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Standardization of human embryonic stem (ES) cell and induced pulripoent stem (iPS) cell
research in Japan

Miho Kusuda Furue

Japanese Collection of Research Bloresources (JCRB) Cell Bank, National Institute of Biomedical Innovation, Osaka
567-0085, Japan, Laboratory of Cell Processing, Institute for Frontier Medical Sciences. Kyoto University, Kyoto 606-
8507, Japan

Abstract In 1998, human embryonic stem (ES) cells have been established. Since then, the human ES
cells have been used as a ool for understanding the mechanisms in human development and
regeneration application research in the world. However, in Japan, not so many searchers have
used human ES cells. It is caused from several issues. In 2007, human induced pluripotent
stem (IPS) calls have been developed, The situation in Japanese stem cell research have
been changing. As the characteristics of Human iPS cells are quite similar to those of humarn
ES cells, researcher can use the protocols ol human ES cells for iPS cell research. In this
review, | have summarized the culture and characteristics of human ES and IPS cells,

Key Words: human ES cells, human iPS cells, feeder cells
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Chemically defined serum-free culture for mouse embryonic stem cells
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Abstract

Mouse embryonic stem cells are pluripotent cells derived from the inner cell mass of blasto-
cysts, which differantiate into all three germ layers of the developing mouse embryo
Experimental manipulation of mousa embryonic stemn cells in vitro and in vivo provides a model
of mammalian development that is amenable to molecular and cellular analysis. We have
developed a chemically defined serum-free medium which can maintain mouse embryonic stem
cells in undifferentiated phenotype for more than two years.  Under the serum-free culture con-
ditions, leukemia inhibitory factor is sufficient to stimulate cell proliferation, inhibited cell differen-
tiation, and maintained self-renewal of ES cells although the proliferation effect of LIF was not
observed in the presance of serum. This serum-free culture method may be useful to study the
biological effect of various factors on mouse ES cells. We have introduced this culture method
here.
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The fusing ability of sperm is bestowed by
CD9-containing vesicles released from eggs in mice

Kenji Miyado*™3, Keiichi Yoshida®™, Kazuo Yamagata, Keiichi Sakakibara*, Masaru Okabe**, Xiaobiao Wang*,
Kiyoko Miyamoto*, Hidenori Akutsu*, Takahiko Kondo*, Yuji Takahashi*, Tadanobu Ban'', Chizuru Ito",
Kiyotaka Toshimori¥, Akihiro Nakamura*, Masahiko Ito*, Mami Miyado*, Eisuke Mekada**, and Akihiro Umezawa*

*National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, lapan; "School of Biomedical Science, Tokyo Medical and
Dental University, Yushima, Bunkyo, Tokyo 113-8510, lapan; AGraduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-B670,
lapan; 'Center for Developmental Biology, RIKEN Kobe Institute, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; and **Research
Institute for Microbial Diseases, and ""Faculty of Medicine, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Edited by Ryuzo Yanagimach|, University of Hawall, Honolulu, H1, and approved July 8, 2008 (received for review November 8, 2007)

Membrane fusion is an essential step in the encounter of two nudlei
from sex cells—sperm and egg—in fertilization. However, aside
from the involvement of two molecules, CD9 and lzumo, the
maechanism of fusion ins unclear. Here, we show that sperm-
egg fusion is mediated by vesicles containing CD9 that are released
from the egg and interact with sperm. We demonstrate that the
CD9~'~ eggs. which have a defective sperm-fusing ability, have
impaired release of CD9-containing vesicles. We investigate the
fusion-facilitating activity of CD9-containing vesicles by examining
the fusion of sperm to CD9 '~ eggs with the aid of exogenous
CD9-containing vesicles. Moreover, we show, by examining the
fusion of sperm to CD9-'~ eggs, that hamster eggs have a similar
fusing ability as mouse eggs. The CD9-containing vesicle release
from unfertilized eggs provides insight into the mechanism re-
quired for fusion with sperm.

fertilization | membrane fusion | EGFP | exosome

Fcrlilimlir\n is an essential process that naturally produces a
cell capable of developing into a new individual. It consists of
sequential events, including membrane fusion of sperm and cgg
(1). Despite the importance of understanding fertilization in
controlling human reproduction and preserving endangered
species, the molecular basis underlying the fusion remains a
mystery, however. Previously, we reported thal a tetraspan-
membrane protein (tetraspanin), CD9, is expressed on the cgg
plasma membrane and is required for sperm-egg fusion (2-4),
A role of CD9 in other fusion events also has been demonstrated
(5). When sperm are added 1o eggs [rom CDY'" [emales, the
sperm bind to the egg plasma membrane normally, but fusion is
severely impaired (2-4). Two recent observations suggest that
CD9 plays a role in the organization of egg membrane. First,
CDY is ransferred from the egg to the fertilizing sperm present
in the perivitelline space (PVS) (6), suggesting the involvement
of a process similar to trogocytosis, & mechanism of cell-to-cell
contact-dependent transfer of membrane fragments (7). Second,
CD?Y deficiency alters the length and density of microvilli on the
egg plasma membrane (8). CDY is also known to be a component
of exosomes, membrane vesicles released from a wide range of
cells (9, 10). Despite its relationship to CD9, the invol of
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Fig. 1. Generation of mice expressing CD9-EGFP in eggs. (A) CD9-EGFP

