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There are a number of ki s that regul
of the neovasculature. We previously ugonld tlu m of
transforming growth factor (TGF)} inhibitor on neovasculature in
rich tumor dels to increase the intratumoral distribution
of nanoparticles. Here, we compared the effects of two other kinase
inhibitors, imatinib and sorafenib, with TGH! inhibitor (LY364947)
on extravasation of a deled ¥ ZMDl“ We
first used a del of i , the Matrigel plug
Wtommﬂmfwedlnﬂdodmdmd
Matrigel plugs (intraplug and periplug regions, respectively).
Intraplug vasculature was more strongly pericyte covered, whereas
periplug vascul was less © 1. In this model, TGF- inhibi
exhibited the most potent effect on intraplug vasculature in
increasing the extravasation of dextran, whereas sorafenib had
the strongest effect on periplug vasculature. Although imatinib and
TGF} inhibitor each reduced pericyte coverage, imatinib also
reduced the density of endothelium, resulting in a decrease in
overall delivery of nanopartides. These findings were confirmed in
two tumor models, the CT26 colon cancer model and the BxPC3
pancreatic cancer model. The vasculature phenotype in the CT26
model resembled that in the periplug region, whereas the latter
resembled that in the intraplug region. Consistent with this,
sorafenib most potently enhanced the accumulation of nano-
particles in the CT26 model, whereas TGF§ inhibitor did in the
BxPC3 model. hwmhmmmhropdniuﬁm
of tumor vascul particles may differ depending on
tumor type, lﬂdhwﬂuﬂuon the degree of pericyte coverage
around the vasculature, (Cancer Sci 2008)

Thc effectiveness of drug delivery into tumor tissues is an
important issue in the treatment of solid tumors, in addition
1o the efficacy of drugs in treating tumor cells. For example,
gemcitabine, a first-line anticancer agent for pancreatic ade-
nocarcinoma, exhibited potent in vitro growth-inhibilory effects
on a culred cell line derived from the human pancreatic
adenocarcinoma line BxPC3.™" However, it exhibited only slight
inhibitory effects on xenografted BxPC3 tumors in mice™ and
slight elongation of survival time in tumor-bearing paticnts, with
significant effects only in the improvement of quality of life
index in clinical trials."”

Many factors might potentially explain this discrepancy,
particularly those related to tumor stroma.”! Among them,
tumor vasculature plays an important role in the delivery of
anticancer agents. Extravasation of drugs to tumor lissue
constitutes an essential part of drug delivery to tumor tissues,'

dol: 10.1111/.1349-7006.2008.01003.x
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whereas the molecular size of compounds is another important
determinant of accumulation.® We have recently shown that
increased leakiness in tumor nenvmlnlm lmpmw:s the accu-
mulation of nanoparticles in tumor t in 1 models of
pancreatic adenocarcinoma and diffuse-type advanced gastric
cancer.”” In that study, inhibition of transforming growth factor
(TGF)-p signaling reduced pericyte coverage and slightly increased
endothelial area, resulting in an increase in vascular lcakiness
without loss of blood flow. However, numerous studics of tumor
neovasculature have shown that it is leaky by nature, and that
manipulation of vessels to make them less leaky, or induction of
vascular normalization, may therefore benefit drug delivery to
tumor tissues.™ This theory has been supported with the use of
vascular endothelial growth factor (VEGF) inhibitors. There are
a number of VEGF inhibitors available, including neutralizing
anti-VEGF antibodies such as bevacizumab (Avastin) and
sorafenib (Nexavar). Sorafenib is a small molecular-weight (SMW)
compound inhibiting multiple tyrosine kinases, including VEGF
receptor (VEGFR) 2.

The roles of pericytes in neoangiogenesis have also been well
investigated."” Coverage of the ncovasculature by pericytes
stabilizes vascular structure.'"” Genetic ablation of platelet-
derived growth factor (PDGF)-B signaling, one of the major
signaling pathways in induction of pericyte maturation and
recruitment to the endothelium, results in a bleeding tendency of
the neovasculature.”"""” PDGF-B signaling can be inhibited by
the SMW inhibitor (SMWTI) imatinib (Gleevec or Glivec), which
inhibits the receptor for PDGF-B signaling, PDGF receplor
(PDGFR) B, as well as PDGFRo and c-kit." The use of imatinib
along with VEGF inhibitors was shown to be effective in inhibiting
tumor neovascularization in an animal model of spontaneous
pancreatic islet tumor, the RIP-Ta, g model, through disruption of
bath pericytes and endothelium.”

