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Abstract

O-["*FIFluoromethyl-p-tyrosine (0-["*F]EMT) has been reported as a potential rumor-detecting agent for positron emission tomography
(PET). However, the reason why p-['"*F]JFMT is better than 1-['*FJFMT is unclear. To clarify this point, we examined the mechanism of their
transport and their suitability for umor detection, The stereo-selective uptake and release of enantiomerically pure - and 1-['*FJFMT by rat
C#6 glioma cells and human cervix adenocarcinoma HelLa cells were examined. The results of a competitive inhibition study using various
amino acids and a selective inhibitor for transport system L suggested that p-['*FJFMT, as well as L-{'"FIFMT, was transported via system L,
the large neutral amino acid transporter, possibly via LAT1. The in vivo distribution of both [*FJFMT and ['"*F]FDG in tumor-bearing mice
and rats was imaged with a high-resolution small-animal PET system. In vivo PET imaging of p-['*FJFMT in mousc xenograft and rat
allograft tumor models showed high contrast with a low background, especially in the abdominal and brain region. The results of our in vitro
and in vivo swdies indicate that L-["*FIFMT and p-["*F]FMT are specifically taken up by tumor cells via system L. p-['*FJFMT, however,
provides a better tumor-to-background contrast with a tumor/background (contralateral region) ratio of 2.741 vs. 1.878 with the L-1somer,
whose difference appears to be caused by a difference in the influence of extracellular amino acids on the uptake and excretion of these two
isomers in various organs, Therefore, p-['*F]JFMT would be a more powerful tool as a umor-detecting agent for PET, especially for the
imaging of a brain cancer and an abdominal cancer.

1 2009 Published by Elsevier Inc.

Keywonds: O-["F)Fluoromethy! tyrosine; p-isomer. Positron emission tomography (PET); System L transporter; Tumor imaging

1. Introduction

["*F]FDG is the most widely used tracer for tumor
detection with PET imaging. However, several limitations
with ['*F]JFDG have been reported, such as a high uptake in
normal brain and heart and in inflammatory tissues [1]. In
contrast, the accumulation of positron emitter-labeled amino

™ This study was supporied by a grant from the Central Shizuoka
Cooperation of Innovative Technology and Advanced Rescarch in Evolution
Arca (City Area) supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT), and also by the Rescarch and
Develog of Technology for M ing Vital Function Merged with
Optical Technology, MEXT; and by the Research and Development Project
Aimed a1 Economic Revitalizanon, MEXT,

* Comesponding author. Tel.: +81 54 264 5701; fax: +81 54 264 5705,

E-mail address: okufaiu-sh ka-ken.nc.gp (N. Oku).

0969-8051/8 — see front matter © 2009 Published by Elsevier Inc.
doi: 101016/ . nuecmedbio. 2008.12.012

acids was assumed to reflect enhanced amino acid transport,
metabolism and protein synthesis. Therefore, these amino
acid tracers have been used for detecting tumors especially
those in the brain,

Positron emitter-labeled amino acids and their deriva-
tives, such as 1-[''C]methionine [2], methyl-[''CJmethio-
nine [2,3], 1-["'Cltyrosine [4], 1-["' CJleucine [5], 1-[''C)
phenylalanine [6], 4-['*F]fluoro-phenylalanine [7] and 2-
["*F]fluoro-L-tyrosine [8]., have been proposed as PET
imaging agents. Among these positron emitter-labeled
amino acids, [''C]methionine is widely used for tumor
imaging with PET. Recently, several amino acid analogs,
namely, O-['' CJmethyl-L-tyrosine [9], O-["F]fluoromethyl-
L-tyrosine (L-['*F]FMT) [9], O-["*F]fluoroethyl-L-tyrosine
[10,11], O-[**F]fuoropropyl-L-tyrosine [12,13], [''CJethyo-
nine [14] and [''Clpropionine [14], were synthesized and
evaluated as PET imaging agents. These amino acid
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analogues showed relatively low accumulation in normal
peripheral tissue (low tissue-to-blood ratio), rapid blood
clearance and a rather high amount of label remaining in
tumor tissues (high tumor-to-blood ratio).

