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various psychoactive drugs, such as antidepressants
(Ridout and Hindmarch, 2001; Ridout ef al., 2003a;
Warrington, 1991), anxiolytics (Hindmarch et al.,
1977; van Laar er al., 2001), analgesics (Sabatowski
et al., 2003; Vainio er al., 1995), and antihistamines
(Gengo and Gabos, 1987; Ridout ef al., 2003b; Tashiro
et al., 2005; Verster et al., 2003; Weiler er al., 2000)
alone or in combination with alcohol (Koelega, 1995;
Movig er al., 2004; Ramaekers er al., 2002; Seppala
et al., 1979; Weiler et al., 2000). Antihistamines are
widely used for treating various allergic disorders
such as allergic rhinitis and dermatitis, and sedative
antihistamines in particular significantly impair driv-
ing performance (Aso and Sakai, 1988; Ramaekers
et al., 1992; Ridout et al., 2003b; Tashiro er al., 2005;
Theunissen et al., 2004; Verster and Volkerts, 2004;
Verster et al., 2003; Weiler et al., 2000).

Sedative antihistamines such as p-chlorpheniramine
and diphenhydramine can readily cross the blood-
brain barrier (BBB) and block histamine H, receptors
(H,Rs) in the histaminergic neuronal system of the
brain, resulting in sleepiness, drowsiness, fatigue, and
psychomotor disturbances that might result in car
injury (Ridout et al., 2003b; Theunissen et al., 2004;
Verster and Volkerts, 2004; Yanai and Tashiro, 2007).
Neuro-receptor positron emission tomography (PET)
studies using i3 Cldoxepin have demonstrated that
these sedative antihistamines occupy more than 50%
of brain H;Rs, which may considerably suppress the
psychomotor functions of drivers (Okamura er al.,
2000; Tagawa er al., 2001; 2006; Yanai and Tashiro,
2007; Yanai er al., 1995, 1999). A simulated driving
performance study by Weiler et al. (2000) demon-
strated that sedative antihistamines had a greater
impact on driving ability than alcohol. Ironically,
these potentially dangerous sedative antihistamines
are more easily available as over-the-counter drugs
than newer less-sedating antihistamines (Tashiro
er al., 2005). These facts emphasize the importance
of research activities to reveal the neural mechanisms
of drug-induced sedation among drivers. In order 1o
promote this line of research, it is of great help to
know the functional neuroanatomy of car driving as
demonstrated by a recent imaging technique (Calhoun
et al., 2002; Horikawa et al., 2005; Jeong et al., 2006;
Uchiyama er al., 2003; Walter er al., 2001).

Car driving is such a complex task that various
regions of the brain may be actively involved. Studies
on imaging the neural correlates of car driving have
just started compared with performance studies. Most
recent imaging studies on car driving have employed a
simulated driving task using functional magnetic
resonance imaging (MRI) [fMRI] (Calhoun er al.
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2002; Uchiyama er al., 2003; Walter er al., 2001) and
PET (Honkawa et al., 2005). Walter er al. first
examined regional cerebral blood flow (rCBF)
responses during simulated car driving. They suc-
ceeded in visualizing the brain regions associated with
vision. sensorimotor coordination, motor function as
well as the cerebellum (Walterer al., 2001). To the best
of the authors’ knowledge, however, neuroimaging
studies using a car-driving task have not yet been
carried out to elucidate the mechanism of antihista-
mine-induced impairment of driving performance,
with the exception of a few studies on simple cognitive
tasks (Mochizuki er al,, 2002; Okamura et al., 2000).
The main purpose of the present study was to
examine rCBF responses (ArCBF) in healthy volun-
teers during simulated car driving following the oral
administration of p-chlorpheniramine, a typical
sedative antihistamine, using PET with ['*OJH,0.

