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Abstract We performed a genome-wide association
study with 23,465 microsatellite markers to identify genes
related to adult height. Selective genotyping was applied to
extremely tall and extremely short individuals from the
Khalkh-Mongolian population. Two loci, 8g21.13 and
15q22.33, which showed the strongest association with
microsatellites were subjected to further analyses of SNPs
in 782 tall and 773 short individuals. The most significant
association was observed with SNP rs2220456 at 8q21.13
(P=0.000016). In the LD block at 15¢22.32, SNP
rs8038652 located in intron 1 of JQCH was strongly associ-
ated (P =0,0003), especially the AA genotype of the SNP
under a recessive model was strongly associated with adult
height (P = 0.000046),

Introduction

Adult height is an explicit quantitative phenotype and
stable once a person has grown and is easily measured.
Adult height is largely controlled by genetic factors, with
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heritability ranging from 75 to 90% in various populations
(Carmichael and McGue 1995; Silventoinen et al. 2003).

Adult height usually follows normal distribution in a
given population and sex, the phenotype representing a typi-
cal polygenic model of a human quantitative trait influenced
by multiple genes each with small effects. Numerous linkage
studies have attempted to identify loci underlying adult
height vanation. Thompson et al. first reported a locus for
adult height on chromosome 20 in Pima Indians (Thompson
etal. 1995). Several other groups reported evidence of link-
age with adult height in Europeans (Beck etal. 2003;
Dempfle etal. 2006; Deng etal. 2002; Ellis etal. 2007;
Geller et al. 2003; Hirschhorn et al. 2001; Liu et al. 2006;
Mukhopadhyay etal. 2003; Mukhopadhyay and Weeks
2003; Perola etal. 2001; Perola etal. 2007; Sammalisto
et al. 2005; Willemsen et al. 2004; Wiltshire et al. 2002; Xu
etal. 2002). Wu et al. (2003) found evidence of linkage in
four ethnic groups; White, Black, Mexican American, and
Asian. Most recently, Visscher reported a large-scale link-
age study with 11,214 sibling pairs showing that additive
genelic variance is spread across multiple chromosomes,
with no evidence of large between-chromosome epistatic
effects (Visscher etal. 2007). While multiple evidence of
linkage of adult height has been identified in several popula-
tions in these studies, common loci are not evident.

Since linkage study has limited power to detect genes of
modest effect, especially where there is genetic heterogeneity,
we applied association study with a sufficient number of
subjects to identify genes with a small impact on the pheno-
type (Risch and Merikangas 1996). Recently, some groups
reported genes associated with adult height variation using
data from genome-wide association study (Gudbjartsson
etal. 2008; Lettre et al. 2008; Sanna et al. 2(K)8; Weedon
etal, 2007, 2008). In the present study, we report results of
a genome-wide association study of adult height with 1,555
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individuals from the Khalkh population of Mongolia using
23,465 microsatellite markers. The Khalkh population has a
relatively close genetic affinity to populations of the north-
ern part of East Asia showing a relatively homogeneous
genetic background, which provides an advantage to study
complex phenotype (Katoh etal. 2002, 2005; Nakajima
etal. 2004), We applied a selective genotyping strategy in
which individuals with trait values deviating from the popu-
lation mean were preferentially recruited to identify genetic
variations underlying quantitative traits with improved
power (Arking et al. 2006; Lander and Botstein 1989),

Material and methods
Study subject selection

Adult height for both male and female shows normal distri-
bution with average height and standard deviation being
16476 £ 574 cm for male and 153.76 £5.04 cm for
female according to epidemiological and anthropometric
surveys on adult height among Khalkh-Mongolians (Otgon
etal. 2002; personal communication L. Namsrainaidan). A
total of 1,555 unrelated individuals of Khalkh-Mongolian
origin from the region of Ulaanbaatar, Mongolia partici-
pated in the current study. The selection of individuals from
the general population was >95th percentile for the tall
group corresponding to >173.9 ¢cm and <5th percentile for
the short group corresponding to <155.6 cm for male and
161.8 and 145.7 cm, respectively, for female. The subjects
in the short group were over 18 years of age and those in
the tall group were over 15 years of age at the time of
examination. Individuals with medical conditions affecting
adult height, such as dwarfism, gigantism, and acromegaly
were excluded. The study was approved by the Institutional
Review Board of Tokai University and the Medical
Research Ethics Committee of the National Institute of
Medicine and the Ethics Committee, Ministry of Health,
Mongolia. The participants gave written, informed consent.