In contrast to L-isomers of amino acids, D-isomers are
considered to behave as unnatural amino acids, like the
amino acid analogs mentioned above. In previous reports in
the 1980s, in vivo and in vitro experiments using "*C-
labeled p-amino acids revealed that the accumulation of p-
isomers was higher than that of L-isomers in tumor cells
[15,16]. At that time, the potential of p-isomers of amino
acids as nuclear imaging agents was mentioned [15-17].
However, the precise mechanism responsible for the higher
accumulation of the p-isomers has remained unclear.
Recently, the biological functions of p-isomers in the
central nervous system [18], developmental biology [19]
and some pathological conditions [20,21] were reported,
although the precise behavior of p-isomers still remains to
be clarified [22].

Amino acid transport across the plasma membrane is
mediated via amino acid transporters located on the
membrane. Among the amino acid transport systems, system
L, a Na -independent neutral amino acid transporter system,
is the major route for providing cells with large neutral amino
acids including branched or aromatic amino acids [23].
Recently, system L amino acid transporters | and 2 (LAT1
and LAT2) were isolated, and their characteristics were
evaluated [24-26]. LATI was shown to be strongly
expressed in malignant tumors [27,28] and also expressed
in some normal organs such as brain, spleen, placenta and
testis [29]. In contrast, the distribution of LAT2 mRNA is
ubiquitous [30,31]. We previously reported that the p-isomer
of O-["*F]fluoromethyl-L-tyrosine (p-['*FJFMT) was highly
accumulated in tumor tissue [32,33], although the accumula-
tion of b-['*FJFMT in normal tissues, e.g., brain, kidney and
pancreas, was low as was the whole-body background.
However, the molecular mechanism of b-['"*FJFMT uptake
in tumor tissue was not addressed at that time. Since the
presence of amino acids in plasma would affect the uptake of
this tracer into tissues, the concentrations of amino acids in
plasma, in normal and tumor tissues, and in the microenvir-
onment of tumor cells must be considered [34].

In this study, the characteristics and utility of the p-isomer
of an artificial amino acid labeled with '®F positron emitter
were evaluated; and the behavior of L-['*F]JFMT and p-['*F]
FMT both in vitro and in vivo was examined.

2. Materials and methods
2.1, Materials

L-Alanine, L-glycine, t-phenylalanine, L-serine, D-leucine
and L-leucine were purchased from Wako Pure Chemical Co.
Ltd. (Osaka, Japan). 2-Aminabicyclo+(2,2,1)-heptane-2-car-
boxylic acid (BCH) was obtained from Sigma-Aldrich Japan
(Tokyo, Japan). All other reagents were of analytical grade.
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2.2, Synthesis of labeled compound

Positron-emitting '*F was produced by '*O(p.n)'*F
nuclear reaction using the cyclotron (HM-18; Sumitomo
Heavy Industry, Japan) at Hamamatsu Photonics PET Center.
L- and p-Isomers of ['*F]FMT were synthesized by reacting
["*F)fluoro-methyl bromide with the corresponding L- and
D-tyrosine according to a previous report [32,33]. Enantio-
meric purity was analyzed on a CHIOBIOTIC T column
(4.6x250 mm; Tokyo Kasei Kogyo). The elution solution was
cthanol/water (1:1), and the flow rate was | ml/min. The
production of ["*FIJFDG was performed according to the
method reported previously [35]. Specific activities ofp-['*F)
FMT, 1-["*F]FMT and ['*F]FDG were 115£10, 126212 and
14421 GBq/umol, respectively: and radiochemical purities
were 99,620.4%, 99.8:+0.3% and 100.0+0.0%, respectively.

