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GLP-1 receptor signaling protects pancreatic beta cells in intraportal
islet transplant by inhibiting apoptosis
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Abstract

To clarify the cytoprotective effect of glucagon-like peptide-1 receptor (GLP-1R) signaling in conditions of glucose toxicity in vivo. we
performed murine isogenic islet transplantation with and without exendin-4 treatment. When a suboptimal number of islets (150) were
transplanted into streptozotocin-induced diabetic mice, exendin-4 treatment contributed to the restoration of normoglycemia, When 50
islets expressing enhanced green fluorescent protein (EGFP) were transplanted, exendin-d treatment reversed loss of both the number
and mass of islet grafts one and 3 days after transplantation. TUNEL staining revealed that exendin-4 treatment reduced the number
of apoptotic beta cells during the early posttransplant phase, indicating that GLP-1R signaling exerts its cytoprotective effect on pan-
creatic beta cells by inhibiting their apoptosis. This beneficial effect might be used both to ameliorate type 2 diabetes and to improve

engraftment rates in clinical islet transplantation.
@ 2008 Elsevier Inc. All rights reserved.

Keywords: Exendin-4; Glucagon-like peptide-1; Cytoprotection; Apoptosis; Enhanced green fluorescent protein; Islet transplantation; Islet engraftment

Glucagon-like peptide-1 (GLP-1) is a physiological
incretin, an intestinal hormone released in response to
nutrient ingestion that stimulates glucose-dependent insu-
lin secretion [1,2]. Recent studies have demonstrated that
GLP-1 has beneficial effects on pancreatic beta cells [3-6],
one of which is inhibition of apoptosis of native beta cells.
In vitro studies have shown that GLP-1 receptor (GLP-1R)
signaling has various beneficial actions such as ameliorat-
ing ER stress [7,8] and oxidative stress [9]. However, dem-
onstration of the in vive cytoprotective effect in an animal
model of type 2 diabetes (T2DM) is problematic because
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enhancement of GLP-IR signaling reduces blood glucose
levels due to its insulinotropic action [4,5], glucagonostatic
action on alpha cells [10], and improvement of insulin sen-
sitivity [11], which makes it difficult to evaluate the
cytoprotective effects in the same conditions of glucose
toxicity.

To clarify the cytoprotective effect of GLP-1R signaling
in vive, we used a murine isogenic islet transplantation
model using a suboptimal number of islets together with
exendin-4 treatment, a degradation-resistant GLP-1 analog
[12]. As isogenic islet grafts in the natural course of the
early posttransplant period are easily lost due to various
physiological stress [13], various suboptimal number of
islet transplantation can lead proper engraftment during
the transplantation process without regard for the effects
of improved blood glucose levels following transplantation
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of an optimal number of islets. When a higher suboptimal
mass of islets is transplanted, blood glucose levels remain
high during the early posttransplant period, changing to
normoglycemic only during the late posttransplantation
period if the engrafted mass is sufficient but remaining in
the hyperglycemic state if the engrafted mass is insufficient.
Thus, when a suboptimal number of islets are transplanted
together with exendin-4 treatment in the early posttrans-
plant period when the recipient is hyperglycemic, its indi-
rect action on glucose tolerance can be excluded and its
cytoprotective effect can be evaluated by monitoring the
blood glucose levels. In addition, bio-imaging technology
permits comparison of the number and mass of islets
before and after transplantation.

In the present study, we evaluated the cytoprotective
effect of GLP-IR signaling in vive in pancreatic beta cells
using a murine isogenic islet transplantation model. We
used a suboptimal mass of transplanted islets with and
without exendin-4 treatment, and monitored blood glucose
levels. We also compared the number and mass of islet
grafts with and without exendin-4 treatment under condi-
tions of hyperglycemia.

Materials and methods

Animal care. All experiments were approved by the Kyoto University
Animal Care Commiltee.