Here we investigated the changes in vascular leakiness
induced by three of the SMWI mentioned above, TGF-f inhibitor
(LY364947), sorafenib, and imatinib, in the Matrigel plug assay
as well as two animal cancer models. The Matrigel plug assay
was carried out by mixing BD Matrigel Basement Membrane
Matrix with VEGF-A, fibroblast growth factor (FGF)-2, and

*Ta whom ¢ ds should be . E-mail: mi ac.jp
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Fig. 1.
Upper row: staining of platelet endothelial cell adhesion molecule (PECAM)-1-positive endothelium in green and smooth muscle c-actin (SMA)-
positive pericytes in red. Scale bars = 100 um. Lower row: distribution of 2 MDa dextran in green and PECAM-1-positive endothelium in red. Scale
bars = 50 um. (b-d) Results of quantification (n = 15) of areas of endothelium (b, in percentage in one microscopic view), ratio of pericyte-covered
endothelium {c, in percentage), and dextran distribution (d, in percentage in one microscopic view). Bars in the graphs represent standard errors.
*P<0.05; “*P<0.01; and ***P < 0.001.

heparin as angiogenic molecules (o form mature neovasculature
inside the gel plug, according lo our previous report.”"® Of the
two cancer models used in the present study, one was a well-
established hypervascular cancer model using the murine colon
cancer cell line CT26, whereas the other was an interstitium-rich
cancer model using the human pancreatic cancer cell line
BxPC3. With the latter model, we previously demonstrated
therapeutic effects of combined use of TGF-P inhibitor on nan-

The effects of three types of kinase inhibitors on extravasation of dextran in the Matrigel plug assay. (a) Confocal microscopy analyses.

oparticles.” Using these models, we investigated the effects of
SMWI on the distribution of 2 MDa dextran, a model of nano-
particles with an estimated hydrodynamic diameter of 50 nm.®
The Matrigel plug assay and tumor model experiments revealed
that TGF- inhibitor increased extravasation of 2 MDa dextran
in pericyte-covered neovasculature, whereas sorafenib increased
that in vasculature with less pericyte coverage. These findings are
important for determination of the optimal choice of angiogenic

dol: 10.1111/.13459-7006_2008.01003.x
© 2008 Japanese Cancer Association



regulators in combination with nanoparticles for chemotherapy of
cancer in general.

Materials and Methods

Reagents and antibodies. TGF-$ inhibitor was purchased from
Calbiochem (San Dicgo, CA, USA; LY364947, catalog no.
616451), imatinib was from Novartis Pharma (Tokyo, Japan),
and sorafenib was from Bayer Healthcare (West Haven, CT, USA).
These compounds were diluted in dimethyl sulfoxide to 5, 25, and
10 mg/mlL., respectively, as stock solutions. Fluorescein isothiocy-
anate (FITC)-conjugated dextran of 2 000 000 Da (2 MDa) was
obtained from Sigma-Aldrich (St Louis, MO, USA). The antibody
to platelet endothelial cell adhesion molecule (PECAM)-1 was
from BD PharMingen (San Diego, CA, USA), that to NG2 was
from Chemicon (Temecula, CA, USA), and that to smooth muscle
t-actin (SMA) (Cy3-conjugated) was from Sigma-Aldrich.
AlexaFluor-conjugated secondary antibodies were purchased
from Invitrogen Molecular Probes (Eugene, OR, USA).

Cancer cell lines and animals. The BxPC3 human pancreatic
adenocarcinoma cell line was obtained from the American Type
Culture Collection (Manassas, VA, USA), and was grown in
RPMI-1640 medium supplemented with 10% fetal bovine
serum. The murine colon adenocarcinoma CT26 cell line was
from the National Cancer Center Rescarch Institute, Japan, and
was cultured in Dulbecco’s modified Eagle’s medium (Sigma-
Aldrich) containing 10% fetal bovine serum. BALB/c mice and
BALB/c nude mice, 5-6 weeks of age, were obtained from Sankyo
Laboratory (Tokyo, Japan) and Charles River Laboratories (Tokyo,
Japan), respectively.