specifically expressed in eggs with mouse 2ZP3-promoter. Cumulus oocyte
complex from Tg*CD9*"* oviducts was collected at 14 h after injection of
human chorlonic gonadotropin. Nuclei of an egg and cumulus cells were
counterstained with DAPI. (Left) CD9-EGFP. (Center) DAPIL. (Right) Bright field.
Scale bar: 100 pm. (8) Western blot analysis for eggs coliected from €097,
CD9°'*, and Tg"CD9 " mice, The same amounts, including 30 eggs of sach
lysate, were examined by anti-CD9 and anti-beta-tubulin mAbs (internal
control), (C) Litter sizesof CD9 '~ (n=31), Tg*CD9 ' (n = 35), Tg*CD9" " (n
16), and CO9'"" mice (n = 15) (mean = SEM), The numbers of females
examined are in parentheses.

contributing to 24 and 27 kDa, respectively) was expressed in the
eggs collected from Tg*CDY"'~ mice; however, the amount of
CDY9-EGFP expressed in CD9 ' egps was estimated to be 109%
of that of endogenous CD9 in the CD97' eggs (Fig. 1B). Despile
the small amount of CD9-EGFP expressed in eggs, CDI9-EGFP
demonstrated the ability to reverse the sterility of CD9

females (Fig. 1C). The numbers of pups obtained from
Tg*CD9 females (6.4 = (.5) were similar 1o those from

exosome release in sperm-egg fusion remains unknown. In the
present study, we analyzed the potential of enhanced green
fluorescent protein (EGFP)-tagged CD9 (CDY-EGFP) as a
reporter protein to study sperm-egg fusion in living mouse eggs

Results

To observe the movement of CDY during sperm-¢gg fusion, we
generated a transgenic mouse line that expressed CDY9-EGFP
only in eggs (Fig. 14), and converted to the genetic background
of CD9™" mice by mating mice. Western blot analysis using
anti-CDY monoclonal antibody (mAb) revealed that an expected
CD9-EGFP with a molccular mass of 51 kDa (CD9 and EGFP
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Fig. 2. ldentification of secretory vesicles
containing CD9 from untfertilized eggs. A,
Asingle confocal image showing CD9-EGFP
In unfertilized Tg*CD9 '~ eggs (E), includ-
ing the PVS (*), zona pellucida (Z), and the
outer margin of the zona pellucida (dotted
line), {Lefr) Bright field. (Right) CD9-EGFP.
Lower are enlarged images of the boxed
areas. (B) Western blot analysis for eggs
mechanically fractionated as shown in the
diagram: zona-intact C09~'~ eggs (E) (10
eggs per lane) and zona-free CD9™'* eggs
{10 eggs per lane). The medium (R} contain-
ing the remnant material from 40 eggs
treated with a plezo manlpulator was
loaded in each lana. () iImmunoelectron-
microscopic analysis of CD8*'" eggs. The
zona-intact CD9'"* eggs were examined
using anti-C09%-mAb and 5-nm gold beads
conjugated with anti-rat IgG Ab. Left
panel: Image including CDS-containing
vesicles (*), microvilli (arrowheads), zona
peliucida (Z), perivitelline space (PVS), and
egg (E). (Right} An enlarged image of the
boxed region In the left panel, Scale bar:
200 nm. (D) RT-PCR for CD3, GM3 synthase,
and glyceraldehyde-3-phosphate dehydro-
genase transcripts in CD9*, CD9-"~, and

EGFP tmgged CO9
(anagens)

Tg*CD9 ' eggs. The same amounts, Including 50 eggs in each reaction, were examined, The right end lanes are negative controls in which RT was removed from
reactions of wild-type eggs. (£) Localization of GM3 and CD9 in CD9*'*, CDS~/~, and Tg*CD3~/~ eggs. (Left) Wild-type. (Middle) CO9~'. (Right) Tg"CDI ‘.
Right-side of the sets of wild-type and Tg*CD9"" eggs are enlarged images of the boxed reglons. The live eggs were examined, and the internal localization
of GM3 in CD9 ' eggs was examined under fixed, permeabilized conditions. (A Comparison of the fluorescent intensities of GM3 stained by antibody in
wild-type (n = 10), €09/~ (n = 9), and Tg~CD9 '~ eggs (n = 10} (mean = SEM). The average values of the wild-type eggs were set to 100%.

