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Table 1. HLB fifi D4 THI VA 7= PLE fAK

RUN PLE PLE PLA

No. Mw.*  Mw/Mn [PEG s
w-PLE-1 5,500 1.06 0.26 15.82
o-PLE-1 14,000 1.34 2.18 6.28
o-PLE-2 11,000 1.14 1.43 8.23
o-PLE-4 40,000 1.61 8.05 221
o-PLE-5 33,000 1.32 6.47 2.68

+: PEG Mw (32T 4,400

Table 2. ABF7E TH V372375 PLE #AK

RUN PLE PLE PLA

HLB

No. Mw*  Mw/Mn [PEG
w-PLE 5,200 1.07 0.20 16.63
o-PLE 33,000 1.32 6.47 2.68

#: PEG Mw [342T 4,400
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EL, Bitgkn ook ABEiRPOR
W74 BEERRTSZLET, WMEIC
FRLAERINT 2 ) NE PLE /KT
RN T4 RERH L, BHLE
FNT74 U MEUTFORICRATES L
T, RN T4) OEERERELE.
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Liz#iz uv S 7E2BETAHIETA
Ry FOHREToR. UV 7 70OHE
% 256 nm Xi3 365 nm A L. BE
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Dansyl-L-methionine sulfoxide IZZ{ET 5.
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Dansyl-L-methionine sulfoxide @ Ay k@
Rf ffiiZ 05 fHETH 5 EAHE [23]
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E/=, FEREEHTY 7k Image] ZANT,

Dansyl-L-methionine @ A4 v kb (81) &
Dansyl-L-methionine sulfoxide @ A4 v b
(S2)DFREED LB AT Iz
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Abstract

To evaluate the effect of coupling of recombinant human serum albumin (rHSA) onto the surface of poly(ethylene glycol)-modified liposome
(PEG liposome) on the in vivo disposition characteristics of liposomal doxorubicin (DXR), the pharmacokinetics and tissue distribution of
DXR were evaluated after intravenous administration of rHSA-modified PEG (rHSA/PEG) liposomal DXR into tumor-bearing rats. tHSA/PEG
liposome prepared using a hetero-bifunctional cross-linker, N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP), efficiently encapsulated DXR
(over 95%). rHSA/PEG liposomal DXR showed longer blood-circulating property than PEG liposomal DXR and the hepatic and splenic clearances
of rtHSA/PEG liposomal DXR were significantly smaller than those of PEG liposomal DXR. It was also demonstrated that the disposition of DXR
1o the heart, one of the organs for DXR-related side-effects, was significantly smaller than free DXR. Furthermore, the tumor accumulation of
rHSA/PEG liposomal DXR was significantly larger than that of PEG liposomal DXR. The “therapeutic index", a criterion for therapeutic outcome,
for rHSA/PEG liposomal DXR was significantly higher than PEG liposomal DXR. These results clearly indicate that rHSA-conjugation onto the
surface of PEG liposome would be a useful approach to increase the effectiveness and safety of PEG liposomal DXR.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Recombinant human serum albumin (rHSA); PEG liposome; Doxorubicin; Tumor-bearing rats; Passive targeting

1. Introduction tmors (enhanced permeability and retention (EPR) effect),
which provides a great opportunity for passive targeting of lipo-
Liposomes containing either monosialoganglioside Gy somal anticancer agents into tumor tissues (Maeda et al.. 2000;
(Allen et al.. 1989) or polyethylene glycol (PEG) derivatives  Luigi et al., 2003).
(Blume and Ceve, 1990: Klibanov et al., 1990: Allen et al., Doxorubicin hydrochloride (DXR) is the most commonly
1991; Maruyama et al., 1992; Woodle and Lasic, 1992; Yudaet  used anthracycline and is one of the most active agents in the
al., 1996) are not readily taken up by the macrophages in retic-  treatment of breast cancer. However, it sometimes causes car-
uloendothelial system (RES), and hence remain in the blood  diotoxicity, which could lead to congestive heart failure and
circulation for a relatively long period of time. Particularly,  death (Dresdale et al., 1983: Speth et al., 1988). One of the
PEG-modified liposomes (PEG liposomes) have been utilized  approaches to avoid DXR-related toxicity is to encapsulate it
as a particulate carrier for anti-tumor therapy due to their long  into appropriate drug carriers, which provides a change in the
circulation time. Generally, as the capillary permeability of  in vivo distribution of DXR, resulting in reduced DXR levels
the endothelium in newly vascularized tumors is significantly  in the heart (Abraham et al., 2005). DXR encapsulated in PEG
greater than that of normal organs, long-circulating PEG lipo-  liposome, known as Doxil in the United States, has revealed an
somes are preferentially delivered and accumulated into the  increased therapeutic efficacy and reduced cardiotoxicity com-
pared to free DXR (Working and Dayan, 1996; Gabizon et al..