Amimals. Male C37BL/6JJcl mice (CREA, Japan) aged 8-10 weeks
were used as recipients and donors, Male transgenic C57BL/6-EGFP
mice aged 810 weeks were also used as donors. The mice were obtained
from Dr. Masaru Okabe (Research Institute for Microbial Diseases,
Osaka University, Osaka, Japan) [14]. Recipient animals were rendered
diabetic by a single intraperitoneal injection of streptozotocin (Sigma
Aldrich, USA), 120mg/kg body weight, freshly dissolved in 10 mM
citrate buffer (pH 4.2). Mice with a blood glucose concentration greater
than 20 mmol/l for 2 consccutive days were used as recipients. Blood
glucose concentrations were determined by glucose meter (Glucocard,
Arkley, Japan).

Islet isolation, isfer rransple ion, and exendin-4 trearment. Islets were
1solated, as previously described [15] Recipient mice were anesthetized by
isoflurane (Forane, Abott, Japan). Fresh islets in a volume of 400 pul PBS
solution were injected into the portal vein and transplanted into the right
hepatic lobe as previously described [15,16] Exendin-4 at a dosage of
1.0 nmol/kg body weight was administered intraperitoneally once daily in
the morning for 14 days,

Oral glicose rolerance test (OGTT ). After fasung for 16 h, a basal
blood sample was collected and the mice received glucose (1.5 glkg body
weight) orally: additional blood samples were collected at 15, 30, 60, 90,
and 120 min after glucose loading.

Evalwation of mumber and mass of EGFP-expressing islet grafts.
Islets isolated from transgemic CS7BL/6-EGFP mice were first observed
by fuorescence microscope BZ-8000 (KeyEnce, Japan) before trans-
plantation; the urea of fAuorescence was measured using Imuage J
software (National Institute of Mental Health, USA). Livers bearing
islet grafts were removed and sectioned nto 500-pm shices and sen-
alized; digitalized photographs of all sections were taken. The number
of EGFP-positive islets in each liver section was then counted.
excepting those appearing by their position to be part of an islet in an
adjacent section. The total area of Auorescence of all islets was then
measured.

Measurement of beta-cell mass using  immunohistochemistry. The
right hepatic lobes were fixed. embedded in paraffin, cut in blocks
at regular intervals, and sectioned into S-pm  sections. Deparaffi-

nized sections were incubated with a polyclonal guinea pig anti-
insulin antibody (Dako, USA), then with a biotinylated goar anti-
guinea pig antibody (Vector, USA). and then with a streptavidin
peroxidase conjugate and substrate kit (Dako). The total liver area
and total insulin-positive beta-cell area were quantified using Image
1 software,

Apopiosis detection. TUNEL staining was performed using Apoptosis
detection Kit (Takara Bio, Japan).

Statistical analyses. All data are presented us means = SEM. Statistical
analyses were performed by an unpaired r-test. p value of less than 0.05
was considered significant.

Results

Exendin-4 decreased the number of islet grafts required to
restore normoglycemia

To evaluate the cytoprotective effect of GLP-IR signal-
ing during the early posttransplant phase, we performed
isogenic islet transplantation and observed blood glucose
levels during the late posttransplant phase. Previous
reports have shown that transplantation of only 75 islets
can normalize blood glucose levels if the majority becomes
engrafted [17], but because many islets are lost due to var-
ious stress such as glucotoxicity, transplantation of 75 islets
is insufficient for restoration of normoglycemia. In our pre-
liminary expeniments, while some recipients showed
improved blood glucose levels when 200 islets were trans-
planted (data not shown), no recipients showed any change
in blood glucose levels when 150 islets were transplanted
(Fig. 1A). Thus, 150 islets was chosen as an appropriate
suboptimal number for use in these transplantation exper-
iments. In addition, all mice transplanted with 150 islets
together with exendin-4 treatment became hyperglycemic
soon after transplantation but became normoglycemic
approximately 14 days after transplantation (Fig. 1A).
The responsibility of the islet grafts in exendin-4-treated
mice in maintenance of glucose tolerance is demonstrated
by the immediate return to hyperglycemia after removal
the right hepatic lobe (Fig. 1B). In addition. OGTT was
similar in mice receiving 150 islets with exendin-4 treatment
and sham-operated control mice (Fig. 1C). These results
indicate that exendin-4 treatment played a crucial role in
the restoration of normoglycemia by protecting the trans-
planted islets from damage during the early posttransplant
phase.