Tg*CD9*'~ and CD9*'~ females (6.0 £ 0.2 and 6.5 + 0.5) and
greater than those from CDY9 /" females (0.0 = 0.0). The
CD9*'~ females did not exhibit any loss in fertility that could
cause a reduction of litter size relative to that of the CD9"""
females (4). Furthermore, the transgene had no elfect on normal
fertility. These results demonstrate that transgenically expressed
CDY-EGFP can compensate for the loss of intrinsic CD9 and
vield eggs with the ability to fuse with sperm.

Based on the foregoing evidence, we observed the subcellular
localization of CD9-EGFP in “living" Tg*CD9 ' eggs (Fig.
24). As expected, confocal microscopic analysis allowed the
visualization of two types of CDY-EGFP localization: intense on
the plasma membrane and also in the cytoplasm. Unexpectedly,
we found loosely filled, noncompacted CDY-EGFP in the PVS,
u space formed between the zona pellucida and the plasma
membrane of the egg. The localization of CD9 outside the eggs
also was confirmed by Western blot analysis using anti-CD9 mAb
(Fig. 2B). As shown in the diagram, CD9"'* eggs were mechan-
ically fractionated into denuded epgs and other components (R)
using a piezo manipulator (11). The fraction R, containing the
zona pellucida and the components in the PVS, was centrifuged
and subjected to Western blot analysis. The amount of CD9 in
the remnant material from 40 eggs was found to be densito-
metrically equal to that of 10 zona-free cggs, demonstrating an
estimated relative abundance of CD9 in the remnant of 209 per
epe. Subsequently, we performed immunoelectron-microscopic
analysis on the CD9*'* eggs. We identified the vesicles hound to
gold particles inside the PVS (Fig. 2C). The sectioned microvilli
contained a branched network of actin filaments, whereas the
variously sized vesicles (50-250 nm in diameter) had uniformly
densc materials rather than actin filaments. We also compared
CD9Y" Tg'CD9 ', and CD9 ' eggs by electron-microscopic
analysis [supporting information (S1) Fig. S1]. The accumulation
of vesicles in the PVS in the Tg CD9 '~ eggs was comparable
to thatin the CD9 /" eggs, whereas it was not seen in the CD9
or germinal vesicle-staged CD9*'* eggs. These results indicate
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that 20% of the total amount of CD9 is stored as vesicles in the
PVS during meiosis,

We next examined the expression of ganglioside GM3, iden-
tified as a CD9-associated molecule (12) and a component of
exosomes (10), in CD9*'*, CD9™'~, and Tg*CD9~'~ eggs. First,
we confirmed the expression of GM3 synthase (ST3GalV/
SAT-1) (13) in these eggs by RT-PCR (Fig. 2D). Then we
investigated the localization of GM3 by immunostaining these
live eggs with anti-GM3 mAb (Fig. 2E). This antibody has been
demonstrated to recognize GM3 in the plasma membrane of
cells without treatment for permeabilization (14). Finally, we
measured the fluorescent intensities of GM3 in these live eggs
(Fig. 2F). As expected, in wild-type eggs, GM3 was colocalized
with CDY in the PVS and plasma membrane (Fig. 2E Left and
Fig. 2F). In contras, in CD9"/~ eggs, the lluorescent intensities
of GM3 were decreased dramatically in the PVS and plasma
membrane (0.4% + 0.2%, relative to 100% for the CD9**
eggs), consistent with the loss of CDY (Fig. 2E Center and Fig.
2F), whereas GM3 could be detected in the cytoplasm of CD9 ™/~
eggs that had been permeabilized by a detergent after fixation.
Moreover, the expression of CD9-EGFP reversed the decrease
of GM3 in the PVS and plasma membrane of CD9'" eggs
(25.6 = 10.7%) (Fig. 2E Righr and Fig. 2F), corresponding to the
amount of CD9-EGFP quantified by Western blot analysis (Fig.
1B). In addition, electron-microscopic analysis revealed that the
number of characteristic membrane structures, termed microvilli
(1), were significantly decreased in the CD9~/~ eggs compared
with the CD9'/* eggs (Fig. S2 4 and B). The numbers of
microvilli were increased by ~50% by the expression of CD9-
EGFP in the CD9"/~ eggs. The analyses of three types of eggs
indicate that CD9- and GM3-containing vesicle release is linked
to microvilli formation.

We next investigated the involvement of CDY-containing
vesicles in sperm—egg fusion (Fig. 3). We found that, based on
the length of microvilli (Fig. S2C), zona-intact Tg' CD9 ' eggs
can be categorized into two groups (Fig. 34). From single

Miyado et al.



