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Abstract Inbred mice with specific genetic defects have greatly facilitated the
analysis of complex biological events. Several humanized mouse models using
the C.B.-17 scid/scid mouse (referred to as the SCID mouse) have been created
from two transplantation protocols, and these mice have been utilized for the
investigation of human immunodeficiency virus type 1 (HIV-1) and human
T-lymphotropic virus type I (HTLV-I) pathogenesis and the evaluation of antivi-
ral compounds. To generate a more prominent small animal model for human ret-
rovirus infection, especially for examination of the pathological process and the
immune reaction, a novel immunodeficient mouse strain derived from the NOD
SCID mouse was created by backcrossing with a common y chain (y,)-knockout
mouse. The NOD-SCID y ™" (NOG) mouse has neither functional T and B
cells nor NK cells and has been used as a recipient in humanized mouse models
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for transplantation of human immune cells particularly including hematopoietic
stem cells (HSC). From recent advances in development of humanized mice, we
are now able to provide a new version of the animal model for human retrovirus
infection and human immunity.

Abbreviations AIDS: acquired immunodeficiency syndrome; APC: antigen-
presenting cell; ATL: adult T-cell leukemia; AZT: azidothymidine; CCRS: cc-chemokine
receptor 5; DC: dendritic cell; ddI: dideoxyinosine; DN: double negative; y_; common
gamma chain; GVHD: graft-versus-host disease; HAM: HTLV-I-associated mye-
lopathy; HIV-1: human immunodeficiency virus type |; HSC: hematopoietic stem
cell; HTLV-I: human T-lymphotropic virus type I; IL: interleukin; MHC: major
histocompatibility complex; PBMC: peripheral blood mononuclear cell; SCID:
severe combined immunodeficiency; SP: single positive; TRAIL: tumor necrosis
factor (TNF)-related apoptosis-inducing ligand; TSP: tropical spastic paraparesis

1 Mouse/Human Chimeric Models for HIV-1
Infection Using SCID Mouse

The C.B.-17 scid/scid (SCID) mouse carries a spontaneously arising autosomal
recessive mutation and was found to have severe combined immunodeficiency
(SCID) by Bosma and colleagues (Bosma et al. 1983). This strain has a defect of
DNA protein kinase and a lack of progenitors to T and B cells (Blunt et al. 1995;
Boubnov and Weaver 1995; Kirchgessner et al, 1995; Miller et al. 1995; Peterson
et al. 1995). Therefore, these mice are unable to reject the xenogralfl and they toler-
ate engraftment of human cells or tissues, followed by subsequent infection with
human immunodeficiency virus type 1 (HIV-1). Two of these models are the
SCID-hu thy/liv mouse developed by McCune and colleagues (McCune et al.
1988) and, the hu-PBL-SCID mouse developed by Mosier and colleagues (Mosier
et al. 1988) (Fig. 1).

1.1 HIV-1 Infection in the SCID-hu thy/liv Mouse

The SCID-hu thy/liv mouse is generated by surgical coimplantation of a piece
(1 mm) of human fetal thymus and liver under the murine kidney capsule. The
implanted tissues produce a conjoint organ (thy/liv) that appears to reconstitute
normal thymus for more than 1 year. The fetal liver provides hematopoietic
precursors that are located in islets between the thymic lobes. Thymic epithelial
cells are derived from the fetal thymus, whereas the hematopoietic cells includ-
ing T cells and dendritic cells (DC) are derived from the liver (Vandekerckhove
et al. 1992). The generated thymus is composed of more than 70% CD4CD8
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Mouse strain human tissue or cells References

1) SCID-hu thy/liv mouse

CB17 SCID mouse human thy/liv hssue McCune et al. 1988

2 ) Human-PBL-SCID mouse

CB17 5CID mouse human PBMC Masier et al. 1991
<
NOD-SCID mouse buman PBMC Koyanagi et al. 1997 \
'\ Intra-periones] inoculation
NOG mouse human PBMC Nakata et al. 2005 \

Fig. 1 Mouse/human chimeric models for HIV-1 infection. HIV- 1 -susceptible humanized mouse
models have been reported from two transplantation protocols

double-positive (DP) cells, and the rest are CD4 or CD8 single-positive (SP)
and double-negative (DN) T cells. Although these CD4 or CD8 SP cells migrate
into the peripheral circulation and express a naive phenotype (>70% CD45RA"),
the numbers of these cells are very low (Jamieson and Zack 1999). In addition,
no immune response to viral antigen has been found so far. Thus, the reconstitu-
tion of the human immune system is not complete in this mouse. Since some
skill in the surgical operation to coimplant the thy/liv organ and systematic sup-
port on distribution of human fetal organs are required, the SCID-hu thy/liv
mouse studies have been carried out in limited numbers of laboratories, mainly
in the US.