In vivo Matrigel plug assay and cancer models. Matrigel plugs
were crealed by mixing (0.2 mg/mL recombinant human VEGF-
A (VEGF165; R & D Systems, Minneapolis, MN, USA), 1 mg/
mL FGF-2 (R & D Systems), and 0.1 mg/mL heparin (Aventis
Pharma, Tokyo, Japan) by pipetting, in combination with regular
Matrigel (catalogue no. 354234; BD Biosciences, Franklin
Lakes, NJ, USA). Matrigel (400 pL. per plug; one plug per
mouse) was injected subcutaneously into the abdominal region
of BALB/c mice. Each Matrigel plug was harvested on day 7
and frozen directly in dry-iced acetone for immunohisto-
chemistry. As cancer models, 5x 10° BxPC3 cells or 1 x 10°
CT26 cells were implanted by subcutancous injection into the
abdominal region of BALB/c nude and normal BALB/c mice
and allowed to grow for 3 wecks and 1 week, respectively, until
reaching the proliferative phase. For the in vive permeability assay,
TGF-§ inhibitor at 1 mg/kg, imatinib at 50 mg/kg, or sorafenib
at 40 mg/kg was administered as one shot intraperitoneally 18 h
before injection of dextran. Dextran was administered intravenously
via lateral tail veins 6 h before harvesting of samples. For
perfusion study in the tumor tissues, dextran of 2 MDa was
administered intravenously, al 24 h afler SMWI-administration
and 10 min before harvesting, and the excised samples were
directly fixed in formalin. All experimental protocols were
carried oul in accordance with the policies of the Animal Ethics
Committee at the University of Tokyo.

Histology and immunohistochemistry. The excised samples were
either directly frozen in dry-iced acetone for immunohis-
tochemistry, or fixed overnight in 4% paraformaldehyde and
then paraffin embedded to prepare them for hematoxylin-eosin
(HE) staining or perfusion study in the tumor tissues. Frozen
samples were further sectioned at 10 pum thickness in a cryostatl,
briefly fixed with 10% formalin, and then incubated with primary
and fluorescent secondary antibodies. Samples were observed
with a LSM510 Meta confocal microscope (Zeiss, Thornwood,
NY, USA) for immunohistochemistry, and with an AX80 micro-
scope (Olympus, Tokyo, Japan) for HE staining.

Quantification. Areas in Matrigel plugs that were PECAM-1-
positive, double-positive for PECAM-1 and SMA, and FITC-

Kano et al.

Fig. 2. Low-magnification view of the Matrigel plug and surrounding

regions in sections with h y osin (HE) g (upper) and
with immunohistochemistry (lower). (a) Avascular area, (b) vascularized
intraplug region, (c) periplug region, and (d) normal tissue. Green,
platelet endothelial cell adhesion molecule-1; red, smooth muscle ce-actin.

dextran-positive in confocal micrographs (n = 15), or lengths of
FITC—dextran-positive structure in the tumor lissues (n=12)
were measured using Adobe Photoshop software (Adobe Systems,
San Jose, CA, USA) and Imagel] software (freeware distributed
by the National Institutes of Health, USA). Pericyle coverage
was quantified as the ratio of PECAM-1/SMA-double-positive
areas 0 PECAM-1-positive areas, as described previously.”
Results were further analyzed statistically by Student’s f-test
using Microsoft Excel software (Microsoft, Redmond WA, USA).

Results

We initially carried out the Matrigel plug assay in vive, in which
regular Matrigel was mixed with VEGF-A, FGF-2, and heparin'®
to investigate the effects of three SMWT on the extravasation of
2MDa dextran (Fig. 1). Marked induction of pericyte-covered
mature neovasculature was observed in the gel plug after a 7-day
incubation in mice, as we reported previously.'® Pericytes were
determined to be SMA-positive cells in a Matrigel plug assay. In
this model, administration of TGF-§ inhibitor decreased pericyte
coverage of the neovasculature and significantly enhanced the
distribution of 2 MDa dextran. This observation was consistent

CancerSci | 2008 | 3
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Fig. 3.

