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C. Substitution of Arg-186 with Leu or Phe. For administra-
tion into the human circulatory system, it would be better if
the affinity were similar to the human RBC [Pg(0,): 8 Torr,
25 °C]. It is expected that providing a certain degree of
hydrophobicity into the distal side of the heme by insertion of
a nonpolar residue would reduce the O, binding affinity of the
rHSA—heme complex. The most suitable position for that
introduction might be at Arg-186, which is the entrance of the
heme pocket and which is rather close to the central Fe(II) ion.
Therefore, rHSA(HL/R 186L)—hemin and rHSA(HL/R186F)—
hemin were prepared. The O, dissociation rate constants of
rHSA(HL/R186L)—heme and rHSA(HL/R186F)—heme were
3—4-fold higher than that of rHSA(HF)—heme, which reduced
the O, binding affinities [larger Ps(0,)]. This reduction might
be attributable to the increased hydrophobicity in the distal
pocket. The O, binding affinities of rHSA(HL/R186L)—heme
[Pso(O7): 10 Torr] and rHSA(HL/RI86F)—heme [Ps(O2): 9
Torr] have become equivalent to those of human RBC. The
important structural factor in these mutants is Y161L, which
enables the rotation of the isopropyl group of Leu-185 above
the O coordination site. Unexpectedly, the k..(02) and ky(CO)
values of rHSA(HL/R 186L)—heme and rHSA(HL/R | 86F)—heme
were 3-fold and 3—4-fold higher than those of rHSA(HL)—heme
and in the same range as that of rHSA(HF)—heme. In fact, Leu-
161 is small, but the hydrophobic Leu-186 or Phe-186 might
be integrated into the heme pocket from the entrance and might
push up the neighboring Leu-185 residue (Figure 19¢) (/88).

We have engineered mutant rHSA—heme complexes that can
bind O;. Principal modifications to the heme pocket that are
necessary lo confer reversible O binding are (i) replacement
of Tyr-161 by hydrophobic amino acid (Leu or Phe), and (ii)
introduction of His as a proximal base at position Ile-142.
Furthermore, (iii) modification of the distal amino acid has a
considerable effect on the modulation of O, and CO binding
affinities.

4. CONCLUSIONS

The structures of our artificial O carriers differ greatly from
those of sophisticated RBCs. However, clear advantages of
simplified artificial O, carriers are readily apparent: the absence
of blood-type antigens and infectious viruses, stability for long-
term storage at room temperature for any emergency, all of
which overwhelm the functionality of RBCs. The shorter half-
life of artificial O; carriers in the bloodstream (ca. 3 days) limits
their use, but they are applicable as a transfusion alternative
for shorter periods of use. Easy manipulation of physicochemical
properties such as Ps(O;) and viscosity supports their possible
development of tailor-made O, carriers to suit various clinical
indications. The achievements of ongoing research described
above give us confidence in advancing the further development
with the expectation of its eventual realization.
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Abstract: Blood transfusion systems have greatly ben-
efited human health and welfare. Nevertheless, some
problems remain: infection, blood type mismatching,
immunological response, short shelf life, and screening
test costs. Blood substitutes have been under develop-
ment for decades to overcome such problems. Plasma
component substitutes have already been established:
plasma expanders, electrolytes, and recombinant coagu-
lant factors. Herein, we focus on the development of red
blood cell (RBC) substitutes. Side effects hindered early
development of cell-free hemoglobin (Hb)-based oxygen
carriers (HBOCs) and underscored the physiological
importance of the cellular structure of RBCs Well-
designed artificial oxygen carriers that meet requisite

criteria are expected to be realized eventually. Encapsu-
lation of Hb is one idea 1o shield the toxicities of molecu-
lar Hbs. However, intrinsic issues of encapsulated Hbs
must be resolved: difficulties related to regulating the
molecular assembly, and management of its physicochemi-
cal and biochemical properties. Hb-vesicles (HbV) are a
cellular type of HBOC that overcome these issues. The in
vivo safety and efficacy of HbV have been studied exten-
sively. The results illustrate the potential of HbV as a
transfusion alternative and promise its use for other clini-
cal applications that remain unattainable using RBC trans-
fusion. Key Words: Blood substitutes—Hemoglobin—
Liposome—Transfusion—Perfusion.