SUBIJECTS AND METHODS

Fourteen healthy Japanese male volunteers ranging
from 20 to 25 years old (mean age==SD: 21.9:%
1.8 years old) were recruited to the present study.
None of the participating subjects were under any
medication nor had any previous history of allergic
and neuropsychiatric disorders including sleep disturb-
ances. There were no heavy smokers or habitual coffee
drinkers among the subjects. The present protocol
was approved by the Ethics Committee of Tohoku
University Graduate School of Medicine, and written
informed consent was obtained from each subject after
thorough explanation of the whole procedure and
possible risk of the experiment. Ingestion of caffeine,
alcohol-containing drinks, nicotine, grapefruit juice,
and any other supplement drinks was not permitted
from the night before the testing day untl the end of
the study. All the subjects except for one enrolled
in the present study have a valid driver’s license and
the mean duration of their driving history was 17.2 &
13.0 months. All the subjects were evaluated as
right-handed based on the results of Edinburgh in-
ventory (Oldfield, 1971), Chapman test (Chapman and
Chapman, 1987), and H. N. Handedness Inventory
(Hatta and Kawakami, 1995).

EXPERIMENTAL DESIGN

The purpose of the present study is to examine the
rCBF effects of p-chlorpheniramine, whose sedative
effects have been repeatedly demonstrated by several
groups (Hindmarch and Bhatti, 1987; Mochizuki
et al., 2002; Nicholson er al., 1991; Starbuck ez al..
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awa et al.,

2000; T: 2001). The present study was
conducted as a single-blind cross-over study. Each
subject was given p-chlorpheniramine repetab (6 mg)
or a lactobacteria tablet used as placebo in each study.
The op-chlorpheniramine repetab was successfully
used in our previous activation studies (Mochizuki
et al., 2002; Tagawa et al., 2001) as well as the
lactobacteria preparation, giving no statistical differ-
ence between pre- and post-administration in previous
cognitive studies (Mochizuki er al., 2002; Tagawa
et al., 2001, 2002; Tashiro er al., 2002, 2004). The
same subjects were studied for each drug at an interval
of at least 6 days as a wash-out period. The order of
drugs given to each subject was randomly assigned
and balanced

According to a previous report, the peak plasma
drug concentration of orally administered p-chlorphe-
niramine is achieved 2h post-administration (Peets
et al., 1972). Thus, the PET investigation was started
approximately 2h after the oral administration of
the p-chlorpheniramine repetab, which was given to
maintain its high plasma concentration for 2-3h
similarly as in a previous PET study (Tagawa er al.,
2002). In the present study, PET scan was started
approximately 2h post-administration of oral tablets
(placebo or antihistamine), and a set of 6 PET scans
was taken for approximately 1 h per condition. The
whole scanning procedure was completed within 3 h
post-administration.

PET scanner

arm rest

d to a

infusion line insered into the night antecubital vein

steering wheel and an
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The subjects were placed in the dorsal position on
the PET coach with their knee on the knee rest, and
they were requested to wear a head mount display
(HMD: Glasstron PLM-A35, SONY, Tokyo, Japan) to
enable them to watch the projected ‘in-car’ views of
the outer world during driving (Figure 1). The steering
wheel and acceleration pedal were attached at a
suitable position so that the subjects were able to
operate them easily and comfortably. This system
lacked a brake pedal and the subjects were able to
decrease driving speed by setting their foot away from
the acceleration pedal. The intravenous infusion line
for ["*OJH,0 injection was inserted into a subject’s
right antecubital vein so as not 1o interfere with the
handling of the steering wheel. For a simulated driving
task, a commercial computer software was used
(Gekisoh99, Twilight Express Co., Ltd, Tokyo, Japan)
that operated on a Windows 95/98 operating system. A
‘time trial mode’ was employed in the present study to
measure the total duration of driving from the ‘start’ to
the ‘goal’ points, where there were three lanes in each
side of the road with oncoming cars on the other side
of the road but with no traffic signals and pedestrians.
The subjects were requested to drive smoothly as in
normal car driving, but also as fast as possible from
the start to the goal point, avoiding collision and
deadlocks. The in-car views during the simulated
driving were all videotaped and were later used for
rating each volunteer’s dnving performance. Further

a HMD monitor for driving, The
is injected with Waler cor
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details regarding this program are already mentioned
in our previous report (Horikawa er al., 2005).