Effects of three types of kinase inhibitors on extravasation of dextran from vasculature in the periplug region. (a) Confocal microscopy

analyses, Upper row: staining of platelet endothelial cell adhesion molecule (PECAM)-1-positive endothelium in green and smooth muscle a-actin
(SMA)-positive pericytes in red. Lower row: distribution of 2 MDa dextran in green and PECAM-1-positive endothelium in red, Scale bars = 100 um.
(b-d) Results of quantification (n = 15) of areas of endothelium (b, in percentage in one microscoplic view), ratio of pericyte-covered endothelium
(¢, in percentage), and dextran distribution (d, in percentage in one microscopic view). Bars in the graphs represent standard errors. *P < 0.05;

4P <0.01; and ***P < 0.001,

with our previous study,
pancreatic adenocarcinoma and diffuse-type gastric cancer.”
Based on this result, we expecied thalt a decrease in pericyles
might induce more extravasation of 2 MDa dextran.

To confirm this, we compared the effects of imatinib admin
istration, which inhibits PDGF signaling and may therefore
decrease pericyte coverage. However, administration of imatinib
decreased the total accumulation of 2 MDa dextran compared

in which we used animal models of

with TGF-f inhibitor (Fig. 1). Although imatinib actually decreased
pericyle coverage to the same level of TGF-§ inhibitor, it also
decreased PECAM-1-positive endothelium together with pericyte
coverage. These findings of morphological analysis were con-
sistent with those noted in a previous report.”'” TGF-B inhibitor
maintained the area of PECAM-1-positive endothelium and may
therefore be superior to imatinib. In addition, although VEGF
inhibition was expected to increase drug delivery, based on the

doi: 10.1111/.1349-7006.2008.01003.x
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Fig. 4. Two animal tumor models using CT26
and BxPC3 cell lines. Histological examination of
tumor models by hematoxylin-eosin staining and
immunohistochemistry with platelet endothelial
cell adhesion molecule (PECAM)-1 in green and
smooth muscle a-actin (SMA) In red. Scale
bars = 100 um.

results of previous studies,™ sorafenib nearly climinated the
influx of 2 MDa dextran and resulted in far less accumulation of
it. This result can be explained by the potent reduction of
PECAM-1-positive endothelium and increase in pericytes as
sleeves. These morphological changes induced by VEGF inhibi-
tion were also consistent with previous reports."™

Although the neovasculature inside the gel plugs was as
described above, the vasculature in the regions surrounding the
gel plugs, or sites of acule inflammation in reaction lo the plugs
as foreign bodies (Fig. 2), exhibited different patterns. Compared
to the vasculature inside the gel plug, that in regions around the
plugs was denser and more tortuous, and was accompanied by
pericytes to a smaller extent. These phenotypes resembled those
of the vasculature in conventional animal models of tumors,
such as the CT26 model, as we describe later in this report. We
termed these two regions the ‘intraplug’ and ‘periplug’ regions,
respectively, afler the established terminology in oncology,
‘intratumoral” and “peritumoral’.

Functionally, the vasculature in periplug regions was leaky to
2 MDa dextran in the control condition, that is, without any
maodulation by SMWI (Fig. 3). Surprisingly, the cffects of SMWI
on neovasculature in the periplug regions were quite different
from those in the intraplug regions. In the periplug regions,
pericyte coverage of the neovasculature was far less than in the
intraplug region, even in the control condition. In this periplug
region, neither TGF-B inhibitor nor imatinib significantly altered
pericyte coverage. Consequently, these compounds did not alter
the accumulation of 2 MDa dextran. Sorafenib, on the other hand,
did increase pericyte coverage, and increased the accumulation
of 2 MDa dextran. This increase in extravasation was consistent
with previous reports on the effects of VEGF inhibition,™

We subsequently compared these findings in the Matrigel
plug assay with those in two subcutaneous tumor xenografl
models. We used the CT26 cell line derived from murine colon
cancer and the BxPC3 cell line derived from human pancreatic
adenocarcinoma (Fig. 4). HE staining of CT26 xenografts

Kano et al.

revealed a well-vascularized medullary histological pattern with
little tumor stroma, whereas that of BxPC3 xenografts revealed
a stroma-rich histology. Immunostaining of PECAM-1 and
SMA confirmed this stroma-rich characteristic of the BxPC3
model. Although the BxPC3 model grew more slowly than the
CT26 model, the BxPC3 model also reached the proliferative
phase. Compared to the BxPC3 model, the CT26 model
required one-fifth of the number of inoculating cells and one-
third of the duration to reach the proliferative phase, which was
1 week for the CT26 model and 3 wecks for the BxPC3 model
(data not shown). These differences may well be due to the dif-
ferences in requirements for induction of stromal components
from host animals, as well as rates of proliferation of tumor cell
lines.