2003).
Cmupundmguﬂhw‘l’al 481 86.251 7948; fax: 481 86 251 7926. In the previous study, we repored that rat serum albumin
E-mail add Kay ac jp (T. Kimura). (RSA)-conjugated PEG liposomes showed the longer circula-

0378-5173/$ - see fromt matter © 2007 Elsevier B.V. All rights reserved.
doi: 10.1016/).ijpharm.2007.11.008
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tion time than PEG liposomes after intravenous administration
into rats (Furumoto et al.. 2007), suggesting the potential of
the albumin-conjugated PEG liposomes as a suitable carrier for
various anticancer drugs. Albumin is one of the endogenous,
non-toxic, non-immunogenic and relatively hydrophilic proteins
in the body. Its introduction on the surface of liposomes reduced
the association of serum proteins including some given serum
opsonins onto the surface, resulting in the more prolonged circu-
lation time of PEG liposome (Furumoto et al., 2007). However,
since the conjugation of rat serum albumin onto PEG liposome
with carbodiimide has to be conducted under weakly acidic
condition, the pH remote loading method (Mayer et al.. 1986;
Madden et al., 1990), which can encapsulate DXR into the lipo-
some very efficiently, was not available. In the present study, we
changed the method for albumin conjugation in order to encap-
sulate DXR into liposomes by utilizing the pH remote loading
method. N-Succinimidyl 3-(2-pyridyldithio) propionate (SPDP)
(Carlsson et al.. 1978) was selected as a hetero-bifunctional
cross-linking agent to couple recombinant human serum albu-
min (rHSA) onto PEG liposome. This method allowed us to
employ the pH remote loading of DXR into the liposome. Then,
the effect of rHSA-conjugation to PEG liposome was evaluated
in terms of pharmacokinetics and biodistribution of liposomal
DXR in Yoshida sarcoma (LY-80)-bearing rats.

2. Materials and methods
2.1. Materials

Egg phosphatidylcholine (egg PC) was purchased from
ASAHI KASEI Chemicals Industry Inc. (Tokyo, Japan).
Cholesterol (Chol), doxorubicin hydrochloride (DXR) and dau-
norubicin hydrochloride were obtained from Wako Pure
Chemical Industry Inc. (Osaka, Japan). Dioleoyl phos-
phatidylethanolamine (DOPE) and distearoylphosphatidyle-
thanolamine-N-[methoxy poly (ethylene glycol)-2000] (PEG-
DSPE) were purchased from NOF Inc. (Tokyo). SPDP was
purchased from PIERCE Inc. (Rockford, [L, USA). rHSA was
gifted from Bipha Inc. (Chitose, Japan).

2.2. Synthesis of PDP-DOPE, as a linker of
rHSA-conjugation with liposomes

We synthesized a DOPE derivatized with terminal
pyridyldithiopropionate (PDP) groups as previously reported
(Barbet et al., 1981; Ishimori et al., 1984). Mixture of DOPE
in chloroform and SPDP in methanol (SPDP:DOPE =67.2:78
molar ratio) were stirred for 2h under nitrogen gas at room
temperature after a small aliquot of triethylamine was added
to the mixture. To remove unreacted SPDP, the organic phase
was reverse-extracted with phosphate-buffered saline (PBS, pH
7.4) three times. After the organic solvent was evaporated, the
residue was re-dissolved in chloroform to give a final con-
centration of 10 wmol PDP-DOPE/mL. Thin layer chromatog-
raphy (solvent; chloroform:methanol:water=65:25:4 molar
ratio) on silica gel indicated a single spot under UV
illumination,