PET rCBF images were acquired under the
following three conditions: (1) resting condition with
the eyes closed, (2) active driving condition where the
subjects were requested to drive on their own, and (3)
passive driving condition where the subjects were
requested to watch the changing in-car view that had
been videotaped previously, with their hands and feet
fixed on the steering wheel and acceleration pedal,
respectively. Two sels of measurements were con-
ducted for each drug condition, where the orders of
driving conditions were the resting-active-passive
order in the first session and the active-passive-resting
order in the second session (Figure 2) in order to
eliminate an order effect. However, the order of active
and passive driving conditions was fixed since the
recorded landscape during active driving was used for
the presentation of the following passive driving
measurement. A single session took approximately
2005, where PET scanning commenced shortly after
the radioactivity from the head of each subject
exceeded 40 counts per second (cps) as measured
using the PET system (nearly 30 s after the initiation of
['SOIH,0) injection and lasted for 70 s. For the results,
driving task continued for 40-90s following the
cessation of PET scanning. In general, all PET
examinations were conducted during the daytime
ranging within the period between 9:30 and 15:00.

6.0 —
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Performance of the subjects was evaluated in terms
of the following four criteria: (a) total duration
(second) of driving from the start to the goal point,
{(b) number of collisions to oncoming cars or guard-
rails, (c) number of lane deviations due to crossing a
center line, and (d) number of deadlocks where driving
speed becomes lower than 10km/h. The performance
variables in the present study were measured by two
raters, These measurements were assessed by a rater
and the results of the rating were cross-checked by
another rater, producing the same results.

Additionally, subjective sleepiness was also eval-
uated before drug administration (placebo or
p-chlorpheniramine) and just after each PET scanning,
using the Stanford Sleepiness Scale (SSS) (Hoddes
et al., 1973) (Figure 2).

PET MEASUREMENTS

The rCBF images were obtained at the whole brain
level using a PET scanner (SET 2400 W, Shimadzu
Co., Ltd, Japan), with an average spatial resolution
of 4.5mm full-width at half-maximum and with a
sensitivity of a 20 ¢m cylindrical phantom of 48.6 keps/
KBqml in the three-dimensional (3D) mode. PET
acquisition was performed for 70s. Each subject was
injected with ['*OJH,0 of 157.8 £25.6 MBq (4.26 =
0.69 mCi) on average through the antecubital vein for
each scan. PET scans were started shortly after the
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Figure 2. Subjective sleepiness measured using the SSS before oral administration of placebo or o-chlorphemramine (pre-test) and just
after esch PET scanning (resting, active driving, and passive driving). There was no significant difference between the placebo and

n-chlorpheniramine conditions throughout the whole ex
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. Error bars indicate the standard error of mean (SEM)
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radioactivity from the head region could be detected
and lasted for 70s,

DATA ANALYSIS
Driving performance dara

After the completion of all PET investigations, driving
performance was rated for each volunteer. Statistical
analysis of the variables for performance and sleepiness
was performed to detect significant differences between
placebo and p-chlorpheniramine treatments using the
non-parametric Wilcoxon rank sum test, where p <
0.05 was set to be significant, because of the non-
normal distribution of the driving performance data.

Brain image analysis

The rCBF images were processed and analyzed using
a Statistical Parametric Mapping (SPM) software
package (SPM99; Wellcome Department of Cognitive
Neurology. London, U.K.) (Friston et al.. 1995).
Before starting the analysis, intrasubject head move-
ments were cormrected (realignment), and then all
images were stereotaxially normalized using linear
and nonlinear transformations into a stereotaxic
coordinate system (normalization to the standard
brain space) (Talairach and Tounoux, 1988). The
normalized images were then smoothed using a 12 x
12 x 12mm® Gaussian filter (smoothing). The ICBF
values were expressed as ml/dl/min, adjusted using
proportional scaling and scaled to a mean of S0mV/
dUmin. A significant change in rCBF was evaluated
according to the general linear model at each voxel. To
test the hypotheses on specific rCBF changes, the
estimates were compared using linear contrasts. The
resulting set of voxel values for each contrast consti-
tutes a statistical parametric map of the r-statistics.
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To identify brain regions that are related to the
simulated driving stimolus, rCBF images during
active driving were compared with those during the
resting and passive driving conditions. The r-value of
each voxel was transformed into normally distributed
Z-statistics. For each comparison, each voxel differ-
ence with a Z-value higher than 2.99, corresponding to
p<0.001 (uncorrected), was interpreted as signifi-
cant. Additionally, each cluster including significant
voxel differences and also having at least 10 voxels
was interpreted as significant regional rCBF changes.