2.3. Cell culture

C6 glioma cells (ATCC, Rockville, MD, USA) and HeLa
cells (RIKEN, Tsukuba, Japan) were grown in Dulbecco’s
Modified Eagle’s Medium (DMEM, Wako) supplemented
with 10% fetal bovine serum (Japan Bioserum, Hiroshima,
Japan) and appropriate concentrations of antibiotics (100 U/
ml penicillin and 100 pg/ml streptomycin). The cells were
maintained in plastic culture flasks at 37°C in a humidified
atmosphere containing 5% CO; and kept as monolayers.

2.4. Measurement of uptake by cells in culture

Rat C6 glioma cells and HeLa cells were plated in 24-well
culture plates (Corning Japan, Tokyo, Japan) at a density of
210 cells per well and cultured for 24 h. After the growth
medium had been removed, the cells were washed twice with
Hank's balanced salt solution (HBSS; 136.6 mM NaCl, 5.4
mM KCI, 4.2 mM NaHCOj;, | mM CaCl,, 0.5 mM MgCl.,
0.44 mM KH,PO, and 0.41 mM MgSO;) and kept in HBSS
for 30 min at 37°C to deplete any residual nutrients from the
growth medium. Then the HBSS was discarded, and the
uptake assay was started by adding a trace amount of p- or L-
isomer of [""FJFMT/HBSS (1-3 MBg/ml) to the cultures.
After incubation for the selected time period (2, 5, 10, 30 and
60 min), the uptake of labeled compounds was terminated by
removing the medium. After the cells had been washed twice
with 1 ml of ice-chilled Dulbecco’s phosphate-buffered
saline (PBS), the cells were lysed in 400 pl of cell lysis
solution (0.1 M NaOH, 2% Triton X-100). The radioactivity
in the cell lysates was measured by a y-counter (Aloka ARC-
2000). More than three independent experiments, each done
in triplicate, were performed.

2.5 Tracer release from cultured cells

Experiments were performed using 24-well culture plates,
HeLa cells (2210% cells/well) were incubated with p- or
L-isomer of ["*F]JFMT (1-3 MBg/ml) in HBSS for 30 min at
37°C. Then, the cells were washed three times with HBSS,
and all supernatants were discarded. Release experiments
were started by the addition of | ml HBSS. The supematant
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was collected at each time point from cach well, and cells in
the well were washed twice with ice-chilled PBS very
quickly. Then the cells were lysed with 400 ul of cell lysis
solution (0.1 M NaOH, 2% Triton X-100), and the radio-
activity in the cell lysates was measured by a vy-counler.
More than three independent experiments, each done in
triplicate, were performed.

2.6. Reverse transcriptase-polymerase chain reaction

Total RNAs were isolated from C6 glioma and Hela cells
by using an RNA purification kit (QlAshredder and RNeasy
kit, QIAGEN KK, Tokyo, JAPAN) in accordance with the
manufacturer's instructions, Then, the first-strand cDNAs
were prepared with a Superscript First-strand Synthesis system
(Invitrogen Japan KK, Tokyo, Japan) and oligo(dT) primer,
and used as a template for polymerase chain reaction (PCR)
amplification. The PCR amplification was performed with Ex
Taq (Takara Bio, Inc., Ohtu, Japan) according to the following
protocol [27]; 94°C for 5 min, followed by 25 cycles of 94°C
for 30 s, 60°C for 30 s and 72°C for | min and a final extension
step of 72°C for 10 min. The following primer pairs were used
for PCR amplification: 5'-CAATGGTGTGGCCATCATG-3'
and 5'-GATGCATCCCCTTGTCCTAT-3' for rat LATI,
5'-TCATTGGCTCCGGAATCTTC-3" and 5-ATGCA
TTCTTTGGCTCCAGC-3" for rat LAT2, 5-TCACAGGCT-
TATCCAAGGAG-3' and 5-TACAATGTCAGCCTGAG-
GAG-3' for rat 4F2he, 5'-TTCATCGCA- GTACATCG-
TGG-3' and 5'-CCCAGGTGATAGTTCCCGAA-3" for
human LAT1, 5“AGCCCTGAAGAAAGAGATCG-3" and
5'-TGCATATCTGTACAATCCCC-3' for human LAT2, 5'-
TCGATTACCTGAGCTCTCTG-3' and 5'-GGGATTTTG-
TATGCTCCCCA-3' for human 4F2he and 5'-
TGACGGGGTCACCCACACTGTGCCCATCTA-3" and
5-CTAGAAGCATTTGCGGTGGACGATGGAGGG-3" for
human and rat [s-actin.