34

2.3. Preparation of liposomes

Liposomes were prepared according to the following
procedures. Lipid mixture (Egg PC:Chol:PEG-DSPE:PDP-
DOPE = 61:30:5:4 molar ratio) was dried by rotary evaporator at
40°C. Two hundred and fifty mM ammonium sulfate solution
(pH 5.5) was added to the thin-film of lipids and the mixture
was hydrated at 60 °C. The resultant suspension was extruded
at least 10 times through polycarbonate membranes of 100 nm
pore size (Whatman plc., Brentford, UK). External solution was
replaced with PBS (pH 8.0) by gel filtration with a Sephadex
G-25 column (PD-10, GE Healthcare Lid., Buckinghamshire,
UK).

DXR was encapsulated into liposome using the pH remote
loading method (Bolotin et al.. 1994). DXR was dissolved
at 7mg/mL in PBS (pH 8.0), and then, immediately mixed
with liposomal suspension and incubated at 60°C for 1h.
Non-encapsulated DXR was removed with a PD-10 column
equilibrated with PBS (pH 8.0). The extent of DXR encapsu-
lation was determined by measuring liposomal DXR amount by
HPLC method as described below.

2.4. Coupling of PDP-rHSA to liposomes

SPDP in methanol was added to rHSA dissolved in PBS
(SPDP:rHSA =20:1 molar ratio) under nitrogen gas and the mix-
ture was incubated at room temperature for 30 min, Excess of
SPDP was then removed by Sepharose CL-6B column (Bio-
Rad, Emeryville, CA) equilibrated with acetate buffer (pH
4.5). PDP-rHSA was incubated with dithiothreitol (DTT) (PDP-
rHSA:DTT = 1:250 molar ratio) for 20 min at room temperature
and the reaction mixture was applied to a Sepharose CL-6B col-
umn cquilibrated with PBS (pH 8.0) to remove unreacted DTT.
The activated rHSA in the elution was dropped to liposomal
suspensions and the mixture was left at least for 18h at room
temperature under nitrogen gas with gentle stirring. Unreacted
rHSA was removed by Sepharose CL-6B column equilibrated
with PBS (pH 8.0). As a control, “PEG liposome” was also
prepared by coupling cysteine instead of rHSA.

2.5. Physicochemical characterization of rHSA-conjugated
PEG liposomes (rHSA/PEG liposomes) encapsulating DXR

The diameter of the liposomes was determined by light-
scallering spectroscopy using a NICOMP zls-370 (Particle
Sizing System, Santa Barbara, CA). Lipid and rHSA amounts
were estimated by using Phospholipid B test Wako and albu-
min test Wako (Wako Pure Chemical Industries, Osaka),
respectively. Each liposome sample was subjected to SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) as previously
reported (Furumoto et al., 2007).

In vitro stability of liposome encapsulating DXR was tested
as follows: DXR-encapsulated liposomal suspensions were
incubated with the same volume of rat plasma at 37°C for
2h. Then, the released DXR was separated by the Sepharose
CL-6B column and was determined spectrofluorometrically
(Ex =500 nm, Em =550 nm).
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2.6, Determination of the amount of serum proteins
associated with liposomes

Liposomes were incubated in rat serum (liposomal suspen-
sion:serum = 1:1, v/v) for 20 min at 37 °C, and subsequently bulk
serum proteins were removed by Sepharose CL-4B column (Bio-
Rad, Emeryville, CA). The amount of serum proteins associated
with liposomes was calculated by subtracting the amount of
rHSA coupled with liposomes from the amount of total protein
quantified by Lowry’s method (Lowry et al., 1951).

2.7. Animals

Male Donryu rats weighing 200-280 g (Charles River Lab-
oratories Inc., Yokohama, Japan) were used throughout the
present study. Rats were maintained at 23°C and 55% of
humidity with free access to standard rat food and water. Our
investigations were performed after approval by our local ethical
committee at Nipro Corporation and Okayama University, and
in accordance with Principles of Laboratory Animal Care (NIH
publication #85-23).

