death, the
actual process of liver damage has not been defined. The enzyme
4-hydroxyphenylpyruvate dioxygenase (Hpd) participates in the
oxidation of the keto acids of tyrosine. Homogentisate (HGA) is

0022-3166/07 $8.00 © 2007 American Society for Nutriton
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FIGURE 1 Tyrosine catabolic pathway and related dissasas. En-
zymes that catalyze each step are listed (right) opposite the disorders
caused by the deficiency of the individual enzyme (left). As shown,
NTBC is an inhibitor for Hpd. In our study, we used mice with a daf-
ciency of Hpd and mice with a deficiency of Fah. The double-mutant
(Fah—/— Hpd—/-) mice carry metabolic blocks at the steps of Hpd
and Fah.

produced from 4-hydroxyphenylpyruvate by this enzyme and
the reaction involves decarboxylation, oxidation, and rear-
rangement (5).

In mammals, genetic deficiency of Hpd has been detected by
measuring Hpd activity. Human HT type I (HT II) is caused by
lack of Hpd activity. Model mice for HT III (Tl mice) are a strain
that exhibits high levels of serum tyrosine. The mice lack the
entire exon? sequence of the Hpd gene and have no activity of
Hpd enzyme (6,7). Thus, HT III mice are an animal model for
human HT IIL The mice have no evidence of liver or kidney
damage, probably because the accumulation of 4-hydroxyphe-
nylpyruvate does not cause any specific pathogenesis. Meanwhile,
lethal albino c14cos mice are an animal model of HT | (3,4,8,9),
They have a large deletion on chromosome 7, including the al-
bino locus and the Fah gene. We will discuss here the apoptosis
of hepatocytes and renal rubular epithelial cells in animal models
that are characteristic features of HT and recent approaches to
establishing the genetic and pathophysiological feature of this
disease.

Animal models of tyrosinemia

There are 2 strains of mutant mice that carry Fah deficiency. One
is an albino lethal c14CoS mouse, which is neonatally lethal
(10). A transgenic experiment revealed the lethal phenotype of
these mice was caused by a deficiency of Fah. These mice have a
large deletion on chromosome 7, including the albino locus and
the Fah gene (11,12). The lethal phenotype of the homozygous
¢14CoS mice is related to impaired expression of hepatocyte-
specific genes in the liver during the perinatal period (12-14),
The other Fah-deficient mice were generated by targeted disrup-
tion of the Fah gene and these knockout mice are neonatally
lethal (15). A study on these Fah-deficient mice suggested that
neonatal death is probably due to hypoglycemia (11). There are
no gross abnormalities in the histology of the liver of the Fah-
deficient mice; however, ultrastructural investigations of homo-
zygous c14CoS mice revealed altered membranous components,
In the kidney of homozygous mice, dilatation and vesiculation of
the rough endoplasmic reticulum and Golgi apparatus have been
described (16). When the Fah-deficient mice are treated with
NTBC, they avoid early lethality; however, hepartocellular car-

cinomas develop after several months of life. In the kidney of
NTBC treated-Fah-deficient mice, focal degeneration, regener-
ation of proximal tubular epithelium, and aggregates of cyto-
plasmic microfilaments have all been observed (17).

Alternatively, rescue of Fah-deficient mice has been achieved
by the introduction of a mutant Hpd (EC 1.13.11.27) gene into
homozygous c14Co$ mice (Fig. 2); the double mutant mice (Fah
—/= Hpd —/=) are viable (18). The double mutants carry mu-
tant Hpd gene from III mice, a model for HT IIL. The phenorype
of TII mice is hypertyrosinemia without visceral injury (19) and
there is a C to T transition at nucleotide +7 on exon 7 of the
Hpd gene on chromosome 5, the result being premarure termina-
tion of translation (20). As the formation of HGA is exclusively
dependent on Hpd activity, a complete block of tyrosine catab-
olism at this step would result in depletion of HGA and its
oxidative products. The complete block of tyrasine catabolism
was expected to obliterate any clinical symptoms related to Fah
deficiency.