2.7. Animals

All animals were maintained and handled in accordance
with the recommendations of the National Institutes of
Health and the Animal Facility Guidelines of the University
of Shizuoka.

The mice bearing tumors were prepared as reported
previously [32]. Briefly, female BALB/cA Jcl-nu mice (7
weeks old) were inoculated subcutaneously with 5= 10%
HelLa cells, maintained for 2 weeks after the transplantation
and used for experiments at 9 weeks of age.

Male Fischer rats (9 weeks old) were obtained from Japan
SLC, Inc. The rat C6 brain tumor model was prepared as
reported elsewhere with a minor modification [36]. Rats were
anesthetized with chloral hydrate and individually placed in a
stereotaxic apparatus. C6 glioma cells (2x10° cells/10 pl of
DMEM containing 1% gelatin) were injected at a rate of 1.0 pl/
min into the left hippocampus of the rat (—4.7 mm posterior to
bregma, —3.9 mm lateral to the midline suture and —6.2 mm
from the dura) via a 28-gauge stainless tube. Eleven days after
tumor implantation, the rats were used for PET studies.
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2.8. Whole-body imaging of tumar-bearing mice and rals

The distribution pattern of each radiolabeled compound in
the rats was determined with a small-amimal PET system
(Clairvivo PET, Shimadzu, Kyoto, Japan). Animals were
anesthetized by an intraperitoneal injection of chloral
hydrate at 400 mg/kg, followed by continuous infusion of
the anesthetic at 100 mg/kg per hour through a cannula
placed into a tail vein. Anesthetized rats were fixed on an
animal holder. Each '*F-radiolabeled compound at a dose of
7 MBq was injected intravenously into cach rat via a tail
vein. The data were obtained with a list mode data
acquisition every | s for 60 min. Reconstruction was made
by 3p-DRAMA (two iterations, y=0.1) with resolution
modeling. After the PET analysis, the rat brains were excised
and sliced into eight coronal slices of 2-mm thickness (four
slices anterior to and four slices posterior to the optical
chiasm) with a brain slicer (Muromachi Kikai, Co. Ltd,
Tokyo, Japan). The distribution of ["'F]FMT or [""FJFDG in
each brain slice was determined by autoradiography after
exposure to an imaging plate for approximately | h, The
autoradiograms of the brain slices were oblained by using a
Bio-imaging analyzer BAS1500 and analyzed by Image
Gauge V3.45 (Fuji Photo Film, Co. Ltd, Tokyo, Japan).

3. Results
3.1. Uptake and release of ["*FJFMT in vitro

The enantiomeric purity of each isomer was determined
by the enantiomenic analytic HPLC as reported previously
[33]. The results showed the enantiomeric purity of each
1somer to be more than 98%.

Al first, we examined the transport of the p- and L-
isomers of ['*F]FMT in rat C6 glioma cells and HeLa cells.
The uptake of - and L-isomers of [ *FJFMT into these cells
was measured at selected time points up to 30 min. As a
result, the uptake rate of the L-isomer was significantly
higher than that of the p-isomer in both C6 glioma and Hela
cells (Fig. 1). The uptake was not saturated at least up to 60
min (data not shown).