2.8. In vivo disposition experiments

LY-80, rat ascites sarcoma cell line was kindly provided
from Cell Resource Center for Biomedical Research, Institute
of Development, Aging and Cancer, Tohoku University (Sendai,
Japan). Rats were subcutaneously inoculated into the thigh with
1.0 x 10® LY-80 cells in a volume of 0.1 mL. Liposomal DXR
or free DXR was intravenously injected at 2.0 mg/kg as DXR
around 7 days after the tumor inoculation, when the tumor grew
up to about 600 mm? in volume, Then, blood samples were peri-
odically taken from the cannulated jugular vein. Blood samples
(0.2mL) were centrifuged immediately at 4000 x g for Smin
and the obtained plasma samples were kept at —20 °C until anal-
ysis. Tissue distribution studies were conducted as follows. At
3h after intravenous injection, organs (liver, spleen, heart and
tumor) were excised, rinsed with PBS and weighed. All tissues
were stored at —20 °C until analysis.

2.9, Analyrical method

DXR was extracted from plasma and tissue samples as previ-
ously reported (Bally et al., 1990; Embree et al., 1993). In brief,
0.1 mL of plasma was added to 0.9 mL of saturated ammonium
sulfate (pH 4.0 buffered saline) with daunorubicin, an internal
standard. Subsequently, the sample was extracted with 2 mL of
chloroform/isopropanol (1:1, v/v). Following vigorous mixing,
1600 x g-centrifugation and the evaporation of organic phase,
the residue was re-dissolved in HPLC mobile phase. In the case
of tissue samples, after each tissue was homogenized with PBS
(pH 7.4) (3.0g/mL), 1 mL of the homogenate was subjected to
the same procedure used for plasma samples.

The HPLC system was composed of LC-10AS pump, SIL-
10A autosampler, RF-10A fluorescence detector (Shimadzu,
Kyoto, Japan) set at Ex = 500 nm and Em = 550 nm. An ODS col-
umn (5C;g, 150 mm x 4.6 mm i.d., Nacalai Tesque, Inc., Kyoto)

was used at room temperature. The mobile phase was 1/15M
KH;PO4:CH3CN =75:25 (v/v, pH 4.16,'adjusted with H3PO4),
which was delivered at 1.0 mL/min. The coefficient of variation
(CV) for standard curves ranged from 2.3 10 5.6 and the squared
correlation coefficient was over 0.99,

2.10. Pharmacokinetic analysis

Plasma concentrations of DXR (Cp) versus time curves were
analyzed by Eq. (1) using the non-linear Jeast-square regression
program MULTI (Yamaoka et al., 1981)

Cp=Ae™ + Be™¥ m

The area under the plasma concentration—time curve (AUC)
was calculated by the following equation:

]
AUC=f Codr (1= %) @
0

Tissue clearance (Clyssue) Was calculated by the following
equation:
Xa
AUC)
where AUC), means AUC value from 0 to time ¢, and X repre-
sents the amount of liposomes in a tissue at lime 1.

ClLtissue = (t=73h) 3

2.11. Staristical analysis

Results are expressed as the mean + S.D. Analysis of vari-
ance (ANOVA) was used to test the statistical significance of
differences among groups. Statistical significance in the differ-
ence of the means was evaluated by using Student’s r-test or
Dunnett’s test for the single or multiple comparisons of experi-

mental groups, respectively.
3. Results

Several physicochemical characteristics were evaluated for
DXR-encapsulated rHSA/PEG liposome and PEG liposome.
The average diameters of DXR-encapsulated rHSA/PEG and
PEG liposomes were 944364 and 95.5+8.1 nm, respec-
tively. DXR encapsulation efficiencies were 97.4 £ 1.4% and
05.8+2.1% for rHSA/PEG liposome and PEG liposome,
respectively. The amount of rHSA conjugated onto the surface
of PEG liposome was 5.3 1.6pg/pmol total lipid. SDS-
PAGE analysis under non-reducing condition revealed that
rHSA coupled onto the surface of liposome was exclusively
in a monomeric form (data not shown). The release of DXR
from the two PEG liposomal preparations was evaluated in an
in vitro study for 2h at 37°C. The released fraction of. DXR
was 2.3 4 2.6% or 9.3 + 5.4% for tHSA/PEG or PEG liposome,
respectively.