ENAN

B #0001
Z o r— " # <0000
Bw g"
- 08
i i
1 » ; a2
o ooo
e b am A 4t

G W B ¥ e =
T cansrne (wes|

i o

Fig. 3. Involvement of CD9-containing vesicles in sperm-egg fusion. [(A) Categorization of Tg*CD9-'~ eggs (E) into two groups according to the thickness of
CDS-EGFP in the PVS (*) and the inner region of the zona pellucida (Z) (~4.0 um or = 4.0 um), indicated by double-headed lines. The boxed regions in Insets are
enlarged. Scale bar: 20 um. (8) Comparison of the fusing ability of two groups of Tg*CD9 "~ eggs with wild-type sperm. Left graph: Ratic of two groups of
Tg " CD9"/~ eggs ovulated from 12 femnales (mean = SEM). Right graph: Number of sperm fused per egg in two groups of zona-intact Tg*CD9 '~ egas ovulated
from 12 females (=4.0 um, n = 204; =4.0 pm, n = 66) (mean = SEM). €09 " (n = 120) and €09 '~ (n = 112) served as positive and negative controls, respectively.
(€ and D) Manitering of the assoclation of egg CD9-contalning vesicles with wild-type sperm. Tg*CD9 '~ eggs were incubated with the sperm and monitored
immediately after the sperm penetrated the zona pellucida under the presence of anti-CD9 mAb (boxed reglon). The values were calculated from data scanning

by confocal microscopy (15 sperm in triplicate dishes) Blue: Preimmune rat IgG. Red: Anti-CD9 mAb (KMCB] (mean = SEM). The average values of the fluorescent

intensities of CD9-EGFP at 0 s were set to 100%, and the final cor

confocal images sectioned through the largest diameter, the
accumulation of CD9-EGFP [rom the plasma membrane to the
inner region of the zona pellucida was >4.0 um in swath width
in one group and = 4.0 pum in the other group. The accumulation
of CD9-EGFP was predicted to show that CDY-containing
vesicles are more highly accumulated within the PVS in the
>4 0-pm group compared with the = 4.0-pm group. Comparing
the ratio of these two groups in Tg*CDY™" -ovulated eggs
revealed a much higher percentage of the >4.0-um group
(77.0 = 1.3% vs.23.7 £ 1.5%) (Fig. 38 Left). Therefore, we
focused on the heterogeneity of CD9-EGFP accumulation
within the PVS and determined the ratio of the two groups in
zona-intact Tg*CDY ' eggs that successfully fused with the
sperm 6 h after insemination. The >4.0-pm group of
Te'CD9 ' eggs showed higher activity for fusion with sperm
(0.81 = 0.04 sperm fused per egg), compared with the =40-um
group of Tg"CD9 '~ eggs (0.05 = 0.03) and the CD9'" egps
(0.00 = 0.00), and comparable activity to that of wild-type eggs
(0.73 =+ 0.04) (Fig. 3B Right). The average activity of all
Te*CDY'" eggs (0.72 = 0,03 sperm fused per egg) was equal to
that of wild-type eggs (0.73 = 0.04 sperm fused per egg). The
difference between the two groups of Tg*CD9 ™" cggs was
statistically significant (Fig. 38). These results suggest that the
quantities of CD9-containing vesicles, as assessed by the swath
wiidth of CD9-EGFP, are strongly correlated with the frequency
of sperm-egg fusion.

To detect the association between sperm and CD9-containing
vesicles, we senally monitored the wild-type sperm that pene-
trated the zona pellucida of the Tg"CD9 ' eges (Fig. 3 C and
D). As shown in the diagram, we began monitoring the sperm
immediately after the head portion of sperm penetrated the zona
pellucida of the Tg"CD9"" eggs (Fig. 3C Upper, boxed area in
the diagram), Soon after we began to monitor the sperm, the
fluorescent intensities of CD9-EGFP on the sperm heads in-
creased and then decreased rapidly between 0 s and 15 s, then
increased again, reaching a maximum at 20 s. At this point, the
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was adj d to 50 pg/mi. Scale bar, 5 pm.

CD9-EGFP fully covered the surface of the sperm heads. In
contrast, when the sperm were incubated with Tg'CD9 7 eggs
in the medium containing anti-CD9 mAb, no increase in inten-
sity of CD9-EGFP on the sperm heads was detected. Anti-CD9
mAbs have been reported to inhibit sperm—cgg fusion (4, 15, 16).
Our findings demonstrate that the anti-CD9 mAb inhibited the
association of sperm with CD9-containing vesicles in parallel to
inhibition of sperm-egg fusion.