Then, the release of the b- and L-isomers from Hela cells
in the presence or absence of 100 puM L-leucine was
examined. As shown in Fig. 2A, the release of the p-isomer
under the amino acid-free condition in HBSS was slower
than that of L-isomer. On the other hand, the release rate of
both t-['"*F]JFMT and p-["*F]FMT was accelerated in the
presence of L-leucine (Fig. 2B). These uptake and release
experimental results on ['*FJFMT indicate that the amino
acid transport activity of the p-isomer was lower than that of
the L-isomer in both C6 glioma and HeLa cells in vitro.
Then, we further examined the selectivity of the transporter
by performing inhibition experiments in C6 glioma cells.
The uptake of p- and L-isomers of ['*FIFMT was strongly
inhibited in the presence of | mM L-isomers of methionine,
phenylalanine and tyrosine (Fig. 3A). The uptake was also
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Fig. 1. Time-dependent uptake of p- and L-isomers of ["*FIFMT by C6 glioma and Hela cells, The C6 glioma (A) and HeLa (B) cells were incubated for |, 2, 5,
10 or 30 min in uptake solution containing | -3 MBq of b- or L-isomers of [ "FIFMT. The relative rucioactivily (as a percentage of the total dose) at cach point i1s
indicated as the mean=S D). More than three independent experiments, each done in triplicate, were performed.

inhibited by BCH, a selective inhibitor of the system
L amino acid transporter. However, the uptake was not
inhibited by r-glycine. These inhibition patterns in the
presence of amino acids for uptake of p- and L-isomers of
["*F]FMT were essentially the same, suggesting that both p-
and L-isomers of ["*FJFMT were taken up by the same
transporter, namely, the system L. amino acid transporter.
Since the activity of the system L amino acid transporter is
reported to be independent of extracellular sodium ions
[24,25], we next examined the sodium ion dependency of
the - and L-["*FJFMT transport. A sodium ion-free condition
was obtamed by substitution of sodium chloride with choline
chloride, as reported previously [25]. Fig. 3B shows the
sodium ion-independent uptake of both p- and 1-isomers,
These results support the idea that both p- and - isomers of
['*FJFMT are transported by system L amino acid transporters.
Next, the effect of the competitive inhibition of the system
L amino acid transporter on the uptake of p- or L-isomer of
[""FIFMT was examined. p-['"*FJFMT or t-["*F]FMT was
loaded into Hel.a cells in the presence of the various

concentrations of BCH, a selective mhibitor of system L
(Fig. 4A). The uptake of both p- and L-isomers of ['*FJFMT
was inhibited by BCH in a dose- dependent manner.
Furthermore, the inhibitory effect of vanous concentrations
of natural amino acids, i.e, p- and L-leucine, on isomer
uptake was examined. Both p- and L-leucine inhibited the
uptake of ['*FIFMT; however, L-['*F]JFMT uptake was
decreased more at a low concentration of the extracellular
amino acids (Fig. 4B and C) than the p-isomer. These resulls
suggest that the transport of L-[*F]FMT was more affected in
the presence of either L-leucine or b-leucine than that of the b-
isomer in vitro and that this might also be the case in vivo.
System L amino acid transporter proteins LATI and
LAT2 were isolated previously. LAT1 and LAT2 require an
additional single-membrane-spanning protein heavy chain of
the 4F2 antigen (4F2he) for their functional expression in the
plasma membrane. LAT1 and 4F2hc or LAT2 and 4F2hc
form 4 heterodimeric complex via a disulfide bond. So we
examined the mRNA expression of the system L amino acid
transporters in C6 glioma and HeLa cells, In the reverse
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Fig. 2 Release of 0- and t-isomers of [ "FJFMT preloaded in HeLa cells, The release of preloaded ["*FJFMT from Hel.a cells was examined. The cells preloaded
with p- or L-isomers of ['*FIFMT were incubated in the absence (A) or presence (B) of 100 uM L-leucine. The relative radioactivitics that remained in the cells
were determined to obtain the release rate of ["*FIFMT. Each point indicates the mean+$.D. More than three independent expeniments, each camed out in