The in vivo disposition of DXR was evaluated after intra-
venous injection of free DXR, PEG liposomal DXR or
rHSA/PEG liposomal DXR into umor-bearing rats at a dose
of 2.0mg/kg as DXR. The plasma concentration—time curves
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Table 1

Pharmacoki i of DXR after intravenous administration of free DXR, PEG liposomal DXR or rHSA/PEG lip | DXR to tumor-b g rats
AUC (ugh/mL) Clygew (mLM) V4 (mL) kg (1)

Free DXR 4,52 + 0.69 131.0 = 16.1 278+ 55 486 % 15

PEG liposomal DXR 338 & 281 179 = 1.oM 19.5 £ 4.4 095 + 017"

rHSA/PEG biposomal DXR §9.7 & 12971 70+ 120 149 + 0.9 0.47 + 0.08"1

Each preparation was dosed at 2.0 mg/kg as DXR. AUC, area under the plasma concentration-time curve: Cliguai, total cl e; Va. app distributi lume;

and k. elimination rate constant, were calculated based on rwo-compartment model, Results are expressed as the mean = 5.D. of three experiments. *p<0.05,
compared with PEG liposomal DXR. 'p<0.05; ''p<0.01, compared with free DXR.
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Fig 1. Plasma concentration-time profiles of DXR after intravenous admin-
istration of free DXR, PEG liposomal DXR or rHSA/PEG liposomal DXR to
tumor-bearing rats. Each preparation was dosed at 2.0 mg/kg as DXR. Keys: (®)
rHSA/PEG liposomal DXR: (W) PEG liposomal DXR: () free DXR. Results
are expressed as the mean = S.D. of three experiments. *p <0.05; **p<0.01,
compared with PEG liposomal DXR. 'p<0.05; "'p<0.01, compared with free
DXR.

of DXR after intravenous administration of each preparation
were shown in Fig. | and pharmacokinetic parameters of DXR
were summarized in Table 1. Fig. | clearly shows that the
injection of rHSA/PEG liposomal DXR exhibited much higher
plasma concentrations of DXR compared with free DXR injec-
tion, and moreover significantly higher than the injection of
PEG liposomal DXR. AUC of DXR for rHSA/PEG liposome
(89.7 + 12.9 g h/mL) was significantly larger than that for PEG
liposome (33.8 2.8 pg h/mL), but both values of AUC were

(A)

extensively larger than that for free DXR (4.52 £0.69 pg h/mL).
Total body clearance (CLiow ), distribution volume (V) and
climination rate constant (ke) of DXR for both PEG liposo-
mal preparations were significantly smaller than those for free
DXR. Furthermore, rHSA/PEG liposome provided significantly
smaller CLyg) and ke of DXR than PEG liposome. These results
clearly indicate that rHSA-conjugation prolongs the residence
time of PEG liposomal DXR in blood circulation.

In the in vivo disposition study, the distribution of DXR after
intravenous administration of each preparation was investigated
for liver, spleen and heart (Fig. 2), because liver and spleen are
main organs for liposome disposition and cardiotoxicity is a
critical side-effect of DXR. At 3 h after injection, distribution of
DXR into RES was larger for both PEG liposomal preparation
than that for free DXR, but the hepatic and splenic clearances
were remarkably smaller for both liposome preparations than
that for free DXR, suggesting that rHSA/PEG and PEG lipo-
somal preparations would suppress and delay the uptake of
DXR into RES. Furthermore, it was revealed that the hepatic
and splenic clearances of DXR for rHSA/PEG liposome were
significantly smaller than those for PEG liposome, suggesting
that the affinity of rHSA/PEG liposome to these organs would
be less than PEG liposome. In addition, PEG liposomal prepa-
rations significantly suppressed the distribution of DXR into
heart compared with free DXR, although there was no signifi-
cant difference between rHS A/PEG liposome and PEG liposome
(Figs. 2 and 3).