Detection of fluorescence of rransplanted Islets of transgenic
C57BLI6-EGFP mice

To clarify the cytoprotective effect of exendin-4
in vive, we established a novel system whereby the total
number and the total mass of islets can be compared
before and after transplantation by using fuorescent
islets isolated from transgenic C37BL/6-EGFP mice.
These mice exhibited normal pancreas and islet morphol-
ogy and well as normal glucose tolerance by OGTT
(data not shown).
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Fig. 1. Exendin-4 reduced the number of islets required for transplantation to restore normoglycemia in STZ-induced diabetic mice, (A) Blood glucose

concentrations were ed in mice tr

pl 1 with 150 islets together with | nmol/kg exendin-4 treatment {open circles, n = 4), 400 islets alone (filled

triangles, n = 5), 150 islets alone (filled circles, n = 3), STZ-treated only (filled triangles, n = 3), and Sham-operated C37BL/6 mice (open squares, n = 5).
(B) Right hepatic lobe was resected from two recipients transplanted with 150 islets together with exendin-4 treatment on Day 90 to clarify the effect of the
islet grafts on glycemic control. (C) OGTT was performed on Day 30 in recipients transplanted with 150 islets together with exendin-4 treatment and in

sham-operated wild-type C5TBL/6 mice (n = 3 for each),

Transplanted islets of transgenic C57BLI6-EGFP mice are
traceable and measurable in both number and mass

To confirm traceability and measurability of the trans-
planted islets, intraportal transplantation of islets isolated
from transgenic CS57BL/6-EGFP mice was performed.
One day and three days after transplantation, the right
hepatic lobe was resected and sliced, and each slice was
photographed by fluorescence microscope (Fig. 2A-C).
Liver slices containing islet grafts were then immuno-
stained for insulin. The area of fluorescence (Fig. 2A) coin-
cided with that of the islet beta cells stained for insulin
(Fig. 2B), demonstrating traceability of the islets. The num-
ber of islet grafts in the liver after transplantation was then
compared. When 25, 50, or 75 islets were transplanted., the
total number of islet grafts detected in the liver was
243+ 0.3, 48.7 + 0.8 and 73.3 + 0.3, respectively (n=3
for each), demonstrating a significant (p < 0.0001), strong
correlation (r = 1.000) between the number of detected islet
grafts in the liver and the number of transplanted islets
(Fig. 2E). In addition, because the area of fluorescence
coincided with that of immunostained islets (Fig. 2A-C),
the total area of fluorescence reflected the total arca mass
of the islets, allowing comparison of total islet mass before
and after transplantation. When 25, 50, and 75 islets were
transplanted, the total area mass of islets before transplan-
tation was 2.01 + 0.04, 4.11 + 0.01. and 5.89 + 0.09 (mm®),
respectively, while that of islet grafts in the liver were
2.00 £0.02, 4.28 +0.07, and 6.08 + 0.03 (mm?), respec-

tively (n=3 for each), demonstrating a significant
(p < 0.0001), strong (r = 0.998) correlation between before
and after transplantation (Fig. 2F).