DNA pool construction and microsatellite genotyping

The pooled DNA method for microsatellite typing was per-
formed according to the protocol of Collins et al. (2000)
with a slight modification (Oka etal. 2003). DNA was
extracted using QlAamp DNA blood kit (QIAGEN) under
the standardized protocol to prevent variation of DNA quality.
The DNA concentration was precisely measured using
the PicoGreen fluorescence assay (Molecular Probes) as
previously described (Tamiya et al. 2005; Kawashima et al.
2006). For the first round screening, four DNA pools were
prepared. The first set for association study was DNA pools
of 125 male-tall, 125 male-short, 125 female-tall, and 125
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female-short samples, respectively. A second set was also
grouped from another 125 male- and female-tall samples
and 125 male- and female-short samples, respectively. In
the first round screening, 23,465 microsatellite markers
were used. Among them, showing statistical significance of
P < 0.05 were subjected to the second round screening.

All microsatellite markers and methods for microsatellite
genotyping used in this study are described by Tamiya et al.
(2005). PCR on pooled DNAs was performed in a 20-pl
reaction mixture containing 48 ng of pooled DNA, 0.5 U of
AmpliTag DNA polymerase, 1x reaction buffer with
1.5 mM MgCl, provided by the manufacturer (Applied Bio-
systems), 5 uM of each primer, and 0.25 mM of each deoxy-
riobonucleotide triphosphate (ANTP) in 96-well plates. The
PCR amplification was performed on the GeneAmp PCR
System 9700 (Applied Biosystems) with the following con-
ditions: 96°C for 5 min (hot start), 57°C for 1 min, and 72°C
for 1 min followed by 40 cycles of 96°C for 45 s, 57°C for
45 s and 72°C for 1 min. For the microsatellite genotyping
of individual samples, PCR was performed in a 20 pl reac-
tion containing 1 ng of genomic DNA. The amplification
condition was the same as described above. The pooled and
individual microsatellite genotyping procedures after PCR
amplification were carried out according to standard proto-
cols using ABI3730 DNA analyzer (Applied Biosystems).
Peak positions and heights were automatically extracted by
the PickPeak and MultiPeaks programs.

SNP genotyping

The SNPs in candidate regions were selected from the SNP
database of Applied Biosystems (htip://www2.apphedbio-
sysiems.com/) using SNPbrowser software 3.5 (Applied
Biosystems). The SNPs were genotyped by TagMan
assays. The TagMan assays were carried out using the stan-
dard protocols for the ABI PRISM 7900HT Sequence
Detection System using a 384-well block module and auto-
mation accessory (Applied Biosystems).

Statistical analysis

In pooled DNA typing, adult height associations with
microsatellites were assessed by Fisher's exact test, with
the use of 2 x 2 contingency tables for cach allele. Allele
frequencies in pooled DNA typing were estimated from the
height of peaks: each allele frequency was determined by
dividing the height of each allele by the summed height of all
alleles. In individual genotyping, significance was evaluated
by Fisher's exact test, with the use of 2 x 2 contingency
tables for each allele.

For SNPs genotyping, adult height associations were
assessed using chi-square test (Haploview 4.0 software [hup://
www.broad.mit.edu/mpg/haploview/]). Since multi-step
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analysis was used. the nominal P values were corrected with
1,000,000 iterated permutations for all 82 SNPs. Signifi-
cance level was set at .05 throughout the study.