The human thy/liv implant in SCID mice is highly susceptible to infection
with HIV-1, including RS and X4 HIV-1 (McCune et al. 1991; Namikawa et al.
1988). As the number of circulating human CD4* T cells is low as mentioned
above, direct injection of virus into the implant is performed under anesthesia.
The level of HIV-1 replication and potential with CD4 T cell depletion of X4
HIV-1 appears to be higher than that of RS HIV-1 within a few weeks of infection
by evaluation with PCR and flow cytometric analyses (Kaneshima et al. 1994),
Immunohistological examination indicated that the infected cells initially
appeared in the thymic cortical regions and subsequently spread through the
entire organ after HIV-1 infection (Stanley et al. 1993). Flow cytometric analysis
indicated that the CD4CD8 DP cells were almost completely eradicated and the
ratio of CD4* and CD8* thymocytes was reversed after infection (Aldrovandi
et al. 1993; Bonyhadi et al. 1993). Furthermore, SCID-hu thy/liv mouse have
been also used to assess efficacy of several anti-HIV compounds administrated
before infection, including azidothymidine (AZT) and 2',3'-dideoxyinosine (ddI)
(Kaneshima et al. 1991; McCune et al. 1990; Rabin et al. 1996).

- 51_.



136 Y. Koyanagi et al.

1.2 HIV-1 Infection in the hu-PBL-SCID Mouse

The hu-PBL-SCID mouse is created by injection of peripheral blood mononuclear
cells (PBMC) from healthy adults into the peritoneal cavity of SCID mice, and
human CD4* and CD8* T cells circulate through the peritoneal cavity, peripheral
blood, and organs such as spleen and liver for more than 1 month after PBMC injec-
tion (Mosier et al. 1988). The presence of human CD4* T cells makes this attractive
as a model to study HIV-1 pathogenesis and evaluation of anti-HIV compounds
(Mosier et al. 1991; Pastore et al. 2003; Hartley et al. 2004). Although it was
initially reported as a model with little graft-versus-host disease (GVHD) in the
hu-PBL-SCID mice, the high levels of T cell-reconstituted mice develop symptoms
of GVHD within 2 months after injection of PBMC (Sandhu et al. 1995). Therefore,
long-term observation may not be possible in this model. In addition, human CD4*
and CD8* T cells in hu-PBL-SCID mice expressed the CD45RO antigen, a marker
found in either activated or memory T cells (Tary-Lehmann and Saxon 1992). This
is not similar to the ratio of normal adult PBMC, which contain approximately 50%
CD45R0O* and CD45RA* (naive) cells. Furthermore, human CD4* cells in the
hu-PBL-SCID also express abundant levels of HIV-1 coreceptor CCRS, and
accordingly, R5 but not X4 HIV-1 more actively replicates in this system (Mosier
et al. 1993; Nakata et al. 2006). The relative ease with which this model can be
generated and the high efficiency of RS HIV-1 infection make this system very
attractive to study HIV-1 pathogenesis for researchers who struggle in obtaining
fetal organs for generating SCID-hu thy/liv mouse. Importantly, a significantly
high level of HIV-1 replication correlates with severe depletion of human CD4*
T cells within 2 weeks after infection, and the replication is dependent on Nef protein
(Kawano et al. 1997). Thus, this model appears to be adequate for short-term inves-
tigation of HI'V-1 replication and pathogenesis. As mentioned above, the reconstituted
CD4* and CD8* T cells are strongly activated and have memory phenotypes, indicating
that these cells are xenoreactive proliferated but anergic T cells (Tary-Lehmann
and Saxon 1992; Tary-Lehmann at al. 1995). In this model, neither thymopoiesis
nor hematopoiesis is generated (Koyanagi, unpublished observations). Thus, it is
assumed that the pathological events of HIV-1 infection in this model include that
in mature T cells in humans.