PROBLEMS OF TRANSFUSION SYSTEM
AND EXPECTATIONS FOR ARTIFICIAL
0O; CARRIERS

Allogeneic blood transfusion was developed early
in the last century as a routine clinical practice; it has
contributed immensely to human health and welfare.
Infectious diseases such as hepatitis and HIV are
social problems associated with transfusion, but strict
virus testing using the nucleic acid amplification test
(NAT) is effective to reduce the risk of infection.
Even so, NAT poses problems such as detection
limits during the window period and limited species
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of viruses for testing. The continuing emergence of
new viruses and a new type of pathogen, the prion,
both threaten humans. In Japan, the storage period of
donated red blood cells (RBCs) is limited to 3 weeks.
Platelets can be preserved for only a few days. Immu-
nological responses (such as anaphylaxis and graft
vs. host disease) and contingencies of blood type in-
compatibility further limit the usefulness of blood
products. To obviate or minimize homologous trans-
fusion, the transfusion trigger has been reconsidered,
and roughly reduced to 6 g/dL. Bloodless surgery and
preoperational enhancement of erythropoiesis for
storing autologous blood have become common.
However, these treatments are not always practical
for all patients. Some developed countries with aging
populations must confront a decreasing number of
young donors and an increasing number of aged
recipients. On the other hand, in some developing
countries, establishment of a safe blood donation
system is difficult. Under such circumstances,
research to develop blood substitutes has gathered
great attention and has continued to develop
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worldwide. In Japan, for example, the government
has given strong support to a spectrum of projects for
development of blood substitutes in the wake of two
tragedies: the infection, with AIDS, of hemophiliac
patients who had received nonpasteurized plasma
products; and the Great Hanshin Earthquake
disaster.

Among blood components, some substitutes for
plasma fractions are established, such as electrolyte
solutions, plasma expanders, and recombinant coagu-
lation factors. Especially, the commercialization of
recombinant human serum albumin (rHSA) was
finally approved in Japan in 2008. On the other hand,
substitutes for cellular components—platelets and
RBCs—are challenging. This review of the literature
specifically examines hemoglobin (Hb)-based oxygen
carriers (HBOCs). The optimal molecular structures
and the physicochemical properties of HBOCs are
selected based on the sciences of molecular assem-
blies of biopolymers, bio-conjugation, metal com-
plexes, and nanotechnology, along with important
results of physiological, and pharmacological studies
(1,2).