We further compared rCBF changes during active
driving compared to the resting state between the -
chlorpheniramine and placebo conditions. We deter-
mined the localization of the peak activation related to
the active driving condition as compared with the
resting and passive driving conditions. Mean voxel
values were calculated among the voxels including the
peak and also those exceeding a threshold of Z > 2,99,
The mean of these voxel values reflected rCBF since
all voxel values in the rCBF images were scaled to a
mean of 50ml/dl/min. The rCBF changes (ArCBF)
were compared between the p-chlorpheniramine and
placebo conditions using paired r-test. A probability
of less than 0.05 was considered to be statistically
significant.

RESULTS
Driving performance

All 14 subjects completed the entire investigation.
Performance evaluation revealed that the number
of lane deviations significantly increased in the
p-chlorpheniramine condition compared with the
placebo condition (mean value 4+ SEM: 2.57 + 0.60
vs. 6.36+1.80, respectively: p<0.01). All other
measurements (duration of driving time and
numbers of collisions and deadlocks) demonsirated

Table 1, Driving performance in p-chlorpheniramine and placebo conditions

Percentile
M items Drug Mean SEM 25 50 75
Driving durston (s) Placebo 1242 290 117.1 124.8 133.1
p-chlorpheniramine 1311 530 110.8 128.0 150.4
Crashes (tmes) Placebo 3.68 0.40 275 375 488
o-chlorpheniramine 5.54 1.10 1.88 4.00 6.25
Deadlocks (times) Placebo 1.25 020 0.50 1.00 1.50
p-chlorpheniramine 236 0.60 038 1.00 425
Excessive lane shifts® (times) Placebo 257 0.60 038 1.50 463
o-chlorpheniramine 6.36 1.80 1.38 2.50 10.50

<001
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active > passive
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Table 2. Regions with diminished and augs d CBF resp m o-chlorpheniramine condition
Area BA Coordinate (x.y2) Z-score r-value Cluster size (voxels)
Diminished CBF response
Parietal lobe
Posterior panetal Lt 7 ~24, —80, 48 338 345 63
Supramarginal gyrus Rt 40 58, —54, 48 3.08 313 2
Temporal lobe
Infenior temporal Lt 37 —64, —56. —4 314 3.20 18
Parahippocampal gyrus ] 3536 24, -31. -8 309 315 62
Occipital lobe
Visual association Lt 18 -26, ~74, -6 369 79 206
Visual association Lt 18 -2, ~04, 20 i 355 97
Visual association Ri 18 18, <90, =12 337 345 101
Visual association Rt 19 42, -82, 34 362 am 151
Cerebellar hemisphere Rt 38, -84, -20 4.08 421 399
Augmented CBF response
Fronial lobe
Orbitofrontal Rt 1 28, 36, -28 3.40 347 23
Cerebellar vermis =10, 46, =22 i3 330 45

p-chlorpheniramine’s effects on impaired driving
performance but were not significant (Table 1)
Subjective sleepiness score was not significantly
different between the placebo and o-chlorpheniramine
conditions, Sleepiness score increased similarly in
both drug conditions (Figure 2), which may have been
induced by the present experiment setting in a dark
room. Each performance score and the sleepiness
scores did not correlate significantly.

Regional brain acrivity

Regions with increased rCBF during the active driving
condition compared with the passive driving condition
were detected in the primary sensorimotor [Brod-
mann’s area (BA): BA4], premotor (BA6), cingulate
(BA23/31), posterior panetal (BA7), temporal
(BA37), and occipital (BA17-19) cortices and in
the cerebellar hemisphere, midbrain, globus pallidus,
and pulvinar of the thalamus (Figure 3). The regions
with increased rCBF during the active driving
condition compared with the resting condition covered
nearly the same regions mentioned above, but in much
wider areas additionally including the right orbito-
frontal cortex (BA11) (Figure 3).

Next, the resting CBF images were compared
between the p-chlorpheniramine and placebo con-
ditions in order 1o examine the central effect of
o-chlorpheniramine in the resting state. rCBF in the
right parietal (BA7 and 40), bilateral temporal (BA21/
22) and lefi occipital cortices (BA17 and 19) as well as
in the caudate nucleus and cerebellum following
p-chlorpheniramine treatment was higher than that in

Copyright © 2008 John Wiley & Sons, Lid.

the same areas following placebo administration.
Lower rCBF following p-chlorpheniramine treatment
was observed in the bilateral frontal (BA6, 8, 10), right
parietal (BA39), bilateral temporal (BA21 and 22),
and bilateral insular cortices.