To assess the extent of pair-wise linkage disequilibrium
between SNPs, standard definition of D’ and r* were calcu-
lated using Haploview software. D' and 7 were calculated
only for polymorphisms with minor-allele frequency
(MAF) > 5%. LD blocks were then defined with pair-wise
LD with D' > 0.9.

Results and discussion
Genome-wide association study

We performed a genome-wide association study with
23,465 microsatellite markers for detection of loci control-

N

ling adult height using the selective genotyping method.
To reduce cost and technical burden of genome-wide
genotyping, the pooled DNA method was applied, as pre-
viously described (Collins et al. 2000, Tamiya et al. 2005).
Association results with the pooled DNA method and fol-
lowing re-genotyping of individual DNAs using the same
set of 1,000 screened individuals, 23 markers showed sig-
nificant differences by Fisher’s exact test (Table 1). These
markers were subjected to correction of multiple tests with
the number of alleles, and nine microsatellites remained
significant.

Visscher et al. reported that at least six chromosomes (3,
4.8, 15, 17, and 18) were responsible for height variation in
the European population (Visscher et al. 2007). We also
detected significant association in those chromosomes,
except chromosome 18. In addition, five regions over-
lapped at least partially with loci previously reported by

Fig. 1 SNP allelic association within 15g22.33-qg23. SNP association
analysis. The blue line shows P values calculated by chi square test.
The red line shows P values generated after 1,000,000 iterated permu-
tations. Yellow background indicates the 188 kb LDB. In the Mongo-
lian population, we investigated the 188 kb LD block constructed by
these significant markers spanning from intron 6 of SMAD3
(rs2289791) 1o intron 10 of IQCH (rs12164949). The LD block con-
tained the MH2 domain and the 3° UTR of SMAD?3, the entire coding
sequence of FLJI1506, and the 1Q domain of /QCH. SNP rs8038652

100 kb

located in intron | of /QCH was most strongly associated (P = 0.0003,
Pe = 0.015) with adult height. SNP rs227860 located in the 3" UTR of
SMAD3 also was associated (P = 0.0006, Pc = 0.028). SNP rs7166081
(P =0.0004, Pc = 0.018) was in an intergenic region between SMADI
and FLJI1506. Three remaining SNPs, rs4776908 (P =0.0004,
Pc=0.017), 877177 (P =0.0004, Pc=0020), and rs4776906
(P =0.0007, Pc=0.030) located in intron 1, 5, and 5 of FLJI1506,
respectively, were also associated
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Table 1 Twenty-three positive microsatelllite markers from individual genotyping

No. Markers Locus Number Allele frequencies Fisher's exact P value Odds ratio 95% Cl
oh. Tall Short Exact2x2 Corrected*

L. D152660 1936.32 12 0.093 0.061 0.0090 0.11 1.58 1.13-2.21
2. D2S0257i 2q33.1 16 0.092 0.132 0.0050 0.080 0.67 0.50-0.88
kB D350229 3p24.1 16 0.122 0.169 0.0040 0.064 0.69 0.54-0.89
4. D3S0085i1 3q33.2 20 0.031 0.056 0.0080 0.16 0.54 0.35-0.85
5. HUMUTS80B 4q13.2 30 0.123 0.074 0.00029 0.0088 0.43 0.26-0.71
6. D4S11261 4931.3 27 0.017 0.042 0.0010 0.027 0.19 0.07-0.57
7. D5513281 5q21.3 10 0.045 0.081 0.0010 0.010 0.54 0.37-0.78
8. D5S0703i 5q31.2 9 0.227 0.185 0.023 0.21 1.29 1.04-1.61
9. HUMUTSO011 6pl2.3 19 0.075 0.110 0.0090 0.17 0.51 0.33-0.78
10. D6S1146i 6p22.3 13 0.000 0.006 0.031 0.40 - -