1.3 Human Acquired Immune Responses
in the hu-PBL-SCID Mouse

Of interest, some immune responses are induced, including humoral and cellular
immune responses in the hu-PBL-SCID mouse with administration of various anti-
gens (Gorantla et al. 2005; Ifversen P and Borrebaeck 1996; Nonoyama et al. 1993;
Sandhu et al. 1994). However, there are two major limitations to development of
strong human immune responses in the hu-PBL-SCID mice. The first is the lack of
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appropriate human antigen-presenting cells (APC) including DC. The second is the
lack of a suitable microenvironment such as the presence of normal lymphoid
organs and architecture that may facilitate induction and maintenance of immune
effector cells (Tary-L.ehmann et al. 1995). To overcome the lack of APC, Delhem
et al. used autologous skin that contains tissue DC as a source of APC and suc-
ceeded in demonstrating the induction of primary MHC-restricted human T cell
responses against HIV-1 envelope in the hu-PBL-SCID mice (Delhem et al. 1998).
Santini et al. have reported that inactivated HIV-1-pulsed, monocyte-derived, and
matured human DC can stimulate human anti-HIV-1 antibody production by B
cells from HIV-1-negative donors in the SCID mouse system, and that this immune
response is partially protective (Santini et al. 2000). However, there had been no
attempts to overcome the lack of a suitable microenvironment in this hu-PBL-SCID
mouse until our report (Yoshida et al. 2003).

To overcome the deficiency of a suitable microenvironment in the hu-PBL-SCID
mouse system, we attempted to transfer PBMC together with inactivated HIV-1-
pulsed autologous monocyte-derived DC directly into the mouse spleen (Yoshida
et al. 2003). The intrasplenic inoculation of PBMC was found to reduce excessive
GVHD compared to the intraperitoneal transfer method (Tanaka et al., unpublished
observations). In addition, with this procedure we could obtain larger yields of
human T cells than with the conventional intraperitoneal transfer. Therefore, we
reasoned that the microenvironment in the mouse spleen should provide human
T cells with optimum conditions for activation (Fig. 2). With this new immunizing
protocol, we have succeeded in eliciting a protective CD4* T cell immunity against
RS HIV-1 infection. We were surprised to see that the immunized mice were totally
resistant against challenge with live R5 HIV-1 (Yoshida et al. 2003). The protective
immunity was induced equally with either RS or X4 HIV-1 as an antigen. The sera
from the immunized mice contained a soluble R5 HIV-1 suppressive factor that was
mainly synthesized by human CD4* T cells in response to HIV-1 antigen, specific
peptides of HIV-1 according to MHC class II haplotypes (Yoshida et al. 2005), but

e/

|:> Induction of anti-HIV-1
CD4" T cell responses

Intra-splenic inoculation of hu T cells and DC

Fig. 2 Human acquired immune responses in the hu-PBL-SCID mouse. Protective CD4* T cell
immunity against R5 HIV-1 infection is induced by PBMC transfer together with inactivated HIV-
1-pulsed autologous DC directly into the mouse spleen



138 Y. Koyanagi et al.

not ovalbumin as a control. The factor appears to be unrelated to the currently
identified R5 HIV-1 suppressive cytokines examined by neutralization assay using
antibodies against CCR5-binding -chemokines, IL-4, IL-10, IL-12, IL-13, IL-16,
MCP-1, MCP-3, IFN-q, IFN-f3, TNF-a, and TNF-p.

Our study indicates that a DC-based HIV-1 vaccination can induce HIV-
| -reactive human CD4* T cells producing a yet-undefined RS HIV-1 suppressor
factor. The demonstration made by Lu et al. (Lu et al. 2003) that DC pulsed with
AT-2 inactivated simian immunodeficiency virus (SIV) can also stimulate protective
anti-SIV specific T cell and antibody responses in rhesus monkeys suggests a
rational basis for the DC-based immunization against HIV-1 infection. This idea
is further supported by the recent findings by Lu et al. (Lu et al. 2004), who
showed the efficacy of a therapeutic DC-based whole HIV-1 virion vaccination for
HIV-1 infection.