Finally, the regions with altered ArCBF ([active
driving] — [resting]) compared with the resting con-
dition were compared between the p-chlorpheniramine
and placebo conditions. The regions with decreased
ArCBF following p-chlorpheniramine treatment were
detected in the bilateral parietal (BA7/40), temporal
(BA36/37), and occipital cortices (BA17 and 19)
(Table 2, Figures 4 and 5A-C). The regions with
augmented ArCBF following p-chlorpheniramine
administration were found in the orbitofrontal cortex
and cerebellar vermis (Table 2, Figures 4 and 5D). No
areas of statistically significant difference were
detected by comparison of altered ArCBF ([active
driving] — [passive driving]) compared with the
passive driving condition.

DISCUSSION

Antihistamines are potentially dangerous agents to
many drivers and, so far, a large number of studies
have been conducted to determine their effects on
driving behavior (Aso and Sakai, 1988: Ramaekers
et al., 1992; Ridout er al., 2003b; Tashiro et al., 2005;
Theunissen er al., 2004; Verster and Volkerts, 2004
Verster et al., 2003; Weiler er al., 2000). Their main
therapeutic target in various allergic disorders is
H;Rs in the peripheral blood; however, some com-
ponents of antihistamines can easily cross the BBB

Hum. Psychopharmacol Clin Exp 2008; 23: 139-150.
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and block the H Rs of neurons in the brain. The
histaminergic neuronal system plays important roles
in maintaining arousal and attention, sleep-wake
cycle, and learning and memory, and the blockade
of H;Rs may result in sedation characterized by
symptoms such as sleepiness, drowsiness, fatigue, and
psychomotor disturbances (Brown er al., 2001; Yanai
and Tashiro, 2007). In particular, sedative antihista-
mines such as p-chlorpheniramine and diphenhy-
dramine significantly impair driving performance
(Hindmarch, 1976; Qidwai er al., 2002; RedBook,
1998; Ridout er al., 2003b; Verster and Volkerts, 2004;
Weiler et al., 2000). The degrees of BBB permeability
by antihistamines have been measured using PET
and [“C]doxcpin in healthy volunteers termed as
H;R occupancy (Holgate er al., 2003; Okamura et al.,
2000; Tagawa et al., 2001; Tashiro er al.. 2004, 2006;
Yanai and Tashiro, 2007; 1999). One of our previous
studies demonstrated that a single oral administration
of p-chlorpheniramine (2 mg) achieved approximately
49% H,R occupancy and repetab (6 mg) achieved 53%
(Tagawa er al., 2001). Such high H,R occupancy may
considerably suppress psychomotor functions, some-
times manifesting a greater impact on driving ability
than alcohol (Weiler er al., 2000), Ironically, sedative
antihistamines are more easily available over the
counter than newer less-sedating antihistamines, and
are still considered among the top-selling OTC drugs
for allergic rhinitis (Hindmarch, 1976; Qidwai et al.,
2002; RedBook, 1998; Ridout er al., 2003b; Verster
and Volkerts, 2004; Weiler er al., 2000). These facts
may encourage researchers to exert more effort 10
elucidate the effects of sedative antihistamines on the
neural correlates of car driving.

So far, neural correlates of car driving have been
demonstrated using fMRI and PET and the reprodu-
cibility of the findings was demonstrated in the present
study as well by comparing with the results of other
studies (Calhoun et al., 2002; Horikawa er al., 2005;
Uchiyama er al., 2003; Walter er al., 2001). Walter
et al. (2001), who first applied fMRI to the
measurement of regional brain activity during
simulated driving, demonstrated brain activation in
the visual and somatosensory cortices and cerebellum,
by comparing active and passive driving conditions
created in a simulated environment. Calhoun er al.
(2002) confirmed the reproducibility of a car-driving
study and further divided the car-driving task into
several basic components such as visual perception,
visual monitoring, vigilance, motor control, motor
coordination, and error monitoring and inhibition,
using independent component analysis. Uchiyama
et al. (2003) obtained results similar to those reported