To obtain some clue to explain the reason for the lower
hepatic and splenic clearances of rHSA/PEG liposomal DXR
than PEG liposomal DXR, we measured the amount of serum
proteins associated onto the surface of tHSA/PEG or PEG lipo-
somes (Fig. 3). The result clearly demonstrated that the amount
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Fig. 2. Tissue distribution of DXR after intravenous administration of free DXR, PEG liposomal DXR or rHSA/PEG liposomal DXR to tumor-bearing rats. (A)
Distributed amount of DXR at 3 h after intravenous administration. (B) Tissue clearance calculsted according to Eq. (3). Each preparation was dosed at 2.0 mg/kg
as DXR. Keys: (0)) free DXR; (B) PEG liposomal DXR; (W) rHSA/PEG liposomal DXR. Results are expressed as the mean = S.D_of three experiments. *p <0.05,
compared with PEG liposomal DXR in each tissue. 'p<0.05: 11p<0.01, compared with free DXR in each tissue.
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Fig. 3. Amount of serum proteins associated on surface of PEG liposome and
rHSA/PEG lip prepared by SPDP method. Results are exg d as the
mean = $.D. of three experiments. *p < 0,05, compared with PEG liposome. The

of serum protei 1 with rtHSA/PEG liposome was calculated
by sut ing the of tHSA coupled with lip from the total protein
amount measured,

of associated serum proteins was significantly reduced by the
rHS A-conjugation.

Next, we evaluated the disposition of DXR into tumor tis-
sue at 3 h after intravenous administration (Fig. 4). Significantly
increased tumor distribution of DXR was observed for both
rHSA/PEG and PEG liposomal preparations compared with
free DXR. Furthermore, it should be noted that the amount of
DXR in tumor was significantly larger for rHSA/PEG liposome
than PEG liposome, demonstrating the usefulness of rHSA-
conjugation onto PEG liposome for the better DXR delivery
into tumor tissues.

The therapeutic outcome of DXR would be evaluated by the
balance between its anti-tumor effect and side-effect. Therefore,
as a criterion for therapeutic outcome, the therapeutic index,
tumor to heart ratio of DXR amount, was calculated for both PEG
liposomal preparations and free DXR (Fig. 4). The therapeutic
index of rHSA/PEG liposomal DXR was the largest among the
three preparations, although PEG liposomal DXR was also sig-
nificantly better than free DXR. This result clearly demonstrates
that rHSA/PEG liposomal DXR would provide better EPR effect
for tumor tissues than PEG liposomal DXR.

4. Discussion

Long-circulating particles are promising carriers for passive
targeting of drugs into tumors or inflamed tissues, where the
integrity of the endothelial barrier is perturbed, via EPR effect
(Gabizon and Papahadjopoulos, 1992: Jang et al., 2003). In this
study, we tried to evaluate the pharmacokinetics and biodistribu-
tion of DXR encapsulated into rHSA-conjugated PEG liposome
in tumor-bearing rats.

Several factors such as particle size, charge and lipid compo-
sition of liposome have been reported to influence the in vivo fate
of liposomes after intravenous administration in rats (Gabizon
et al., 1993; Harashima et al., 2002). Among them, the size of
liposome is one of the most important factors to influence the
EPR effect-driven tumor disposition and the liposomes with the
diameter of less than 150 nm are reported to be suitable for the
efficient delivery (Harashima and Kiwada, 1996; Drummond
et al.. 1999; Takeuchi et al., 2001). Therefore, we decided to
prepare liposomes with a diameter of 100 nm.

In our previous study, we clearly demonstrated that RSA-
conjugated PEG liposome (RSA/PEG liposome), prepared by
using carbodiimide, prolonged the blood circulation time of PEG
liposome after intravenous administration in rats (Furumoto et
al., 2007). Carbodiimide has been widely used as carboxyl-
and amine-reactive cross-linker to prepare immunoliposomes
(Endoh et al., 1981), polymer—protein conjugates (Dilgimen et
al., 2001) and immunomicrospheres (MacAdam et al., 2000).
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