We then tested the alterations in vascular phenotypes as well
as accumulation of 2 MDa dextran with or without SMWI in
these tumor models (Fig. 5). We here used NG2 as the pericyte
marker (Fig. 5a), because SMA-paositive cells (i.e. myofibroblasts)
are abundant especially in the stroma of BxPC3 tumor (Fig. 4).
In the CT26 model, sorafenib did increase the pericyte-covered
vasculature, whereas other SMWI did not increase the pericytes.
Imatinib decreased endothelial cells. These observations in the
CT26 tumor model were consistent with those in the periplug
region of the Matrigel plug. In the BxXPC3 model, pericyte
coverage was less with LY364947 and imatinib, and endothelial
cells were decreased with imatinib and sorafenib. These findings
in the BxPC3 tumor model were consistent with those in the
intraplug region. Accordingly, 2 MDa dextran was diffusely
distributed in umor tissue without any treatment in the CT26
model, whereas almost no leakage of dextran was observed in
the BxPC3 model (Fig. 5b). Sorafenib exhibited the best effect
in the CT26 model, whercas TGF-J inhibitor did in the BxPC3
model. The latter result was consistent with the findings of our
previous work using nanoparticles including PEGylated liposomes
incorporating doxorubicin (Doxil) of approximately 100 nm in
diameter, which exhibited antitumor effects in the BxPC3 model

Cancer5a | 2008 | 5
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Fig. 5.

Effects of three kinase inhibitors in the tumor models. (a) Vascular phenotypes revealed by immunohistochemistry. Green, platelet

endothelial cell adhesion molecule (PECAM)-1; red, NG2. (b) Extravasation of 2 MDa dextran from vasculature. Dextran in green and PECAM-1 in

red, Scale bars = 100 um.

only when combined with TGF-§ inhibitor.” We also tested the
effects of Doxil with or without TGF-J} inhibitor in the CT26
model. Monotherapy with Doxil at 8 mg/kg almost completely
inhibited tumor growth, and combined administration of TGF-}
inhibitor did not yield any significant additional effects (data not
shown). These findings were consistent with those observed in
the Matrigel plug assay. The effects of combined use of imatinib
were also consistent with those in the Matrigel plug assay.

Increased accumulation of dextran in these tumor models at
7 h after injection, by sorafenib in the CT26 tumor and by
LY364947 in the BXPC3 tumor, can also be explained by an
increase in the amount of vasculature with perfusion, not only
by an increase in leakage. To test this possibility, we examined
changes in perfusion by intravascular existence of dextran at
only 10 min after administration, because dextran of 2 MDa
should basically remain inside vasculature al that time after

doi: 10.1111/].1349-7006_2008.01003.x
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Fig. 6. Perfusion study in the tumor models. (a) Tumor vessels with perfusion were determined by the existence of dextran in green, administrated
at 10 min before harvesting. Scale bars = 100 pm. (b) Relative lengths of vessels with perfusion. C, control; I, imatinib; L, LY364947; 5, sorafenib,

Bars represent standard errors. *P < 0.05; **P<0.01; and ***P < 0.001.

injection.® As shown in Figurc 6, the lengths of vasculature
with blood flow were not altered in the conditions exhibiting
increased accumulation of dextran, that is, by sorafenib treat-
ment in the CT26 wmor and by LY364947 treatment in the
BxPC3 tumor. Therefore, the increased accumulation of dextran
in these conditions may largely be due to an increase in vascular
leakiness.

Discussion

We have previously shown that use of short-acting SMW TGF-
P inhibitor can increase the distribution of nanoparticles in
stroma-rich tumors by increasing the leakiness of the tumor
neovasculature,” By virtue of the brief duration of SMWI
effects, potential side effects can be decreased due (o long-term
suppression of essential signaling pathways. There are still a
number of SMWI that can be used for manipulation of tumor
neovasculature via their effects on pericytes or endothelium. We
therefore compared the effects of two of these SMWI, imatinib
and sorafenib.