Copyright © 2008 John Wiley & Sons, Ltd.
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by Walter and Calhoun, and additionally demonstrated
a comrelation between the rCBF response in the
anterior cingulate and the driving performance in a
driving task to maintain a safe distance from a
leading car. In principle, both fMRI and PET with
["OJH,0 measure hemodynamic responses and
should produce basically the same results, having
been confirmed by applying an identical protocol to
identical subjects. Horlkawa et al. (2005) confirmed
the reproducibility of a simulation study scanned
using PET and ['*OJH, 0. Later, the reliability of using
a simulated driving task was partly confirmed by
Jeong et al. (2006), who applied an actual car-driving
task on a road for a PET study using ('®Ffluorodeox-
yglucose that enabled PET scanning after completion
of driving tasks. Their results were nearly the same as
those of previous studies using fMRI and simulated
driving tasks, demonstrating significant brain acti-
vation during active driving in the primary and
secondary visual cortices, primary sensorimotor areas,
premotor area, parietal association area, cingulate
gyrus, thalamus, as well as in the cerebellum. Passive
driving showed an almost similar activation pattern,
lacking activations in the premotor area, and cingulate
and parahippocampal gyri. Thus, the reliability of
using a simulated driving system for elucidating
neural correlates of car driving was partly confirmed,
and it is possible that these simulation studies
represent the neural correlates of car driving at least
regarding cognitive aspects.

For the evaluation of impaired driving performance
due to sedative antihistamines, various measures have
been applied such as brake reaction time (Ramaekers
and O'Hanlon, 1994; Ramaekers et al., 1992; Verster
et al.. 2003; Weiler et al., 2000) and vehicle main-
tenance capability (Aso and Sakai, 1988; Ramackers
and O'Hanlon, 1994; Verster er al., 2003; Weiler et al.,
2000) using either an actual or simulated car-driving
task. The reaction time is a rather simple task and is
mostly associated with basic psychomotor functions
of attention, visual cognition, and motor output,
mediated mainly by the anterior cingulate gyrus, and
occipital and motor cortices, respectively. Vehicle
maintenance capability seems to be more complex and
can be divided into subcategories such as ‘coherence’,
the ability to maintain a constant distance from a
leading car that varied its speed randomly, and
*steering stability’, the ability to maintain a constant
position in a driving lane (Aso and Sakai, 1988). These
tasks may require additional neural functions such as
visuo-spatial cognition and visuo-motor coordination,
which may require involvement of the temporo-
parietal association cortex in addition to the basic
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components of a car-driving task (cingulate, visual,
and motor cortices). A previous behavioral study
reported that p-chlorpheniramine (6mg) impaired
steering stability (over-steering), where the steering
angle was unnecessanly large (Aso and Sakai, 1988).
A highway driving test revealed a significant increase
in the standard deviation of lateral position (SDLP)
following p-chlorpheniramine treatment. Subjective
alertness score was also significantly lower following
p-chlorpheniramine treatment than that following
placebo treatment (Theunissen ef al., 2004). Accord-
ing to another study by Weiler et al. (2000), steering
stability was impaired by both alcohol and diphenhy-
dramine, whereas coherence ability was impaired
following only the administration of diphenhydra-
mine. In the present study, impairment of steering
stability (number of lane deviations) was demon-
strated following p-chlorpheniramine treatment.

As for the non-significant difference in subjective
sleepiness scores between the placebo and
p-chlorpheniramine conditions, it is important (o
mention that the PET experiment room was dimly lit
during the whole scanning procedure, where spon-
taneous sleepiness was probably induced. This
condition would be relevant to the result showing
that the subjective sleepiness scores did not show a
significant difference. Such variability would also be
attributable to the level of task difficulty. It is
suggested that the level of task difficulty in the
present study was not very high. However, the effects
of p-chlorpheniramine observed in the present study
were less pronounced partly because p-chlorpheni-
ramine was given as a sustained release formulation,
or repetab, as used in a previous study by Theunissen
et al. (2004). In addition, this result suggests that
subjective sleepiness is not always a reliable measure
of sedation.