THE CONCEPT OF CELLULAR HB-BASED 0O,
CARRIERS AND THEIR DEVELOPMENT

Historically, the first attempt to use an Hb-based O,
carrier was made in the 1930s. Stroma-free Hb was
used because Hb in RBCs binds and releases O..
However, several problems became apparent: impu-
rity of stroma-free Hb, dissociation into dimers, a
short circulation time, renal toxicity, high oncotic
pressure, and high O; affinity. Since the 1970s, various
approaches have been developed to overcome these
problems, especially in the USA. In some cases,
chemically modified Hbs (intramolecularly cross-
linked Hb, recombinant Hb, polymerized Hb that
were contaminated with nonpolymerized Hb) caused
side effects such as vasoconstriction and abnormal
esophageal function (3). Those effects are presumably
attributable to the specific affinity of Hb to endog-
enous gas molecules, NO and CO, which are impor-
tant messenger molecules for vasorelaxation (4).
Although many companies have developed chemi-
cally modified Hb solutions as transfusion alterna-
tives for elective surgery and trauma, some have
suspended clinical trials because of vasoactive prop-
erties. The fact that myocardial lesions are caused by
intramolecular crosslinked and polymerized Hbs has
deterred further development of these HBOCs (5-7).
The side effects of molecular Hbs described above
imply the importance of the cellular structure and the
larger particle dimension of HBOCs.
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For those reasons, the optimal structure of HBOCs
might be to mimic the RBC cellular structure. Pio-
neering work of Hb encapsulation to mimic the cel-
lular structure of RBCs was performed by Chang
in 1957, who prepared microcapsules (5 pm) made
of nylon, collodion, and other materials. In Japan,
Toyoda and the Kambara-Kimoto group investigated
encapsulation of Hbs with gelatin, gum arabic,
silicone, etc. in the 1960s. Nevertheless, results
underscored the extreme difficulty in regulating the
particle size to be appropriate for blood flow in the
capillaries and to obtain sufficient biocompatibility
simultaneously. After discovery of liposomes in 1964,
it seemed reasonable to use such vesicles for Hb
encapsulation. Djordjevich and Miller in 1977 pre-
pared liposome-encapsulated Hb (LEH) composed
of phospholipids, cholesterol, fatty acids, etc. Hunt
etal. prepared neohemocytes (7). The US Naval
Research Laboratories showed remarkable progress
in the use of LEH (8). Terumo Corp. (Tokyo) was
supported by the New Energy and Industrial Tech-
nology Development Organization (2003-2005) for
industrialization in its development of different
LEH, so-called Neo Red Cells or TRM-645 (9,10)
(Table 1).

In fact, Hb encapsulation is expected to shield toxic
effects of molecular Hbs. However, the intrinsic
issues of encapsulated Hbs have emerged that are
related to the nature of molecular assembly and
particle dispersion, such as particle size distribution,
protein purity, high Hb content, blood compatibility,
and stability for long-term storage, and prompt
degradation (2,9). To overcome such difficulties,
the Waseda-Keio group has extensively studied the
physicochemical properties, safety, and efficacy of
Hb-vesicles (HbV) that mimic the cellular structure
of RBC with the support of Japan’s Ministry of
Health, Labour and Welfare (1997-2008) (2) (Fig. 1,
Tables 1 and 2). The HbV characteristics are as
follows: (1) human Hb is purified via pasteurization at
60°C and ultrafiltration to eliminate pathogens; (ii)
a concentrated Hb solution, nearly 35-40 g/dL., is
encapsulated within a thin bilayer membrane; the Hb
concentration of the resulting HbV suspension is
10 g/dL; (iii) a new synthetic lipid is used to prevent
platelet activation and complement activation (11).
(iv) Subsequently, polyethylene glycol-modification
guarantees long-term storage of more than 2 years at
room temperature (12), with blood compatibility, and
extended circulation half-life. (v) The resultant cellu-
lar structure shields all side effects of molecular Hb
(13). (vi) The particle size (250 nm) is appropriate for
homogeneous distribution in the plasma phase to
flow through narrower vessels, where large RBCs
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TABLE L. Representative liposome-encapsulated Hbs (LEH) studied extensively for future commercialization

Product Name

Group

Characteristics

References

Current status

Hb-vesicles (HbV)

Waseda Univ. &
Keio Uniwv.

. Pasteunization of HBOC at 60°C for virus

inactivation, and high purity and concentration
of encapsulated Hb (3540 g/dL)

. Lipid composition to imprave blood

compatibility

. PEG modification and deoxygenation for 2

ycars storage

. [Hb] =10 g/dL (and others, see Table 2)

(2.4,11,12)

Preclinical

Neo Red Cells (NRC)
TRM-645

Terumo Corp.