Phenotype of the double mutant

The clinical phenotype of the double mutant (Fah—/—Hpd—/—
mice) was indistinguishable from that of the Il mice. The
findings in liver and kidney sections from Fah—/~Hpd—/— mice
were completely normal. Long-term investigations of Fah—/
—~Hpd—/— mice (12-18 mo) revealed no evidence of hepatocel-
lular carcinomas or preneoplastic lesions. Thus, the mutant Hpd
alleles from the III mice not only rescued the lethal phenotype
of the Fah—/— mice but also eliminated the critical visceral
phenotype of Fah deficiency (19). These data suggest that liver
carcinomas in the target-disrupted Fah-deficient mice under
NTBC treatment could be caused by small amounts of the oxi-
dative product(s) of HGA or their derivatives, produced by an
incomplete block of the oxidation of 4-hydroxyphenylpyruvarte
by this drug.

Induction of visceral injuries in the double mutants

In the double mutant, we expected that recovery of the activity
of Hpd in the liver would induce liver damage and that the
investigations of the induced damage would provide some clues
to the mechanism of cellular injury in Fah deficiency. At first,
administration of recombinant adenovirus-expressing human

nonsense mutation of Hpd gene
on chromosome §

GATC GATC

tyrosine
%
- . pHPP
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FIGURE 2 Mutations and metabolic defects in the double mutant.
Rescue of Fah-deficient mice i1s achieved by introduction of mutant
Hpd gene into homazygous c14CoS mice; the double mutant mice
{Fah —/- Hpd —/—) are viable. The double mutants carried mutant
Hpd gene from HT lIl mice, a model for HT 1.
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Hpd was attempted. Administration of this recombinant ade-
novirus into the 8-wk-old [l mice resulted in a rapid appearance
of the enzyme protein and activity in the liver within 1 h (21).
Normalization of blood ryrosine levels was achieved within 12 h.
When the recombinant virus was administered into the double
mutant, they became evidently ill within 12 h after the injection.
Mice had reduced mobility and lost appetite, and most often the
mice died within 30 h after injection of the recombinant virus ar
a dose of 5 x 10* plaque forming units (PFU). However, the
clinical symptoms in the control mice did not differ, indicating
that the symproms are caused by the appearance of Hpd activity
in the liver of the double mutant. The changes in the histology
of liver were striking in the double mutants administered the
recombinant adenovirus (19). There was death of massive num-
bers of hepatocytes and no infiltration of inflammatory cells, but
there were small areas of bleeding. Some of the damaged cells
showed evidence of chromatic condensation, suggesting apo-
ptosis as a cause of the cell death. When the liver sections were
investigated with the TUNEL method, <15-25% of the hepa-
tocytes were positive for the signals, indicating apoptosis, at
a dose of 5 x 10® PFU. Examination of nuclear DNA of the
livers by gel electrophoresis from the recombinant virus-treated
Fah—/—Hpd~/- mice revealed fragmentation, with sizes corre-
spondlngtorypiea!nndmsomunjts.Thus,themnmiking
changes of the liver after the recovery of Hpd function in Fah—/
—Hpd—/~ mice was the massive apoptosis of hepatocytes. This
result suggests thar apoptosis is a central fearure of the cellular
damage observed in Fah deficiency. HGA, an intermediate
metabolite of the ryrosine catabolic pathway, had similar effects
on hepatocytes with Fah deficiency (19). When 400 mg/kg of
neutralized HGA was injected intraperitoneally into 8-wk-old
Fah—/~Hpd—/— mice, all of the mice died within 16 h. There
are no clinical symptoms or histological changes in the liver
sections of the control mice or the Il mice after injection of 400-
4000 mg/kg intraperitoneally, suggesting HGA is a relatively
innocuous chemical in the control mice and TIT mice.