To determine whether CD9-containing vesicles are capable of
initiating sperm-cgg fusion, we incubated the sperm with
CD9'" eggs in medium containing the vesicles collected from
CDY9"'* epgs (Fig. 4 and Fig. 83). To restrict the source of CD9
into the vesicles from the CD9*'" eggs, we used sperm collected
from the epididymis of CD9'" males. We estimated the capa-
bility of the vesicles to influence fusion by counting the number
of sperm fused with CD9 '~ eggs. As shown in the experimental
design, after the zona pellucida was removed from the CD9""
eggs, the eggs were incubated with sperm in the medium
containing the vesicles (Fig. 44). When examined at 1 h after
incubation, the sperm were seen to be capable of fusing with
CD9/~ eggs after co-incubation with the wvesicles (Fig. 44
Center), indicating restoration of the fusibility of CD9™'~ eggs
with the sperm (0.58 *+ 0.07 sperm fused per egg) (Fig. 4B). We
detected further evidence of sperm—egg fusion in the CD9~/~
eggs [rom which a second polar body had been extruded. In
contrast, we did not detect improved fusibility of sperm with eggs
in medium depleted of CD9-containing vesicles using beads
conjugated with anti-CD9 mAb (Fig. 44 Right and B), After
treatment with the beads, the quantity of CD9Y in the depleted
medium was significantly decreased, to 16% of the untreated
medium (Fig. 4C). In addition, CD9~'" remnants failed to rescue
the fusing ability of CD9 /" eggs. These findings indicate that the
association with CD9-containing vesicles renders the sperm
capable of fusing with eggs without endogenous CD9 expression.
We estimated the relative abundance of CD9 in the remnant as
18% of the total amount in the eggs (Fig. 4C). We further found
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Fig. 4. Identification of fusion-faciiitating activity of
CD9-containing vesicles. (A) Estimation of the fusion
lsullhllmg ability of the vesicles in sperm-egy fusion,
As shown In the experimental design, CD9 ' sperm
waere incubated with CD9 eggs (white circles) in
media containing egg-released vesicles after the zona
cica was removed from these eggs. CD9 was de-
tected by anti-CD9 mAb conjugated with Alexad488,
The eggs were preloaded with DAP! before incubation
with the sperm, to allow counting of the number of
fused sperm. (Left) CD3 '~ eggs at 1 h after incubation
with the sperm, as a negative control. Cenrer CDS
eggs cultured in the medium containing CD9 collected
from wild-type eggs. (Righr) CD9"'" eggs cultured in
the medium depleted of CD9 by beads conjugated
with anti-CD9 mAb, showing the fused sperm to eggs type
{arrowhead), metaphase ll-arrested chromosomes (*),
asecond polar body (open arrowhead), and CO9 trans-
located on the sperm heads (arrow), The fluorescent
z-serles images were projected as three-dimensional
images. Scale bar: 20 um. (8) Number of fused sperm
with the ona-free eggs counted at 1 h after incuba-
tion (mean = SEM): CD9™"" eggs as a negative control
(n=151),C09""" eggs cultured In the medium contain-
ing CD9 (n = 112), and CD9 ' eggs cultured in the
medium depleted of C0O9 by antibody-conjugated
beads (n = 74). The total numbers of eggs examined are in parentheses. (C) Western blot analysis of the media incubated with CD9** eggs for CD9, HSP90, and
HSPEO. Loaded samples (left to right): The medium as a negative control, the medium containing the remnant material from 40 eggs per lane (bead-untreated
and -treated), and 5 eggs per lane a3 a positive control. The albumin contained in the medium was detected by Coomassie brilliant blue staining as an internal
control. The quantities of CDY in the media were measured densitometrically (using National institutes of Health Image software)

fI PR BEB

that the decreased amount of CD9 after the bead treatment was To estimate the contribution of CD9-containing vesicles to
synchronized with that of a cytoplasmic chaperone, HSP90 (17),  sperm-egg fusion, we examined the restoration of the impaired
but not with a mitochondrial chaperone, HSP60 (18). Our  sperm-fusing ability in CD9 ™"~ eggs co-incubated with CD9”

analysis of the egg-conditioned medium indicated that CD9-  or CD9*'* eggs expressing endogenous CDY (Figs. 5 and 54.4).
containing vesicles contained HSP90, a conserved componentof ~ We predicted that when sperm were incubated with a mixture of
exosomes (9, 10). cgges, the vesicles released from CD97/~ or CD9Y* eggs would