)

LA b

. Inositol hexaphosphate to regulate Py,

(=51.41omr)

. Lipids: soybean hydrogenated

phosphatidylcholine / cholesterol | stearic acid /

PEG-DSPE

. Storage in a refrigerator for 6 months
. Preservation of enzymes for metHb reduction
. [Hb]=6.2 g/dL

(9,10)

Preclinical

Artificial Red Cells
(ARC)

NOF Corp. &
Waseda Univ,

Ll P —

Polymerized lipids (DODPC) for stabilization

. Storage in powdered or frozen state

Difficulty in degradation in RES

See Refs in
(1,2)

Suspended

Liposome-encapsulated
Hb (LEH)

US Naval Research
Laboratory

L b —

. Freeze-dried powder with trehalose

Low Hb encapsulation efficiency

. Thrombocytopenia, complement activation

(8)

Suspended

Neohemocyte (NHC)

Univ. of California,
San Francisco

(]

. Wide particle distribution (0.1-1.5 pm)
. Lipids: egg yolk phosphatidylcholine /

dipalmitoyl-phosphatidic acid / cholesterol /
alpha rocopherol

. [Hb]=15.1 g/dL
. Psg=24 torr

(7)

Suspended

Synthetic Erythrocytes
(SE)

Rush-Presbyterian-
St. Luke’s Medical
Center, Univ. [llinois

. First attempt of LEH

See Refs in

(1,2)

Suspended

cannot flow. (vii) Finally, HbV are captured by
the reticuloendothelial system and are degraded
promptly without decomposition (hemolysis) during
blood circulation. Phospholipid vesicles for encapsu-

N
, (@%ﬁ?ﬁ‘ 4

o

o

HbV: 250 nm

lation of Hb are expected to be beneficial for heme
detoxification through their preferential delivery to
the reticuloendothelial system, a physiological com-
partment for degradation of senescent RBCs, even at

FIG. 1. (Left) Schematic representation of HbV. One particle contains about 30 000 Hb molecules. The surface of one particle is modified
using polyethylene glycol (PEG) chains, which ensures the dispersion stability of HbV during storage and during circulation in the
bloodstream. The average particle diameter is about 250 nm. (Middie) The packed HbV suspension appears turbid, like a mixture of milk
and red wine, because of light-scattering of the particle suspension. (Right) Reoxygenation of HbV by a membrane oxygenator (artificial
lung), clearly displaying the change of color from purple to red. HbV would be useful as a priming fluid for extracorporeal membrane

oxygenators and for perfusion of organs for transplantation,

Artif Organs, Vol. 33, No. 2, 2009
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TABLE 2. Characteristics of Hb-vesicles (HbV)
developed at Waseda University

Parameter

Particle diameter 250-280 nm
Pa* 25-28 torr

Hb concentration 10 g/dlL
Suspending medium Physiologic saline solution
(0.9% NaCl)
MetHb 3%
Rate of MetHb formation’ 4%/h
(at 37°C, Po, = 40 torr)
Colloid osmotic pressure 0 torr
Intracellular Hb concentration ca. 3540 g/dL
Lipid composition DPPC / cholesterol /
DHSG / DSPE-PEGsy
Weight ratio of Hb to lipids 1.6-1.9 (wiw)
Stability for storage at room 2 years
temperature
Circulation half-life 32 h (rats)

* Py is regulated with co-encapsulated pyridoxal 5°-phosphate.

"'The rate of autoxidation is dependent on Poy, and accelerated
at a reduced Po,. Because of the pasteurization of Hb solution
(60°C) to obtain purified Hb and guarantee the utmost safety from
infection, the resulting HbV contains no enzymes. Therefore,
autoxidation of Hb is unavoidable. Recently, it was clarified
that co-encapsulation of L-tyrosine significantly retards autoxida-
tion because of the catalase-like activity provided by metHb
and L-tyrosine, which ecliminates H;0; a by-product of Hb
autoxidation.

* DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine;
DHSG, 1,5-0-dihexhadecyl-N-succinyl-L-glutamate.

doses greater than putative clinical doses (2). Results
of animal tests have clarified the efficacy of HbV as a
transfusion alternative and their possible use for
other clinical applications. The results of ongoing
HbV research make us confident in advancing
further development of HbV, with the expectation of
its eventual clinical application.