wiplicate, were performed,
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Fig. 3. Uptake of b- and L-isomers of [ "F}FMT by C6 glioma cells in the presence of amino scids, inhibitors and Na™ fons. (A) C6 glioma cells were incubated

with 1 or L-isomer of [""FIFMT in the uptake solution ¢ g L-glycine, L-metl L-phenylal L-tyrosine or BCH (100 uM for each). The relative
radioactivity in the cells was determined. (B) C6 glioma cells were incubated with p- or L-isomer of [ "EJEMT in the uptake solution in the presence (cireles) or
absence (triangles) of Na® ions. The relative radioactivity of cells was d 1. Data are i as the relative mean uptake+S.D.

transcriptase—PCR (RT-PCR) analysis, the PCR products for cells were prepared and examined by PET. Data were
LAT! and their associating protein 4F2hc, but not the LAT2 acquired from mice administered D-[ SFIFMT, L-{"*FIFMT
product, were detected when RNA from the rat C6 glioma or ["*FJFDG (Fig. 6). The mouse injected with o-[' *F]JFMT
and Hel.a cell cultures was used (Fig. 5). showed the clearest difference in tracer intensity between the
tumor (right leg) and the normal tissue (left leg) compared

2. » PET imaging with ["*F]FMT ; o :
&2 Qo EET Imoging wilk |5 with the mice given the other tracers. The accumulation of

Noninvasive real-time imaging with a small-animal PET p-["*F]JFMT in the tumor tissue was not different from that
provides distribution data consistent with those obtained of 1-["*F]FMT. The standard uptake value (SUV) of the
from tissue dissection assays. Mice xenografted with Hela former was 1.336; and that of the latter, 1.642. However,
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Fig. 4. BCH- and L- or D-leucine-mediated inhibition of p- o L[ "F]FMT uptake by HeLa cells. The uptake of D- (open circle) or L-isomer (closed circle) of | "*F]
FMT was measured for § min in the presence of various concentrations of BCH (A). The stereo-selective inhibitory effect of Jeucine on the uptake of Lo "FIFMT
(B) and o-["*FIFMT (C) into HelLa cells was examined in the presence of 0, 100, 300 and 1000 uM L- or p-leucine, The graph shows the % radioactivity of the
control (without leucine). Bars indicate the meantS D
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there was far less radioactivity in the normal tissue in the
case of the image obtained with the p-isomer of ['"FJFMT
SUVs for p-["*FIFMT and r-['*FIFMT were 0.488 and
0.874, respectively

Finally, the in vivo tumor imaging in the brain tumor
model was examined. Data were displayed as the image of
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4. Discussion

In the present study, we investigated the properties of '"F

labeled p- and L-isomers of anificial amino acid FMT i
relation to their transport activity in cultured C6 glioma and
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in the present study we
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formed by using amino acids at the tracer level concentra-
tion, The uptake study on the p- and - isomers of [ *FJFMT
in C6 ghoma and Hela cells in HBSS suggested that the
incorporation was mediated by a stereo-sele

tive amino acid

transporter, since the L-isomer was incorporated much faster
than the p-1somer (Fig. 1)
.
The release of p- and L-isomers of [F]JFMT was

examined by use of Hela cells preloaded with each isomer
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of ["*F]FMT. The release of p-['*F]JFMT from the cells was
slower than that of L-isomer (Fig. 2A). This result is
consistent with the uptake data. Since intra/extracellular
amino acid exchange was reported as a feature of the system
L amino acid transport system [25], the presence of extra-
cellular amino acid would enhance the release of intracellular
["*FJFMT in system L. In fact, the release of both p- and
t-isomers of ["*FJFMT was up-regulated by extracellular
100 uM t-leucine, a typical substrate of system L (Fig. 2B).
The physiological concentration of leucine in human plasma
is approx. 100 pM, as reported previously [34,37].
Considenng the situation of tumor cells in the living body,
there would be plenty of extracellular amino acids in the
plasma; and they would have an effect on both the uptake
and release of amino acid-related PET tracers.