Fig. 5. Recovery of impaired fusion of
€D~ eggs with sperm by CD9-containing Colnmbated
vesicles. (A) Estimation of the fusion-
facilitating ability of the vesicles in sperm-
egg fusion. As shown in the experimental
design, sperm were incubated with a mix-
ture of CD9-expressing eggs (green circles)
and CD9 ' eggs (red circles) after the zona
pellucida was removed from these egas
The eggs were preloaded with DAP] before
Incubation with sperm, to allow counting
of the number of fused sperm. CD9 " eggs
were prestained with FM4-64 and thus
were easily distinguished from CD9-ex
pressing eggs after Incubation with the
sperm. (Lefr) CD9*'~ eggs at 1 h after incu-
bation with the sperm, as a positive con-
trol, (Center) CD9 7 eggs, as a negative
control, (Right) CD9°'~ eqggs co-incubated
with CD9*'~ eggs, showing fused sperm to
egg (arrowheads), metaphase |l-arrested
chromosomes (*), and extruded second po-
lar body (arrow). The fluorescent z-series
images were projected as three-dimen

Co mxtubamo
S —

A [l

[~ I O i L

sional images. CD9 was detected by anti- 4B . + - " i
€09 mAb conjugated with Alexad8a. Scale Ty ~ -
bar: 20 pm. (B) Numbers of fused sperm W Soerm assocated wn CO%

with the zona-free eggs counted at 1 and

3 h after incubation (mean = SEM), CD9*/

(thin=34;3h:n="55,CD9" (1hin=71;3h:n=79), and CO9 / eggs (1 h: n = 100; 3 h: n = 115) were separately incubated with sperm. Total number
of coincubated eggs axamined: CD9*' eggs (n = 54) coincubated with CD9-/~ eggs (n = 60, and CD9*" eggs (n = 65) coincubated with CD9-'- eggs (n = 74)
at 1 h; C09°"- eggs (n = 51) coincubated with (DS~ eggs (n = 33), and CD9*" eggs (n = 98] coincubated with CD9~/~ eggs (n = 90) at 3 h. () Schematic model
of involvement of CD9-containing vesicles in sperm-egg fusion: CD9*/* (green), CD9'* (light blue), and CD9~'~ eggs coincubated with CDI*'* wild-type eggs
with sperm (yellow)
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interact with sperm, and these sperm could fuse with CDY9-"~
eggs. If sperm-fusing ability were regulated mainly by CD9-
containing vesicles. then the number of sperm fused to CDY
eggs would be predicted to be almost equal to that fused to
CD9"~ or CDY™'~ eggs coincubated with CD9~' eggs. We
counted the number of fused sperm in coincubated CD9-
expressing eges (CDY*'" and CD9"'") and CD9™'" ¢pgs. The
CD9 /" eggs were prestained with FM4-64 (19), a fluorescent
dye used to stain the membrane of live cells, and thus could be
easily distinguished from the CD9*"~ and CD9'/* eggs. FM4-64
did not transfer between the CD9~'~ eggs and the CD9*'~ or
CD9""* eggs. As shown in the experimental design, after the
zona pellucida was removed from the eggs, CD9™' eggs (red
circles) were mixed with CD9"" or CD9"/* eggs (green circles),
and sperm were added to the medium containing these eggs (Fig.
54). AL 1 h after insemination, significant fusion of sperm with
the CDY ' egps was facilitated (0.75 = 0.11 and 0.50 * 0.09
sperm fused per egg). corresponding to that in the CD9*/-
(1.00 = 0.13) and CD9"'" eges (1.25 = 0.10). At 3 h after
insemination, the fusion of sperm with the CD9 '~ eggs was
restored (3.06 = 0.30 and 1.70 = 0.18 sperm fused per cgg) to
levels comparable to those in the CD9*/~ (200 + 0.15) and
CD9** ¢ggs (1.69 = 0,13), We also detected a second polar body
extruding from the CD9 ' eggs (Fig. 54 Right, arrow). In
contrast, we did not observe the translocation of vesicles from
the CDY9'" and CD9''" eges to the CDY9 ' eggs when sperm
were not added to the mixture, even after 10 h of incubation (Fig.
548). These data demonstrate that the defect in the fusing ability
of CD9/" eggs is caused by dysfunction of the mechanism
facilitating the sperm-fusing activity through CD9Y-containing
vesicles.

To further study the involvement of CD9-containing vesicles
in regulating sperm-fusing ability, we evaluated the capability of
hamster eggs in sperm-egg fusion (Fig. §5). Hamster eggs have
the ability to fuse with other mammalian sperm and thus are used
as a tool to evaluate the fusing ability of human sperm (20).
When hamster eggs were incubated with CD9 '~ eggs after the
zona pellucida was removed from these eggs, the sperm-fusing
ability of these eggs was improved significantly. The sperm-
fusing ability acquired through the exposure to hamster eggs was
not as great as that produced by exposure to mouse eggs,
probably due to the slightly different CD9 in hamster and mouse
eggs (21). These results indicate that the function of CD9-
containing vesicles in the acquisition of sperm-fusing ability is
widely conserved in mammals.