HB-VESICLES AS A TRANSFUSION
ALTERNATIVE

Advantages of the HBOCs are the absence of
blood-type antigens and infectious viruses, and their
stability for long-term storage: those advantages
overwhelm those of present RBC transfusion. The
shorter half lives of HBOCs in the bloodstream (2-3
days) limit their use, but they are applicable in
shorter periods for use as (i) a resuscitative fluid for
hemorrhagic shock in emergency situations for tem-
porary benefits or bridging until packed RBCs are
available, or (ii) as a fluid for preoperative hemodi-
lution or perioperative O, supply fluid for a hemor-
rhage in an elective surgery to avoid or delay
allogeneic transfusion, or (iii) as a priming solution
for the circuit of an extacorporeal membrane
oxygenator,
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One particle of HbV (~250 nm diameter) con-
tains about 30 000 Hb molecules. Because HbV acts
as a particle in the blood, not as a solute, the colloid
osmotic pressure of the HbV suspension is nearly
zero. It necessitates the addition of a plasma
expander for a large substitution of blood to maintain
blood volume. The candidates for use as plasma
expanders are HSA, hydroxyethyl starch, dextran,
and gelatin, depending on the clinical setting, cost,
country, and clinician. rHSA is becoming an alterna-
tive in Japan. The absence of any infectious disease
from humans is the greatest advantage of rHSA.
Moreover, it presents none of the immunological and
hematological abnormalities that are often associ-
ated with using dextran. Aiming at application of
HbV suspended in a plasma expander to the above
indications, HbV was tested in rodent models for
resuscitation from hemorrhagic shock and extreme
hemodilution. Physiological and pharmacological
studies of HbV have clarified that HbV can maintain
the fundamental parameters of respiration, hemody-
namics, and tissue oxygenation that are comparable
to results of RBC transfusion. Realization of an
HBOC will contribute considerably to the renova-
tion of present clinical practices, especially in emer-
gency medicine and surgery, where the HBOC can be
injected instantaneously without concern of blood
type mismatch, infection, or other blood-borne
disease.

Hb-vesicles used as a perioperative infusion fluid or
as a priming fluid for extracorporeal circuit
Extensive in vivo studies of HbV suspended in
plasma-derived HSA or rHSA revealed sufficient O,
transporting efficiency that is apparently comparable
to RBCs in extreme blood exchange experiments
with up to 90% blood exchange (14). All systemic
parameters and tissue oxygen tensions were well
preserved, although the blood exchange with
HSA showed considerable hypotension, acidosis,
and death within 30 min after completion of blood
exchange. As confirmed in ral models after 40%
blood exchange with HbV in clinically relevant con-
ditions, hematopoietic activity was preserved and the
decreased hematocrit reverted to its original level
within 1-2 weeks, whereas HbV captured in RES
disappeared completely (15), indicating that HbV is
useful for preoperative blood exchange or periopera-
tive infusion in the event of hemorrhage to prevent
or minimize homologous blood transfusion.
Although miniaturization of the cardiopulmon-
ary bypass (CPB) circuit has reduced the priming
volume, it remains insufficiently low to achieve an
acceptable level of hemodilution in small patients.
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Homologous blood use is considered the gold stan-
dard for CPB priming in infants despite exposure of
patients to potential cellular and humoral antigens. A
recent experimental study of HbV suspended in
rHSA as a priming solution for CPB in a rat model
demonstrated that HbV protects neurocognitive
function by transporting O, to brain tissues, even
when the hematocrit is markedly reduced (16). The
results indicate that the use of HbV for CPB priming
might prevent neurocognitive decline in infants
caused by considerable hemodilution.

Hb-vesicles as a resuscitative fluid for
hemorrhagic shock

The first attempt using an HbV suspension to
restore systemic conditions after hemorrhagic shock
was conducted with anesthetized Wistar rats (17).
Shock was induced by 50% blood withdrawal. The
rats exhibited hypotension and considerable meta-
bolic acidosis and hyperventilation. After 15 min,
they received isovolemic HbV suspended in rHSA
(HbV/rHSA, [Hb]=8.6g/dL), shed autologous
blood (SAB), or rHSA alone. The HbV/rHSA group
restored mean arterial pressure, similarly to the SAB
group, which was significantly higher than the rHSA
group. No remarkable difference was observed in the
blood gas variables between the resuscitated groups.
However, two of eight rats in the rHSA group died
before 6 h.