To clarify the involvement of the transport system in ["*F)
FMT uptake, we examined the inhibition of uptake of the p-
or L-isomer of ['""FJFMT by the L-isomer of various amino
acids and by a system L selective inhibitor, BCH, in C6
ghoma cells. BCH is an amino acid-related compound that
competitively inhibits both LAT] and LAT2. Large neutral
amino acids (L-methionine, L-phenylalanine and L-tyrosine)
and BCH inhibited the uptake of both p- and L-isomers of
["*FIFMT completely; but L-glycine, a small neutral amino
acid, did not inhibit it at all (Fig. 3A). Furthermore, system L
is known to be a Na'-independent amino acid transporter
[24,25]. To make clear the character of the transport system,
we examined the Na~ dependency of uptake of p- and L-
isomers of [ *F]JFMT. The uptake of p- and 1.-isomers of ['*F]
FMT was not affected by the presence of Na” ions (Fig. 3B).

Moreover, the RT-PCR experiment done to determine the
expression of the major system L transporters LAT1 and
LAT?2 and their functional associated protein 4F2hc indicated
that both C6 glioma and HeLa cells expressed LAT] and
4F2hc mRNA but not LAT2 (Fig. 5). These results suggesi
that the major transporter of system L in C6 glioma and
Hela cells was LAT1. Based on these results taken together,
we conclude that both p- and L-isomers of ['*F]JFMT were
transported via LAT1 in C6 glioma and Hela cells.
However, the involvement of other transport systems in the
actual or in the other tumors is possible.

The dose-dependent inhibitory effect of BCH on - or L-
isomer of [ *FJFMT uptake (Fig. 4A) indicated that there was
little difference in the 1Cs, value between D- and L-isomers.
Comparison of the inhibitory effect of D and L isomers of
leucine on the uptake of FMT showed that the uptake of 1-
[""F]JFMT was inhibited at low concentrations of these
isomers (Fig. 4B and C). Under physiological conditions, the
concentration of amino acids transported via the system L in
the plasma is far higher than 100 pM [34]. These data suggest
that both p- and t-isomers of ['*F]FMT would be
competitively transported by system L transporters.

To develop tumor-detecting agents, it is important to have
not only higher accumulation in the tumor but also a lower
background. This tumor/normal tissue ratio of accumulation
highly influences the contrast obtained. Previous reports
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indicated that the accumulation of ['*FJFMT in tumors
evaluated by SUV did not differ between p- and L-isomers
during a 60-min post administration, but showed that the
tumor/blood ratio was significantly different [32,33]. In the
present study, we also observed that the SUV of L-isomer was
quite similar to that of the p-isomer in tumor tissue, although
the latter was only about one-half of the former in normal
tissue. At the time point of 60 min, the tumor/blood ratio of
p-["*FJFMT was twice as high as that of the L-isomer
[32,33]. A previous report suggested that the L-configuration
of amino acids is required for the optimal active reabsorption
in the renal tubules [38]. p-Isomer of amino acids might be
less reabsorbed and consequently more excreted than that of
L-isomer. Therefore, as a result, the contrast imaging of
tumors was achieved by p-['*FIFMT.

For in vivo evaluation of p-['*F|IFMT, we adopted a
mouse xenotransplantation model using human tumor cells
as a small-animal model for predicting the accumulation of
tumor tracer candidates in human tumor cells. ['*FJFDG was
accumulated not only in the tumor but also in the brain and in
the heart, There was not a large difference between the
accumulations of - and p-['*FJFMT in the tumor. However,
the accumulation of the tracer in the normal tissue around the
tumor, abdominal, chest and brain region was considerably
lower with p-["*FJFMT than with L-[""FJFMT. These results
suggest that p-['"*F]JFMT is more suitable for a tumor-
detecting agent.