Discussion

In sperm-egg fusion, there is a significant direct interaction
between the cell membranes of sperm and eggs (1, 20, 22);
however, our results demonstrate that CDY-containing vesicle-
sperm interaction precedes the direct cell membrane interaction
between sperm and eggs. Based on our data, we propose that the
release of CD9-containing vesicles from eggs before fertilization
facilitates the sperm-fusing ability that renders the sperm com-
petent to fuse with CD9™'~ eggs (Fig. 5C). Our finding of
CDS-EGFP in living unfertilized eggs demonstrates that CD9-
containing vesicles are present in the PVS, and that these vesicles
accumulate inside the PVS during the germinal vesicle (1) and
metaphase 1l-arrested stages (1). During this period, the egg
undergoes drastic cytological changes with the increased num-
ber of microvilli (1, 22), predicting the correlation between
vesicle release and microvilli formation. As expected, this
correlation is supported by the finding that CD9 deficiency
leads not only to impaired microvilli formation (8) (Fig. 52),
but also to decreased accumulation of vesicles within the PVS.
These data support the association between the release of
CD9-containing vesicles from eggs and the formation of
microvilli on the egg plasma membrane.

Miyado et af,

As reported previously, somatic cells are capable of releasing
proteins and lipids included in membrane organelles, termed
exosomes (9, 10), which are pinched out from the plasma
membrane (23). Exosomes share many additional properties
with retroviral particles, including similar lipid and protein
compositions, such as tetraspanin (23). GM3 and HSP90 are
known to be conserved components of exosomes (10). Our
results show that CD9%-containing vesicles released from eggs
share these two components, implying that the vesicles are
“exosome-like."” Previous studies of macrophages have proposed
that exosome biogenesis occurs only by outward budding at
endosomal membranes, followed by the fusion of vesicle-laden
endosomes with the plasma membrane (9, 23). If the CD9-
containing vesicle were derived from exosomes and gencrated
from the fusion of endosomes with the plasma membrane, then
the vesicles would contain some proteases (9, 23), fuse with the
sperm membrane, and possibly activate the sperm fusogenic
factor(s) by enzymatic activities.

In hamster eggs, expansion of the PVS has been deemed
essential or at least beneficial to normal fertilization (20, 21, 24),
indicating that materials involved in fusion with sperm are
released from eggs before fertilization in hamsters and in mice.
Because anti-CD9 mAbs are not available for hamster CD9, we
could not directly confirm CD9-containing vesicle release from
hamster eggs before fertilization. Instead, our co-incubation
assay demonstrated that hamster eggs facilitaie the fusion of
sperm with CD9 "/~ eggs, indicating that hamster eggs share a
similar mechanism with mouse eggs through egg-released ma-
terials. Moreover, it has been reported that growing oocytes bind
to sperm and transfer fluorescent dyes to the sperm head (25).
At this stage, oocytes have CDY on the cell membrane but lack
CD9-containing vesicles (Fig. S1). We presume that the transfer
of fluorescent dye from growing oocyles to sperm heads is
mediated by CDY on the cell membrane. Based on our findings,
we propose that the CD9-containing vesicle has an ability to
facilitate sperm—egg fusion. This knowledge has great potential
for clinical applications, such as the induction of sperm-egg
fusion using exogenous sources.

Materials and Methods

Animals. The mice that we produced were back-crossed into a C578L/6 genetic
background, Wild-type eggs were collected from C578U6 females (8-12
weeks old). Wild-type sperm were obtained from the epididymides of BSC3IF1
males (8-12 weeks old). Hamster eggs were obtained commercially as frozen
unfertilized eggs (NOSAN).

Antibodies and Chemicals. Antibodies against CD9 (KMC; BD PharMingen),
beta-tubulin (Tub2.1; Sigma), HSPGO (24/HSP60; BD PharMingen), HSPS0
(16F1; MBL), and GM3 (GMRE; Seikagaku) were used. Antibodies labeled with
biotin by a Iabeilng kit (Dojindo) and horseradish pemxldaﬂ—mnjugmd
(Sigma) were used for blot ysis. For immur
antibodies were labeled directly with Alexad88 and Alexa546 using lab!ilng
kits (Invitrogen). FM4-64 (Invitrogen) was used to define the lipid bilayer of
live eggs without disturbing sperm-egg fusion (10 uM at final concentration).
We used DAPI (invitrogen), a fluorescent dye that slowly permeates the living
cell membrane (semipermeabile) and siowly leaks out of cells after washing
relative to Hoechst33342 (permeable), in counting the number of sperm fused
per egg.