After removing the catheters and awakening, the
rats were housed in cages for up to 14 days. The
HbV/rHSA group gained body weight; the reduced
hematocrit reverted to the original level in 7 days,
indicating elevated hematopoiesis. Both groups
showed AST and ALT elevation at 1 day because of
systemic ischemia reperfusion injury. Splenomegaly
was significant in the HbV/THSA group at 3 days
because of HbV accumulation, but it had subsided by
14 days. Histopathological observation revealed that
a substantial amount of HbV accumulated in the
spleen macrophages, although it had completely dis-
appeared by 14 days. In conclusion, HbV showed a
sufficient resuscitative effect that was comparable to
that achieved with transfusion. The injected HbV
were phagocytized in the reticuloendothelial system
by 14 days. The eclevated hematopoietic activity
caused the complete recovery of hematocrit by
7 days.

These results reflect that HbV is useful as a resus-
citative fluid for hemorrhagic shock. Its performance
is comparable to that of SAB. We have progressed
to similar experiments using beagles. Those results
confirm the long-term survival of more than one year
after resuscitation with HbV.

OTHER POTENTIAL CLINICAL
APPLICATIONS OF HB-VESICLES

One advantage of HbV is that the physicochemical
properties of HbV are adjustable, such as oxygen
affinity (Psy, oxygen partial pressure at which Hb
is half saturated with oxygen) and rheological
properties. Historically, it has been widely believed
that the O, affinity should be regulated similarly to
RBC, at about 25-30 torr, using an allosteric effector
or by a direct chemical modification of the Hb
molecules. Theoretically, this enables sufficient O
unloading during blood microcirculation, as can be
inferred from the arterio-venous difference in the
levels of O, saturation in accordance to an O
equilibrium curve. It has been expected that de-
creasing the O, affinity (increasing Pg) increases O
unloading. Regarding the blood viscosity, lowered
viscosity is believed to increase cardiac output and
facilitate peripheral blood flow. However, these
beliefs are being reviewed and revised in the field of
blood substitute research. The suspension of HbV
can provide unique opportunities to modify these
physicochemical properties easily and to observe
their physiological impacts.

Oxygenation of ischemic tissues using HbV

In ischemic tissues, blood HRow is extremely
reduced. As a result, O, tension is very low, for
example, 5 torr. Normal RBCs are expected to have
already released O, before they reach the ischemic
tissue. The left-shifted curve (lower Pg) indicates that
Hb does not release O,, even in the venous side in a
normal condition. However, RBC or an HBOC with
a Py lower than usual can carry O; to an ischemic
tissue (18). Dr. Erni and colleagues at Inselspital
Hospital of the University of Berne developed a
hamster skin flap model in which the blood flow of
one branch is blocked completely; the tissue becomes
completely ischemic. Exchange transfusion was per-
formed using low and high Ps-HbV, which revealed
improved oxygenation of the ischemic part, espe-
cially with the low Ps-HbV (19.20). Collateral blood
flow is expected 1o occur even to the ischemic part
and the HbV conveys O to the ischemic part via the
collateral arteries. This is the first example demon-
strating the effectiveness of HbV for an ischemic
tissue, implying its applicability for other ischemic
diseases. In addition to the lower Psg, the viscosity of
the HbV suspension is expecied to coniribuie io
improvement of microcirculation. The combination
of HbV and dextran solution or hydroxyethyl starch
solution induces flocculation of HbV, thereby render-
ing the suspension non-Newtonian and viscous (21).
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The higher viscosity of the circulation fluid would
increase shear stress on the vascular wall, thereby
inducing vasorelaxation. A viscous fluid also homo-
geneously pressurizes the capillaries to improve the
functional capillary density. Recent studies have
demonstrated the effectiveness of HBOCs with a
lower Ps (higher O; affinity) as a means of imple-
menting O, delivery targeted to ischemic tissues (22).
Our experimental data support those earlier obser-
vations and ensure the possible utilization of HBOCs
for remedying ischemic conditions (23).