Exendin-4 reduced loss of transplanted islets from transgenic

C57BLI6-EGFP mice during the early postiransplant phase

To exclude the indirect effect of exendin-4 through its
effect on blood glucose levels, we reduced the number of
the transplanted islets to 50. When 50 islets of transgenic
CS7BL/6-EGFP mice were transplanted with or without
treatment of exendin-4 into STZ-induced diabetic mice,
the blood glucose levels were not significantly different on
1 day (Day 1) (n=3, 27.1 £ 0.3 vs 27.8 £ 0.1 (mmol/l).
p=0.193) or 3 days (Day 3) after transplantation (n =3,
28.7 + 0.2 vs 28.7 + 0.3 (mmol/l), p = 0.936). The number
and the total area mass of the islet grafts in livers resected
on Day 1 (figure not shown) and Day 3 (Fig. 3A and B)
were then examined. The number of islet grafts with treat-
ment of exendin-4 (Ex(+)) showed 94% and 19.9%
increases on Day 1 (n=3 for each, 46.7+05] vs
4204033, p<0.05 and Day 3 (n=3 for ecach,
44.6 +0.36 vs 34.7 + 0.84, p < 0.01) (Fig. 3C) compared
to those without treatment (Ex(—)). Ex(-+) islet grafis
exhibited 29.0% and 31.9% more total area mass on Day
1 (n =3 for each, 69.5 & 2.5% vs 53.3 = 2.1% (normalized
to the total fluorescence area mass before transplantation),
p<005) and Day 3 (n=23 for each., 64.5+2.6% vs
26.9 + 1.1%, p < 0.05) (Fig. 3D), respectively, than Ex({—).
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Fig. 4, Exendin-4 treatment reduced beta-cell apoptosis after intraportal
islet transplantation. (A-B) Representative photographs of liver sections
on Day | (A) and Day 3 (B) from Exd{+) mice and Ex4(~) mice stained
for insulin (a, ¢, ¢, and g) and TUNEL-assay (b, d, I, and h) are shown.
TUNEL-positive cells are indicated by arrowhead. Scale bar: 200 pm. (C)
Exd4(~) showed significantly greater beta-cell mass thun Ex4(-) on Day |
(n=73 for each) and Day 3 (n =3 for each). “p < 0.05 and "p < 0.01 vs
Exd{ —). (D) Ex4{+) showed a significantly greater decrease in the ratio of
TUNEL-positive beta cells than ExH—) on Day | (n=13 for each)
(number/beta-cell area (mm°)) and Day 3 (n =3 for each) (number/beta-

cell area (mm?)), “p < 0.05 vs Exd{—)

Exendin-4 decreased the rate of apoptosis of beta cells
introduced by intraportal islet graft after transplantation

To investigate the difference in area mass of trans-
planted islets in Ex(+) and Ex(—), the rate of apoptosis
of beta cells of islet grafts on Day | and Day 3 was exam-
ined (Fig. 4A and B). The rate of apoptosis of TUNEL and
insulin-double positive cells was significantly lower on Day
| (n=3 for each, 246.5 + 3.5 vs 36.4 + 3.6 (number/beta-
cell area (mm?), p < 0.01) and on Day 3 (n =3 for each,

797

148.7 4+ 17.7 vs 41.3 + 1.3 (number/beta-cell area (mm?),
p < 0.01) with Ex(+) than Ex(—-) (Fig. 4D).

Discussion

In the present study, we demonstrate that GLP-1R sig-
naling has a cytoprotective effect in the posttransplant per-
iod using a murine islet transplantation model. Exendin-4
treatment during the early posttransplant hyperglycemic
phase contributed to restore normoglycemia during the late
posttransplant phase in STZ-induced diabetic mice receiv-
ing a suboptimal graft of 150 islets. In addition, the total
number and total area mass of the islet grafts both on
Day 1 and Day 3 was significantly greater in Ex(+) than
in Ex(—). The finding that the rate of apoptosis was less
in Ex(+) than in Ex(—) both on Day | and Day 3, when
their blood glucose levels were yet unchanged, demon-
strates that GLP-1R signaling inhibits apoptosis in vive
under conditions of glucose toxicity.

Murine islet transplantation is an ideal model for inves-
tigating the cytoprotective effect of exendin-4 on trans-
planted pancreatic beta cells in vivo. Although isogenic
islets injected into the portal vein are spared rejection by
the immune reaction, the cells may succumb to apoptosis
due to various stress factors including hypoxia [18,19],
inflammation [20,21], and mechanical shear stress [22,21]
before engraftment. The efficacy of exendin-4 treatment
on posttransplant hyperglycemic status in this transplanta-
tion model can be quantified using different suboptimal
numbers of islets because the posttransplant glycemic con-
dition directly reflects the mass of engrafted islets. The
number and mass of transplanted islets can be traced
because isolated islets can be labeled and examined before
transplantation. Thus, this murine islet transplantation
model allows observation of the direct effect of the cytopro-
tective effect on beta cells in vivo.

In this study, we established a method for tracing the
transplanted islets of transgenic C57BL/6-EGFP mice in
liver sections under fluorescence excitation. Our findings
reveal that the area of fluorescence of islet grafts in liver
coincides with that of insulin immunostaining (Fig. 2A
C). which areas before transplantation correlate highly
with those after transplantation (Fig. 2F). Observation of
cach islet grafts before and after transplantation is defini-
tive for evaluation of the cytoprotective action, which 1s
not practicable by the conventional immunohistochemical
method due to the necessarily limited observation of the
organ.