Finally, we evaluated tumor imaging with b-['*F]FMT by
using a rat allograft orthotopic brain tumor model. A current
report suggests that there is a significant difference in some
pathological and pharmacological features between ortho-
topic tumor models and ectopic tumor models in rodents
[39]. Because the conditions of tissues and the bloodstrcam
around the tumor are important for the evaluation of tumor-
imaging agents, we selected a rat orthotopic tumor model.
With rats bearing C6 glioma transplanted into their left
middle brain, we conducted a small-animal PET experiment
using D-["*FJFMT. The positron emitter-labeled tracer was
injected via a tail vein. The brain tumor, which could not be
detected by ['*FIFDG PET due to high background, was
imaged by p-['*F]JFMT. The region of the tumor and
autoradiographic image visualized on tumor slices well
correlated with the p-['*F]JFMT accumulation imaged by
PET. These results suggest that p-['*FJFMT might be a
useful tracer for tumor detection.

5. Conclusions

This study demonstrated that the artificial large neutral
amino acid FMT was accumulated into tumor cells via amino
acid transporters. The LATI1 system L transporter was
suggested to be the transporter, at least in C6 glioma and
HeLa cells. The uptake, release and exchange of L-[*FJFMT
were more affected by a physiological concentration of
extracellular amino acids than those of the p-isomer. p-['*F)
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FMT gave the high-contrast image of the tumor due to the
low background. The utility of -['"*F]JFMT was especially
demonstrated in the orthotopic brain tumor model. Thus
p-["*FJFMT appears promising as a tumor-detecting agent
for PET diagnosis.
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Objectives

Background

The purpose of this study was to investigate whether liposomal adenosine has stronger cardioprotective effects
and fewer side effects than free adenosine,

Liposomes are nanoparticles that can dellver varlous agents to target tissues and delay degradation of these agents.

Liposomes coated with polyethylene glycol (PEG) prolong the residence time of drugs in the blood. Although adeno-
sine reduces the myocardial infarct (MI) size in clinical trials, it also hyp lon and bradycardia.

Methods

(mean 134 = 21 nm) by the hydration methed. In rats,

We prepared PEGylated liposomal

we the my dial
reperfusion.

Results

Ischemic/reperfused myocardium. Investigation of r P i ad p
ged blood residence time. An Intravenous infusion of PEGylated liposomal adeno-

" led I
apr

of liposomes and M size at 3 h after 30 min of Ischemia followed by

The electron microscopy and ex vivo bioluminescence Imaging showed the specific accumulation of liposomes in

Aini Iahaled i 1

d in PEGylated

sins (450 ug/Kg/min) had a weaker effect on blood pressure and heart rate than the corresponding dose of free

d ine. An | %

of PEGylated liposomal adenosine (450 ug/kg/min) for 10 min from 5 min

before the onset of reperfusion significantly reduced MI size (29.5 = 6.5%) compared with an infusion of saline

(632 = 3.5%, p < 0.0). The antagonist of adenosine Ay, Ay, Az, Of A, subtype dioprot

tion observed in the PEGylatad lip

o b

Conclusions

| group.

An Infuslon as PEGylated llposomes augmented the cardioprotective effects of adenosine against Ischemia/

reperfusion Injury and reduced its unfavorable hemodynamic effects. Lip are g Ising for developing

new treatments for acute M1
Cardiology Foundation

Liposomes are now widely used for drug delivery in cancer
treatment to target specific organs actively or passively and
to prevent the degradation of chemotherapy agents (1).
However, the application of liposomes for cardiovascular
diseases is still limited. In ischemic/reperfused myocardium,
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cellular permeability is enhanced and vascular endothelial
integrity is disrupted (2,3), suggesting that nanoparticles
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