Oxygenation of organs for transplantation and
regenerated tissues in the future

Even though the organ transplant law went into
effect in 1997 in Japan, organ transplants are
expected to occur far less frequently than in the USA
or Europe, probably because of the ethical and reli-
gious controversy related to the criteria for diagnosis
of brain death. However, it is expected to be accepted
eventually in Japan with the prevailing view of the
need for transplantation and carrying an organ donor
card. In a clinical setting of transplantation, its
success is dependent in part on the prevention of
ischemia-reperfusion injury after transplantation by
an improved preservation condition. The representa-
tive organ preservation fluid is the University of
Wisconsin (UW) solution, which comprises not only
crystalloids, but also a plasma expander. The two-
layer method is to dip the dissected organ at the
interface of the UW solution and a perfluorocarbon
(PFC) solution. Oxygen diffuses from PFC to the
organ, and the transport of nutrients and metabolites
takes place through contact with the UW solution. It
is speculated that there should be a limitation of the
distance for diffusion of oxygen, carbon dioxide, and
small molecules to keep the tissues alive. One idea
is to use HbV as an intra-arterial perfusion fluid to
carry oxygen, nutrients, and metabolites. Actually, we
tested perfusion of the liver, heart, and intestine with
HbV (24,25). We confirmed the preservation of organ
functions for a few hours. Our next step will be to
prolong the perfusion period to the greatest extent
possible. In fact, HbV can be reoxygenated easily by
perfusion through an oxygenating “artificial lung”
(Fig. 1). We must design the composition of HbV sus-
pension to provide not only oxygen but also nutrients
and homogeneous fluid distribution to all capillaries,
which would presumably require a certain level of
viscosity.

Tissue reconstruction and tissue regeneration
have become popular since Vacanti et al. reported
the formation of an auricular-shaped cartilage on
the back of a mouse by cell culturing onto a polymer
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scaffold. In Japan, an innovation occurred with the
discovery of thermoresponsive polymer gel, poly-
(isopropylacrylamide), for cell culturing by Okano
et al. This material is hydrophobic at 37°C during
cell culturing in a Petri dish; it becomes hydrophilic
at 32°C. Moreover, it can be removed easily from the
cells to provide a cell sheet. The resultant two-
dimensional cell sheet is applicable to many clinical
indications. Cell culture requires not only a supply of
oxygen and nutrition but also the removal of
metabolites, which can be achieved by replacing the
culturing media periodically in the case of a two-
dimensional cell culturing. However, in the case of
constructing a three-dimensional bulky tissue, it
would require perfusion with a fluid that can serve
the functions of blood in addition to angiogenesis in
a regenerating tissue on a scaffold. Such functional-
ity would necessitate the design of the composition
of HbV described above. Consequently, HbV can
provide unique opportunities to manipulate physico-
chemical properties that cannot be provided by
RBCs.