In order to achieve successful DC-based immunization against HIV-1, a large
number of monocyte-derived mature DC with immuno-stimulating activity is
expected. A conventional method for generating DC from monocytes has been
established, and there are commercially available kits for monocyte purification. In
addition, we recently found a simple method to isolate monocytes from bulk PBMC
by using antichemokine receptor monoclonal antibody-coated plates (Nimura et al.
2006). These monocytes could be differentiated to Thl-inducing DC and expressed
low levels of cell surface CD4 and CCRS. When sensitized with inactivated HIV-1,
these DC could induce the RS HIV-1-suppressing factor in the hu-PBL-SCID
mouse (Nimura et al. 2006). Because human monocytes and immature DC are still
susceptible to RS HIV-1 infection, this method, which can induce HI'V-1-resistant
DC, will be helpful for HIV-1-infected individuals in generation of therapeutic DC
against acquired immunodeficiency syndrome (AIDS).

2 Development of Immunodeficient Mouse Strains
for Improvement of Human Cell Reconstitution
and HIV-1 Infection

2.1 Generation of Novel Immunodeficient Mouse Strains

By introduction of the scid/scid mutation in various strains of inbred mice
possessing defects in innate immunity, we surveyed congenic mouse strains to
find an adequate immunodeficient mouse for transplantation of human cells and
HIV-1 infection. From extensive transplantation experiments with human PBMC
in immunodeficient mouse strains, the NOD-SCID mouse, which contains some
defects in the function of complements and macrophages, was found to be a most
suitable strain as a recipient for human cell reconstitution as well as HIV-1
infection (Koyanagi et al. 1997a). The number of human cells in the human
PBMC-transplanted NOD-SCID (hu-PBL-NOD-SCID) mice was more than
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three- to fivefold higher than that in the conventional hu-PBL-SCID mice. More
importantly, the levels of HIV-1 viremia were significantly high in the HIV-1
infected hu-PBL-NOD-SCID mice. Some HIV-1-infected mice exhibited more
than 1 ng of p24 antigen per milliliter in plasma, which is a much higher concen-
tration than that in HIV-1-infected patients, and showed severe CD4 depletion
after intraperitoneal inoculation with RS HIV-1. Using this mouse model, we
found that tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) but not Fas ligand induced bystander killing of CD4* T cells in the
mouse spleen (Miura et al. 2001). In addition, when these HIV-1-infected mice
were (reated with a sublethal dose of lipopolysaccharide, HIV-1-infected cells
migrated into mouse brain tissue and induced apoptosis in neuronal cells via
TRAIL molecules expressed on the HIV-1-infected cells, probably macrophages
(Miura et al. 2003). These data suggested that TRAIL should have a pathological
role of disease progression for AIDS,

Recently, further genetic manipulation has been performed. A more profoundly
severe immunodeficient mouse strain, defective in common y (y,) chain, which is a
component of receptors for IL-2, IL-7, and other cytokines and critical for genera-
tion of NK and T cells, was generated from the NOD-SCID mouse (Ito et al. 2002)
and the recombination activating gene-2 (RAG-2)™" mouse. The RAG-2"" mouse
is also a genetically manipulated immunodeficient strain, which has a defect in
the differentiation of T and B cells. NOD-SCID y ™" (NOG) and RAG-2/y ™"
mouse strains were then generated, and these mice have been confirmed to have
neither functional T and B cell nor NK cells and have been used as humanized
mouse models by transplantation of human immune cells. The level of human cell
reconstitution was greatly improved in NOG as well as RAG-2/y ™" mice trans-
planted with human PBMC (hu-PBL-NOG and hu-PBL-RAG-2/y ™" mice) (Nakata
et al. 2005; Koyanagi et al. 1997b). Moreover, a technical improvement should be
noted in that it is not necessary for preceding treatment with antibody, an anti-IL.-2
receptor B chain antibody or an anti-asialo GM-1 antibody, to protect mouse NK
cell differentiation in recipient mice.

2.2 HIV-1 Infection in the hu-PBL-NOG Mouse

Using NOG mice, we indicated the usefulness of the mouse strain for evaluation
of an anti-HIV-1 compound (Nakata et al. 2006). HIV-1 suppressive efficacy of a
small molecule of CCRS antagonist was confirmed in the mice 1 day after HIV-1
inoculation. The level of viral loads and HIV-1-induced CD4 depletion was dra-
matically suppressed after treatment of a CCRS antagonist, suggesting that the
NOG mouse should serve as a small animal model for evaluation of anti-HIV-1
compounds (Nakata at al. 2006). Furthermore, it is noteworthy that this hu-PBL-
NOG model provides a greater reproducibility of high viremia levels than the con-
ventional HIV-1-infected SCID mouse models and that the high level of viremia
achieved in this mouse model made it possible to monitor the changes in the