On the other hand, the liver sections from the HGA-treated
Fah—/—~Hpd—/~ mice had massive numbers of dead hepato-
cytes with fragmentation of nuclei. Ulerastructural analyses
revealed that the nuclear chromatin was condensed peripherally,
many mitochondria were swollen, and cytoplasmic vacuolation
was evident. With the TUNEL method, ~20-30% of the hepato-
cytes gave positive signals by in situ detection of DNA frag-
mentation after the administration of 400 mg/kg of neutralized
HGA in the double mutants. Apoptosis was demonstrated by ex-
periments using primary cultured hepatocytes obtained from the
double mutants after the addition of the recombinant adenovirus-
expressing human Hpd or addition of HGA into the medium.
In such experiments, caspase inhibitors, acetyl-Tyr-Val-Ala-Asp-
CHO (YVAD), which is a potent, selective, cell-permeating in-
hibitor of caspase-1, and acetyl-Asp-Glu-Val-Asp-CHO (DEVD),
which specifically inhibits caspase-1 and caspase-3, effectively
prevent apoptosis of the Fah-deficient hepatocytes (22). These
results suggest that the apoptosis seen in Fah-deficient hepato-
cytes involves mitochondria and the caspase 3 pathway. In vivo
administration of YVAD or DEVD effectively prevented apo-
prosis of hepatocytes in the double murant treated with HGA;
when the Fah—/— Hpd—/— mice were given 200 mg/kg of
YVAD or DEVD intraperitoneally 2 h before they were killed,
<1% of hepatocytes were apoptotic (22).

Release of cytochrome ¢ from liver mitochondria
Cytochrome c is localized in the intermembrane space and on the
surface of the inner mitochondrial membrane, Cytochrome c re-
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leased from the mitochondria interacts with Apaf-1, and caspase-9,
pro-caspase-3, to activate caspase-3 and the caspase cascade,
leading to fragmentation of the nucleus. The apoptosis of hepa-
tocytes in Fah deficiency seems to involve the caspase 3 pathway,
so it was postulated that cytochrome ¢ plays some role in the
apoptosis related in Fah deficiency. There was a considerable
release of cytochrome c into the cytosol of hepatocytes in the
HGA-treated Fah—/—Hpd—/— mice but no significant release in
the HGA-treated I1I mice. The release of cytochrome ¢ occurred
as early as 1 h after the administration of HGA, and apparently
preceded the onset of apoptotic hepatocyte death and liver
failure. These results suggest that the release of cytochrome ¢ is
the trigger leading to death of Fah-deficient hepatocytes fol-
lowing the administration of HGA. Release of cytochrome ¢
from mitochondria was observed in a cell free system when
mitochondria from control mice were incubated with soluble
fractions from HGA-treated Fah~/~ Hpd—/— mice (22). The
release did not differ when the soluble fraction from the control
mice was added to the incubation medium. These investigations
indicate that there is a low molecular weight substance(s) in the
cytosol of the liver of HGA-treated Fah—/— Hpd—/— mice that
induces the release of cytochrome ¢ from mitochondria. HPLC
analysis showed that FAA, the substrate for Fah enzyme, was
predominanty present in the soluble fraction. In the experi-
ments in which purified FAA was incubated with control mito-
chondria, a considerable amount of cytochrome ¢ was released
into the medium. Thus, it is highly likely that FAA causes the
apoptosis of hepatocytes in Fah-deficient mice via the caspase 3
pathway. The release of cytochrome ¢ from the mitochondria
seems to be an essential step in initiating the process of apoptosis
in Fah deficiency.