CONCLUSION

The circulation half-life of HBOCs including HbV
after intravenous administration is much shorter than
that of RBC. The total amount of the membrane
component of HbV is 2-3 times more than that of
RBCs. HbV degraded promptly and completely in
the reticuloendothelial system. However, a massive
dosage of HbV transiently induces splenohepatoma-
galy, reduces phagocytosis, and modifies immunologi-
cal responses (2). On the other hand, HBOCs are
superior to conventional transfusion in terms of their
absence of blood type and pathogens, and their long
storage period. The outstanding difference between
HbV and other HBOCs such as chemically modified
Hb solutions is that the physicochemical properties
of HbV, not only Py, but also rheological properties,
are adjustable. Accordingly, the use of HbV provides
unique opportunities for wversatile therapeutic
approaches that cannot be attained using a conven-
tional transfusion system.
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HotEd S hTwa, COTHATAXROER, W.T.
Phillips (Dept. of Radiology, University of Texas Health
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DAy 7 HRH$ 5 EHb/Lipidsi 12098 TR ELT
WhHERMDL6NEA, MAEEXHEICFMTHIZIEE6(CHD
wREm e 0ENSL, T, BESNE (P LR~
OEEFEFIEOMM Y B TRIRIEVW S TH A, BEOWE,
5, SROBELICHVMAEOP I EET A2 LIZRENT
WaHAY, FMIRL D EVPAMRNLERL ST, LTFLL
EITLVHEMLSH A LITHALY. SROBEXHRTA
PA~DOBHEAZ 2B 2P, 0% R, MFEEGEOMRECEY
THEEREHO—DIIbEEZ6NL. MRMEETGRET
R7OAFY) v 2 @TFORERICL VP2 EEIHFATESH
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Frequency distribution function of red blood cell velocities
in single capillaries of the rat cerebral cortex using
intravital laser-scanning confocal microscopy with high-

speed camera
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Background: Brain metabolism depends largely on oxygen and therefore constant delivery of oxygen to the
brain is more important than to any other organ. Previously we reported a newly developed method to automatically
calculate red blood cell (RBC) flow and its temporal modulations at the layer | of the rat cerebral cortex.
Objective: To examine a general tendency of frame-rate dependency of RBC velocities and heterogeneity of RBC
movements in single capillaries identified by fluorescein isothiocyanate (FITC)-dextran staining.

Methods: In urethane-anesthetized rats with a closed cranial window, intravenously administered FITC-labeled
RBCs were traced at 125, 250 or 500 frames/s (fps) with a laser-scanning confocal fluorescence microscope and
their velocities were automatically calculated with home-made software KEIO-1S2.

Results: RBC velocities in single capillaries were not constant but variable, and were dependent on frame rate.
with average values of 0.85 £ 0.43 mm/s at 125 fps, 1.34 £ 0.73 mm/s at 250 fps, and 2.05  1.59 mm/s at 500 fps.
When all capillary RBCs were plotted against their velocities (frequency distribution function of RBC velocities).
RBC velocities were clustered at around 1.0 mm/s, smearing at higher velocities up to 9.4 mm/s. High RBC
velocity was only detected from frame analysis with high frame rates since such high-flow RBCs were uncounted
at low frame rates. RBC velocities higher than 6.5 mm/s were statistically significantly outlined from the main
population (p=<0.01). Such a group of capillaries was considered to belong to thoroughfare channels, although
their diameter was almost the same as that of ordinary ones.

Conclusion: Exira-high flow capillaries are confirmed in the cerebral cortex and these may be thoroughfare
channels or non-nutritional capillaries carrying 42 % of the blood in reserve.

Keywords: High-speed camera, intraparenchymal single capillary. KE1O-1S2. laser-scanning confocal fluorescence-

microscopy, RBC velocity, thoroughfare channel.

Flow adjustment of red blood cells (RBCs). a
carrier of oxygen, in capillaries has a critical role to
the activity of neurons that require continuous supplies
of oxygen. Examination of RBC behavior in capillaries
reveals RBC flow to be heterogeneous and somewhat
random, although RBC flow must be functionally
connected with neuronal activity to reflect the local
energy demands of active neurons [ 1]. However, the
details of the relationship remain unknown.
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Various methods have been employed to measure
RBC velocity in microvessels of various organs. using
video images with an intravital microscope with a two-
slit photometric method [2], a flying spot technique
based on a cross-correlation method [3], a two-stage
prism-grating system [4], on-line measurement
techniques with a bidirectional optional three-stage
prism grating system [5], and a line-scan CCD image
sensor [6]. The various techniques that have been used
to measure RBC velocity in microvessels of the brain
of rats and cats are summarized in Table 1. Notably,
the reported mean values of RBC velocity. the most
fundamental parameter in capillaries, were quite
diverse, ranging from 0.39 to 2.08 mm/s. Such diversity