T ic Mice. The 1 ing mouse CDY tagged at 'Ihe N termi-
nus with EGFP (CD9-EGFP) was st bel dinto plasmid DNA-c g mouse
ZP3ip (26). The exp cassette was excised by remlcﬂon enzyme

dlgmiun and microinjected into fertilized eggs of C578L/6 mice, according to
standard techniques (27).

Sumyphg and RT-PCR. Mouse genotyping and RT-PCR were performed
(27). (Primer sets are listed in Table 51).

Egg Collection. Eggs were collected from the oviduct 14-16 h after human
chorionic gonadotropin injection (4). The eggs were placed in a drop of TYH
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medium (28). Sperm collected from the epididymides were capacitated in a
100-u! drop of medium. The eggs were incubated with 1.5 ~ 10° sperm/mi at
37*C in 5% CO,, and unbound sperm were washed away. The zona pellucida
was removed from the eggs with acidic Tyrode's solution (4) or a piezo
manipulator (11). A hole was punched through the zona pellucida with a piezo
manipulator, and the eggs were removed. All materials were aspirated,
including the medium but not the eggs, and used as “remnants.”

before observation. Cooling reduced the sperm metility. This procedure al-
lowed us to measure the CD9-EGFP fluorescence on the sperm head using a
confocal microscope. Images of the sperm were captured at 1 framels. The
averagevalue of the fluorescent intensities of CD9-EGFP at0s wassetto 100%,
and the final concentration of antibodies was adjusted to 50 pg/ml. The data
are measurements of serial images from 15 wild-type sperm in triplicate
dishes.

Collection of CD9-C g Vesicles. The medium containing the vesicles wat

Immunostaining. Zona-intact live eggs were stained with diluted antibodies in
TYH medium for 30 min at 37°C, and the nonspecifically accumulated anti-
bodies in the PVS were washed away after a brief incubation (30 min) in the
medium, To measure the fluorescent intensities of GM3, three types of eggs
were stained by Alexa546-labeled anti-GM3 mAb in TYH medium for 30 min,
then washed in the medium for 30 min. Staining was visualized using a laser
scanning confocal microscope (LSM 510 META; Carl Zeiss),

Electron-Microscopic Analysis. Live eggs were incubated with anti-CD3 mAb
and anti-rat IgG mAb tagged with 5-nm gold beads. After incubation, the eggs
were fixed by glutaraldehyde and osmic acid solutions. Ultra-thin sections
were prepared as described In ref. 29. Eggs denuded with acid Tyrode's
solution were fixed with a mixture of paraformaldehyde and glutaraldehyde
and osmic acid solutions.

In Vitro Fertilization. To observe the fusion with the sperm, zona-intact and
zona-free eggswere incubated with DAPI (10 wg/mi) in the medium for 20min,
then washed before the sperm were added. This procedure allowed the
staining of only fused sperm nuclei by dye-transfer into sperm after mem-
brane fusion. At 1 hor 3 hafter incubation In a 30-u! drop of medium, the eggs
were fixed with a mixture of paraformaldehyde and glutaraldehyde for 20
min at 4°C.

Lt g the Association of CD9-Containis icles with Sperm. Eggs col-
lected from Tg CD9 ' females werasetina 30-;.1 drop of TYM medium. The
sperm were added to the eggs at a final concentration of 1.5 » 10%mil after
incubation in the medium for 2 h. Posts of latex beads were dep i around

collected from denuded wild-type eggs. The eggs were cultured In @ 60-ul
drop of medium for 2 h after the zona pellucida was removed from the eggs.
Collecting the medium containing the vesicles required an incubation time of
2 h. The collected medium was used for analysis of vesicle comp and
evaluation of sperm-fusing ability. CO9-depleted medium was used as a
negative control, After the zona pellucida was removed from CD97/~ eggs, the
eggs were incubated with the sperm in the medium containing CD9-
incorparated vesicles for 1 h, for comparison with the vesicle-depleted me-
dium. Details are shown in Fig. 53,

Western Blot Analysis. O of proteins were i by Western biot
analysis, as described in ref. 4. As an internal loading control, quantities of
albumin included in the medium were examined using Coomassie brilliant
bilue staining. Details are shown in Fig. 53.

Coincubation of Two Types of Eggs. CD9 '~ eggs and CDY9-expressing eggs
(cD9*/~ and CD9~'*) were incubated in each 30-ul drop of medium after the
zona pellucida was removed from these eggs. At 2 h after incubation, the
CD3 ' eggs were added into the cultured medium of the CD9-expressing
eggs. Sperm were added into the medium containing two types of aggs and
incubated for 1 or 3 h. Details are shown in Fig, $4A. The frozen hamster eggs
also were incubated with the CD9-'~ eggs and wild-type sperm for 1 h. The
zona pellucida of frozen h eggs was hardened, and r ing the zona
pellucida using acid Tyrode's solution took § min. Details are showninFig. S5A.
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