Apoptosis of renal tubular cells

Apoptosis was seen in the proximal renal tubular epithelial cells
from the double mutants after the administration of HGA (23).
Pathological features included bleeding in vast areas, accumu-
lation of mononuclear cells at the interstitium, proximal tubular
dilatation, and cytoplasmic vacuolation. The number of apo-
ptotic cells in the proximal renal rubules from the HGA-treated
Fah—/—Hpd—/~ mice depended on the dose of HGA admin-
istered. Electron microscopic analysis of proximal tubular cells
revealed that droplets of fat and large lysosomes were present
and many mitochondria were swollen (23). The breakage and
vacuolization were present at the brush border. In some cells,
compaction and degradation of chromatin were present in
association with convolution of the nuclear profile. Thus, severe
cellular damage and apoptosis might be central features of proxi-
mal renal tubular cells in Fah deficiency,

The urinary excretion of glucose and phosphate in the double
mutants was used to evaluate the renal tubular function (23),
The urinary glucose/creatinine ratio was markedly increased in
the Fah—/—Hpd—/— mice after the administration of 100-400
mg/kg of HGA. In contrast, the urinary glucose/creatinine ratio
was essentially unchanged in the control. These results suggest
that, in the Fah~/~Hpd—/—mice, the administration of HGA
resulted in a reduced reabsorption of glucose by the renal
tubules. The caspase inhibitor YVAD effectively prevents apo-
ptosis of renal wbular epithelial cells when administered 2 h
prior to the administration of HGA (23). Preadministration of
YVAD did not alter the urinary levels of glucose and phosphate.
In hepatocytes, pretreatment with YVAD did not have any in-
fluence on the release of cytochrome ¢ from mitochondria in
the double murant after the administration of HGA. A similar
phenomenon is likely to occur in the renal tubular cells. The



persistence of renal tubular dysfunction in the YVAD-treated
and HGA-treated double mutants might be related to the reduc-
tion of cytochrome ¢ in the mitochondria of the proximal renal
tubular epithelial cells.

Microarray analysis of tyrosinemia model mice

Recently, microarrays have become established as a valuable
tool to measure gene expression. A microarray is an application
of thousands of target sequences representing individual genes
onto a substrate that is investigated with a sample labeled to
enable detection after hybridization in a single experiment (24).
It is useful in finding new candidate genes related to metabolic
disorders (24,25). Microarray analysis was applied to investi-
gate the pathogenesis of HT I. Numerous expressed genes have
been identified and validated in the liver of HT | model mice that
induced liver damage upon HGA administration (26). These
genes were related to apoptosis, tyrosine metabolism, and hepa-
tocyte regeneration and were not expected to be involved in
the liver dysfunction of HT I (Table 1). The fact that amino-
levulinate dehydratase is downregulated in HGA-treated HT I
model mice may suggest a role for this enzyme in the liver dys-
function and neuropathy of the HT I patient, It was found that 3
genes representing liver function were downregulated in the HT
I model mice during the liver dysfunction process. The system-
atic approach used in the study provides an effective and efficient
method for identifying genes involved in the pathogenesis of the
HT I patient.

Liver regeneration in tyrosinemia model mice
Fah-deficient mice are uilized for a model of persistent liver
damage and regeneration for the hepatocyte replacement. Ad-
ministration of NTBC prevents progression of liver lesions in
Fah-deficient mice (17,27). Withdrawal of NTBC leads to liver
injury by apoptosis. After the liver damage, liver regeneration
proceeds during the administration of NTBC while the progres-
sion of the damage is arrested. Thus, the regulation of liver
damage and regeneration enables the replacement of hepato-
cytes in the Fah-deficient liver (27). The model revealed that cell
fusion of hematopoietic stem cells with hepatocytes leads to liver
regeneration after liver injury (28).