Combined use of VEGF inhibition has been reported to have
potent effects on drug delivery into tumor tissues.""” The underl-
ying mechanism for this has been explained by the vascular
‘normalization’ theory,™ or decreased interstitial fluid pressure
by decreased leakiness of tumor vasculature, via a decrease in
endothelial cells and increase in pericyte coverage. Consistent
with this, VEGF inhibition by sorafenib had significant effects
on the retention of 2 MDa dextran in the periplug regions and in
CT26 wumor, where vasculature showed less pericyle coverage
and denser endothelium than in normal tissues. However, VEGF
inhibition significantly decreased retention of the same dextran
in adjacent areas, the intraplug region, and in BxPC3 tumor
Vascular phenotypes in these regions were characterized by
more pericyle coverage and sparser endothelum, that is, they
were more ‘normal’ than those in the periplug region and in
CT26 wmor.

One of the differences between these two kinds of vasculature
was the blood flow in the vasculature after sorafenib treatment.
In CT26 tumor after sorafenib treatment, blood flow was main-
tained, whereas the flow ceased in sorafenib-treated BxPC3
tumor. These differences may partially be because of differences
in sensitivity of the endothelium to the change in VEGF signaling,
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known Lo be at least due to differences in expression levels of
VEGFR2."®

Another apparent difference in these tumor models was pericyte
coverage before drug administration. Less pericyte coverage has
been reported to result in more leakiness.""'" The degrees of
dextran accumulation in all control conditions (i.e. without mod-
ification by SMWI) are consistent with the degrees of pericyte
coverage. Increased dextran accumulation in LY364947-treated
BxPC3 (umors can also be explained by decreased pericyte
coverage, not by normalization. Both blood perfusion (Fig. 6)
and interstitial fluid pressure, which we previously reported,”
did not differ with or without LY364947 treatment in BxPC3
tumor. These findings suggest that we may need different
approaches, such as the use of TGF-J inhibitor to increase drug
delivery (at least for nanoparticles), to develop effective treatment
for tumors with originally ‘more normal’ tumor vasculature.
Note, however, that these more normal vessels in tumors might
not be completely normal, because TGF-f inhibitor did not alter
the accumulation of nanoparticles in true normal lissues, as we
previously reported.™

Regarding the degree of original pericyle coverage in tumor
vasculature, an increase in the amount of stromal components in
tumor tissue may resull in an increase in pericyte coverage. In a
previous study, we found that the presence of FGF-2 together
with VEGF-A c¢nhances mature neovascularization compared
with VEGF-A alone."® In addition to FGF-2, a set of signaling
molecules is needed to recruit and to induce proliferation of
pericytes. These include PDGF-BB"" (homodimer of PDGF-B
chain) and TGF-B."""* These signaling molecules are reported
to be secreted from components of the tumor stroma and, above
all, cancer-associated fibro-blasts® ™ and macrophages.® Tumors
with more stroma, including fibroblasts and immune cells, have
more pericyte coverage of the vasculature with greater maturity
and less leakiness. Although chemoresistance of tumors has been
largely investigated from the aspect of drug sensitivity of tumor
cells per se, it is possible that the histological pattern of the
lumor lissues may also constitule a reason for chemoresistance,
because of insufficient drug delivery to the tumor cells.

The Tie2-angiopoietin signaling pathway is also known to be
involved in vessel maturation and to affect pericytes.” Because
there are no SMW compounds available to inhibit this signaling
pathway, we tested the effects of one-shot Tie2-Fc chimeric

CancerSci | 2008 | 7
© 2008 Japanese Cancer Association



protein at 50 mg/kg bodyweight with 2MDa dextran in the
Matrigel plug assay, but no significant effects on accumulation
of 2 MDa dextran were observed (M.R. Kano, unpublished data,
2008). There are two possible explanations for this observation:
spatial and temporal. According to the spatial explanation, because
Tie2-angiopoietin signaling occurs between the endothelium
and peri and thus outside the vessel lumen, the Fe chimera,
which is of fairly large molecular size and may therefore be
retained inside vessel lumens, is not able to affect signaling. The
other drugs used in the present study were all SMWI, which
may easily exit the vessel lumen and penetrate the perivascular
tissues, The second explanation is temporal. Although this sign-
aling pathway is known to be deeply involved in development,
whether it is also involved in the maintenance of endothelial-
mural structure is not known. Because we observed the effects
of drugs only at 24 h after administration, it is possible that
other inhibitors inhibited only the maintenance functions of the
signaling pathways, and not functions related to development.
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