11. HUMUTS779 6q25.1 11 0.287 0.217 0.00031 0.0034 1.45 1.19-1.78
12. D7S0070i Tp2l.1 10 0.426 0.351 0.00067 0.0067 1,37 1.15-1.65
13, D7S0046i 7q11.22 11 0.105 0.165 0.000083 0.00091 0.59 0.46-0.77
14, DBS0913i 8q21.3 13 0.026 0.010 0.011 0.14 2.64 1.27-5.50
15. DBS0285i 8g21.13 6 0.208 0.150 0.000036 0.00022 0,68 0.57-0.82
16. D95067 3 9p13.3 14 0.109 0.076 001 0.15 1.50 1.10-2.04
17. D1181765 I1gl12.2 9 0.033 0.017 0.031 0.28 1.97 1.09-3.56
18. D12509141 12q12 8 0.179 0.144 0.038 0.30 1.30 1.02-1.65
19. D1450504i 14932.12 27 0.071 0.038 0.0020 0.054 1.93 1.29-2.89
20. D15S988 1592233 15 0.100 0.062 0.0020 0,030 1.68 1.21-2.33
21 DI1750234i 17p132 14 0.163 0.130 0.036 0.50 1.31 1.02-1.68
22 HUMUT6385 19q13.2 9 0.071 0.116 0.00053 0.0048 0.58 0.43-0.79
23, D215005% 21q21.1 16 0.158 0.124 0.034 0.54 1.32 1.03-1.70

P values calculated by Fisher's exact test, based on 2 x 2 contingency tables. The smallest P value was selected.

* P values were corrected by the number of alleles. The Fisher’s exact test was carried out in the sex-pooled tall and short subjects (n = 500 each).
Cl, confidence interval

linkage analysis, 5g31 (Wu et al. 2003), 6q25 (Hirschhorn

(P =0.000016, Pc=0.0008).

These SNP associations

etal. 2001; Xu etal. 2002), 8q21.3 (Perola et al, 2007),
8q21.13 (Willemsen et al. 2004), and 21q21.1 (Hirschhorn
etal. 2001), respectively. We also detected six strongly
associated regions, 4q13.2, 4q31.3, 5q21.3, 7p2l.l,
7q11.22, and 19q13.2, which have not been reported
before. The inconsistent results of these studies may be due
to population specificities and/or differences of technique.

Fine mapping by SNP

Among the nine most associated markers, we selected two:
D8S0285i and D155988. D8S0285i was the most strongly
associated microsatellite, located at 8q21.13, and D/55988
was flanked by a candidate gene, SMAD3, located at
15922.33. 82 SNPs were surveyed and genotyped in a total
of 1.555 samples (1.000 screened samples and additional
555 samples).

Ten SNPs at 8q21.13 showed nominal significance,
among which SNP rs2220456 was the most strongly associ-
ated  with  height, showing empincal significance

_@_ Springer

might be reflected the reported evidence of linkage (Perola
et al. 2007: Willemsen et al. 2004), Since an approximately
300 kb region in the vicinity of SNP rs2220456 and
D8S0285i at 8q21.3 had no coding sequence according to
NCBI build 36.2, we shifted our target to the locus at
15922.33-q23. To cover a gene-containing region, we
selected two additional microsatellites, D1550240i and
D1550028i, and 64 SNPs at 15q22.33-q23 (Fig. |). Among
these, allele 230 of DI580240i and six SNPs retained
empirical significance (Pc < 0.05) as depicted in Figurel.
SNP rs8038652, the most strongly associated SNP, is
located in intron | of JQCH. The six SNPs maintained a
strong LD index with each other (1’ > 09 and /= 0.8).
Additionally, SNP rs8038652 and allele 230 of D/550240i
were in strong LD (D' =0.99 and * = 0.77).

Based on the SNP association results, SNP rs8038652
was [urther analyzed under different genetic models. Asso-
ciation analysis under a recessive model for SNP
rsB038652 showed the lowest P value (P = 0.000046) with
the AA genotype, indicating that the AA genotype of
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rsB038652 has an adverse effect on adult height in Mongo-
lians (odds ratio = 0.59, confidence interval, 0.46-0.76).
Additionally, a deviation from HWE (P=0.04) was
observed in the wll height group with SNP rs8038652.