We have also shown that the natural course of islet
engraftment in the early posttransplant period can involve
loss of about half of the transplanted beta cells. Recently,
Eich et al. reported evaluation of islet mass by positron-
emission tomography using islets labeled with '*Fluorode-
oxyglucose, and found that almost 50% of the transplanted
islets in the graft were lost [23], which is comparable with
our data. Although about 30% of the graft was found to
be lost even with exendin-4 treatment on Day |, the rate
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of apoptosis remained lower., resulting in a mass of engraft-
ment more than adequate for normoglycemia thereafter.
This finding is encouraging regarding the possible clinical
use of exendin-4 in islet transplantation therapy in human
subjects [24,25],

Although exendin-4 is already in clinical use for treat-
ment of T2DM [26], this cytoprotective effect on beta cells
in vive also certainly functions independently of other
actions in T2DM. The mass of islets is usually already
decreased when patients are diagnosed with T2DM [27].
Thus, exendin-4 treatment used in the early phase of devel-
opment, when glycemic tolerance is yet normal, might
hamper the progression of T2DM.
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Abstract

To evaluate the factors associated with age-related increase in fasting plasma glucose (FPG) in Japanese men with normal fasting glucose,
we measured FPG, fasting immunoreactive insulin, glycated hemoglobin, total cholesterol, triglyceride, and high-density lipoprotein
cholesterol levels in health check examinees. Subjects with FPG less than 6.1 mmol/L together with glycated hemoglobin less than 5.6%
were enrolled in the study. The homeostasis model assessment of insulin resistance (HOMA-IR) and HOMA-f were used as the indices of
insulin sensitivity and msulin secretion, respectively. Fasting plasma glucose increased significantly with age (r = 0.30, P <.0001), and
HOMA-f decreased significantly with age (v = 0.24, P < .0001). The HOMA-IR had no significant relation with age (» = 0.06, not
significant), whereas body mass index and serum triglyceride were associated with HOMA-IR (r = 0.49, P <.0001 and r = 0.33, P <.0001,
respectively). Thus, in Japanese male subjects with normal fasting glucose, it is suggested that the FPG increment with age is associated with
decreased fcell function rather than with insulin resistance. Further analyses were performed by comparing 3 groups: low FPG (FPG <5.0
mmol/L), high FPG (5.0 < FPG < 5.6 mmol/L), and mild impairment of fasting glycemia (mild IFG) (5.6 = FPG < 6.1 mmol/L). The insulin
levels in mild IFG and high FPG were significantly higher than in low FPG (P < .001), but those in mild IFG were similar to those in high
FPG. Analysis of the 3 subgroups revealed that, whereas insulin sensitivity was impaired more in high FPG, there was little compensatory
increase in insulin in mild IFG, suggesting that f-cell function is already deteriorated when the FPG level is greater than 5.6 mmol/L.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Type 2 diabetes mellitus i1s characterized by both
decreasing insulin secretion and insulin sensitivity, partly
due to genetic factors [1-3]. Although diabetes is a world-
wide health problem [4], it is clear that there are ethnic
differences in the pathophysiology of the decreasing glucose
tolerance characteristic of its development [5]. Factors
responsible for glucose intolerance occur from a prediabetic
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state: impaired glucose regulation according to the World
Health Organization classification. Impaired glucose regula-
tion comprises 2 subgroups: impaired fasting glycemia (IFG)
characterized by increasingly impaired fasting plasma
glucose (FPG) with 2-hour plasma glucose (2h-PG) within
normal limits and impaired glucose tolerance (IGT)
characterized by increasingly impaired 2h-PG [6,7]. We
previously reported that insulin secretory capacity and
insulin sensitivity are both decreased in Japanese subjects
with IFG [8-10]. Although pB-cell function and insulin
sensitivity may well begin to deteriorate earlier, there are
few studies of the normal glucose tolerance (NGT)
population. Fasting plasma glucose is known to increase
with age [11], and both insulin secretory capacity and insulin