A comparison of the ArCBF between the p-
chlorpheniramine and placebo conditions revealed
regions with significantly ‘diminished’ and *augmen-
ted’ rCBF responses following bp-chlorpheniramine
treatrment (Figure 4). The regions of diminished rCBF
responses were observed in the posterior parietal (BA7
and 40), temporal (BA35 and 37) and occipital regions
(BA18 and 19) as well as in the cerebellar hemisphere,
which can be linked to functional suppression due to
o-chlorpheniramine. Thus, the present results suggest
that p-chlorpheniramine suppresses neural activities
associated with visuo-spatial cognition and visuo-
motor coordination. In general, visual information
projected onto the occipital cortex is transferred to
the posterior pant of the parietal cortex via the dorsal
pathway for higher visual processing of motion and

Copynight © 2008 John Wiley & Sons, Ltd.
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visuo-spatial information (Jueptner and Weiller,
1998). Based on these findings, the suppression of
rCBF responses in the visual and temporo-parietal
association areas following p-chlorpheniramine treat-
ment seems to also be in accordance with the present
performance results. In addition, the suppression of
the oceipital cortex and cerebellum also seems to be
reasonable since the cerebellum plays an important
role in optimizing motor output based on visual inputs.
It is hard to explain the findings in the temporal cortex
(BA21/22) that demonstrated both increased and
decreased rCBF following p-chlorpheniramine treat-
ment in comparison to that following placebo
treatment. Probably, they were caused by a slight
difference in the phonetic environment.

To the best of the authors’ knowledge, however,
there is as yet no imaging study that has elucidated the
effects of sedative drugs on the neural correlates of car
driving except for a few studies from Calhoun er al.
(2004, 2005) that applied fMRI to evaluate the brain
activity of alcohol-intoxicated drivers. Interestingly,
they reported that marked CNS effects due to alcohol
were observed only in the orbitofrontal and primary
sensorimotor regions but not in the cerebellum, and
visual and temporo-parietal regions that seemed to be
essential for car driving (Calhoun et al., 2004, 2005).
Based on the findings that alcohol impaired steering
stability but not coherence ability, it is suggested that
alcohol tends to affect motor function more strongly
than sedative antihistamines do and that coherence
ability tends to be more easily affected by impairment
of motor functions. It seems that regional CNS effects
during dnving are vanable and drug- and dose-
dependent, stressing the importance of clinical and
pharmacological research studies.

The regions with significantly augmented rCBF
responses were observed in the orbitofrontal cortex
and cerebellar vermis. The cerebellar vermis and
orbitofrontal regions seem to be activated possibly as
part of the compensatory mechanism to maintain
driving performance: however, the specific underlying
mechanism remains to be investigated. In addition,
subjective sleepiness score was not significantly
different between the placebo and p-chlorpheniramine
conditions in the present study, suggesting that
subjective sleepiness is not necessarily a reliable
index of sedation, as demonstrated by other perform-
ance studies.

In conclusion, we detected diminished and aug-
mented regional brain responses especially in the
occipital and parietal cortices and cerebellar regions
following p-chlorpheniramine treatment. These find-
ings suggest that p-chlorpheniramine may suppress

Hum. Psychopharmacol Clin Exp 2008, 23: 139-150,
DOI: 10.1002/hup
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brain functions particularly those associated with
visuo-spatial cognition and visuo-motor coordination,
which are essential in car driving. Non-invasive
functional neuroimaging is potentially useful not only
for elucidating the neural correlates of car driving but
also for clarifying the brain mechanism underlying
drug-induced impairments of driving performance.
Since the present study is the first attempt to
combine simulated driving task and antihistamines,
discussion on the limitations of the present study
would be useful for replication. The present driving
test was relatively shon (approximately 150s) and
therefore it is possible that attention processes were
not markedly influenced by p-chlorpheniramine as
these processes were not affected using this protocol.
Probably, the test length could account for the results
showing no significant differences in the scores of
driving performances and subjective sleepiness. In
addition, the order of active and passive driving
conditions was fixed partly because of the protocol
used in the present study, where the videotaped in-car
landscape was used for passive driving. The order
effect could be further eliminated if the order of the
active and passive driving conditions were balanced,

Copyright © 2008 John Wiley & Sons, Lid.
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in BA19 (A), BAT (B) and the cerebellum (C) as well as diminished rCBF response
in the cerebellar vermis (D) following p-chlorpheniramine treatment

although the present study has already given
reasonable results. Since the repetab used in the
present study may have slow releasing effects, the
sedative effects were less outstanding than those of
the immediate release formulation.
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