In conclusion, we have identified two candidate loci for
adult height at 8q21.13 and 15q22.33-q23 in Mongolians,
Although the causative polymorphisms were not deter-
mined in this study, we were able to locate genetic associa-
tion with adult height o two regions. 15q22.33-q23
contains only three genes, so functional analyses should
help 1o elucidate the causative polymorphisms. Analysis of
the remaining seven highly associated microsatellite mark-
ers should lead to identification of new causative genes
underlying adult height variation.
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Abstract

Background: The mouse has more than 30 Mgjor histocompatibility complex (Mhc) class Ib genes,
most of which exist in the H2 region of chromosome 17 in distinct gene clusters. Although recent
progress in Mhc research has revealed the unique roles of several Mhc class Ib genes in the immune
and non-immune systems, the functions of many class Ib genes have still to be elucidated. To better
understand the roles of class Ib molecules, we have characterized their gene duplication,
organization and expression patterns within the H2 region of the mouse strain C57BL/6.

Results: The genomic organization of the H2-Q, -T and -M regions was analyzed and 21 transcribed
Mhc class Ib genes were identified within these regions. Dot-plot and phylogenetic analyses implied
that the genes were generated by monogenic and/or multigenic duplicated events, To investigate
the adult tissue, embryonic and placental expressions of these genes, we performed RT-PCR gene
expression profiling using gene-specific primers. Both tissue-wide and tissue-specific gene
expression patterns were obtained that suggest that the variations in the gene expression may
depend on the genomic location of the duplicated genes as well as locus specific mechanisms. The
genes located in the H2-T region at the centromeric end of the cluster were expressed more widely
than those at the telomeric end, which showed tissue-restricted expression in spite of nucleotide
sequence similarities among gene paralogs.

Conclusion: Duplicated Mhc class Ib genes located in the H2-Q, -T and -M regions are differentially
expressed in a variety of developing and adult tissues. Our findings form the basis for further
functional validation studies of the Mhc class Ib gene expression profiles in specific tissues, such as
the brain, The duplicated gene expression results in combination with the genome analysis suggest
the possibility of long-range regulation of HZ-T gene expression and/or important, but as yet
unidentified nucleotide changes in the promoter or enhancer regions of the genes. Since the Mhc
genomic region has diversified among mouse strains, it should be a useful model region for
comparative analyses of the relationships between duplicated gene organization, evolution and the
regulation of expression patterns.
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Background
The Major Histocompatibility Complex (MHC) genomic

region harbors duplicated genes that express protein mol-
ecules responsible for the rejection of transplanted tissue,
restricted antigen presentation and the recognition of self
and non-self [1,2]. The Mhc genomic region in the mouse,
located on chromosome 17, is named H2 and the genes
within this region are usually classified into three distinct
classes (I to II1) based on their structure and function [3].
The class 1 molecules generally elicit immune responses
by presenting peptide antigens derived from intracellular
proteins to T lymphocytes and their genes can be classified
into two groups, the classical Mhc class I (class Ia) genes
and the non-classical Mhe class I (class Ib) genes. The clas-
sical Mhe class la genes, such as H2-K and -D in the mouse,
are highly polymorphic, expressed widely and present
antigens to CD8+ cytotoxic T cells. To date, most studies
of the MHC class | genomic region have been focused on
the immunological function of class la molecules [4-6].