TABLE 1 Genes up- or downregulated in HT | injured liver

Genes downregulated Genes upregulatad
Amino acid metabolism Apoptosis-related genes
HGA 1,2-dioxygenase Caspase?
S-adenosyl homocystine hydrase Caspased
Histidine ammonia lyasa Caspasa 8
Pyruvate metabolism Caspase 8
Pyruvate carboxylass Caspase12
Pyruvate dehydrogenase E1 a TGF B
Liver function-related genes Tyrosing metabolism-related genes
Coagulation factor VI Tyrosine aminotransfarase
p450 3a16 Hpd
Flavin-containing

monooxygenase
Liver regenaration
HGF activator precursor
Others
Liver carboxylase precursor
Nuclear hormane receptor isoform CAR2

A-Aminalevulinate dehydratase

Double mutant (Fah—/—Hpd—/~) mice were used to study

the mechanism of visceral injury in HT L These investigations
have provided important information concerning the disease
process. The knowledge provided by this model mouse is sum-
marized as follows. The Fah~/~Hpd—/— mice appear normal,
at least until the age of 18 mo, and there is no evidence of liver or
kidney disease. The complete block of the tyrosine catabolic
pathway at the step of Hpd cffectively prevents the development
of clinical phenotypes. Apoptosis of hepatocytes and renal
tubular epithelial cells is a central feature of the visceral injury
observed in patients with HT 1. Apoptosis of hepatocyte and
renal tubular cells is prevented by either of the caspasc inhibitors,
YVAD or DEVD. However, the inhibitors do not prevent the re-
lease of cytochrome c. A systematic approach using microarrays
provides an effective and efficient method for identifying the
genes involved in the pathogenesis of the HT I patient. HT I
model mice were used to show that cell fusion of hematopoietic
stem cells with hepatocytes leads to liver regeneration after liver
injury. Fah null mice enable this finding after using the liver
injury model of HT L Thus, animal models of tyrosinemia are
unique and useful tools to reveal the mechanisms of interest to
both clinical and basic science investigation.
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Isolation of Tissue Progenitor Cells from Duct-Ligated
Salivary Glands of Swine

SHIROU MATSUMOTO,## KENJI OKUMURA ?¢ AKIRA OGATA/
YUICHIRO HISATOMI,! AYUMI SATO,'* KIYOKO HATTORI,'#
MITSUHITO MATSUMOTO,* YUJI KAJI,* MASASHI TAKAHASHI*
TETSURO YAMAMOTO,?> KIMITOSHI NAKAMURA,? and FUMIO ENDO*2

ABSTRACT

Tissue stem cells participate in the repopulation of tissue after injury. Tissue injury stimu-
lates the normally quiescent tissue stem cells to differentiate and proliferate, in the process
of replacing and/or repairing the damaged cells, and hence effecting tissue regeneration. The
salivary glands retain the ability for frequent regeneration. Previously, we isolated progeni-
tor cells from the injured salivary glands of mice and rats that differentiated into hepatic and
pancreatic lineages. The isolated progenitors were CD49f-positive and intracellular laminin-
positive, and proliferated on type I collagen while maintaining their multipotency. In this
study, we analyzed the tissue stem cells induced by ligating the main excretory duct of the
salivary gland in swine. After duct ligation of the gland, acinar cells receded due to apopto-
sis, and epithelial cells subsequently proliferated. We cultured cells obtained from the duct-
ligated salivary gland and purified the cells by limited dilution. The isolated cells were pos-
itive for CD29, CD49f, intracellular laminin, AFP, CK19, CK18, and Thy-1(CD90), and weakly
positive for c-Kit (CD117). After three-dimensional formation, the cells expressed insulin and
albumin. We designated the cells as swine salivary gland-derived progenitor cells. Gene ex-
pression of insulin and albumin was significantly increased (five-fold) and that of insulin
was also increased (3.8-fold) with differentiation medium with nicotinamide and/or GLP-1
treatment in spherical culture. The expressions of albumin and insulin were 1/10-fold and 1/4-
fold compared to porcine hepatocytes and pancreatic endocrine cells. The differentiated SGP
cells could release insulin, which were stimulated by glucose and potassium. These results
indicate that swine SGP cells could differentiate into hepatocytes and p-cells, functionally.
Swine SGP cells were useful tools for therapy and analyzing endodermal regenerative mod-
els in large animals.
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