The non-classical class Ib molecules are structurally simi-
lar to the classical class la proteins, but in contrast to the
classical class la proteins, they have limited or no poly-
morphisms. They are more restricted in their tissue expres-
sion and some have functions other than antigen
presentation to CD8+ T cells. The non-classical class 1b
proteins have shorter cytoplasmic tails and some of them
lack consensus residues associated with peptide binding
|7]. The mouse is considered to have more than 30 Mhc
class Ib genes in the genome |3]. Most Mhe class Ib genes
are located at the telometric end of the 2 Mb-H2 region
within the H2-Q, -T and -M sub-regions, which were orig-
inally mapped and defined by recombination analysis.
Although the non-classical class Ib genes are involved in
immunological functions like the classical class la genes,
they generally serve a more specialized role in the
immune responses. The expression and function of some
non-classical class Ib genes, including H2-T23 (Qa-1), -
M3 and -T3 (TL antigen), have been analyzed in detail. For
example, Qa-1 is involved in the suppression of CD4+ T
cell responses via CD94/NKG2A or CD94/NKG2C recep-
tors [8,9]. The peptide presentation by the Qa-1 molecule
may also have a role in CD8+ regulatory T cell activity
[10]. H2-M3 molecules prime the rapid response of CD8+
T cells by presenting N-formylated bacterial peptides [11].
The TL antigen is involved in the formation of memory
CD8+ T cells [12] and in the regulation of ilEL responses
in the intestine by interaction with homodimeric CD8
alpha receptors [13].

The class Ib molecules are also involved in non-immune
functions. For example, the H2-M1 and -M10 families of
the class Ib genes specifically interact with the V2R class of
pheromone receptors presented on the cell surfaces of the
vomeronasal organ |14,15]. The Qa-2 proteins encoded

http://www.biomedcentral.com/1471-2164/9/178

by H2-Q7 and -Q9 class Ib genes influence the rate of pre-
implantation embryonic development and subsequent
embryonic survival [16]. In addition, the class | molecules
have recently been shown to contribute to the develop-
ment and plasticity of the brain [17,18]. So far, there is lit-
tle information about which of the non-classical class Ib
genes are involved in this function.

The molecular functions of many of the other class Ib
molecules are still far from being understood and even the
expression patterns for many of the Mhe class Ib genes
remain to be elucidated. The Mhe class 1b genes are mem-
bers of gene clusters that have been generated by different
rounds of duplication and deletion [19]. In the mouse,
the telomeric 1 Mb of the Mhe including the H2-M region
was well characterized using the 129/Sv inbred strain [20].
The possible evolutionary fates of duplicated genes are
nonfunctionalization, neofunctionalization or subfunc-
tionalization |21]. Genes recently duplicated may even
have the same functions by having and using identical or
similar expression domain sequences. In order to beuer
understand the role of class Ib molecules expressed by
duplicated genes in different tissues, we have undertaken
to examine, identify and characterize the Mhe class Ib gene
duplication, organization and expression patterns within
the H2 region of the mouse strain C57BL/6.

The whole genome of the laboratory mouse strain C57BL/
6] has been almost fully sequenced [22]. However, the
genomic organization of the Mhe class [ region of mice
varies markedly between different haplotypes and inbred
strains [20]. In the present study, we selected Mhe class Ib
DNA sequences from the mouse genome database (NCBI
Entrez Genome Project ID 9559), and characterized the
organization of the Mhc class Ib genomic region for the
mouse C57BL/6 strain (haplotype b). Expression patterns
of each of the Mhe class Ib genes were examined by RT-
PCR using gene-specific primer sets, and we identified
Mbhe class Ib genes with either tissue-restricted expression
or tissue-wide expression. We also identified monogenic
and multigenic duplicated regions within the H2-T region
of the mouse inbred-strain, C57BL/6. Based on the results
of our comprehensive analysis of the Mhe class Ib gene
duplication, organization and expression patterns, we dis-
cuss the possible relationships and regulatory outcomes
between the genomic location and expression patterns of
the mouse Mhe class Ib duplicated genes.

Results and Discussion

Identification and genomic organization of transcribed
Mhc class Ib genes

As the aim of this study was to determine the tissue expres-
sion patterns for each of the duplicated Mhe class Ib genes,
we first needed to identify the location and the number of
wranscribing Mhe class Ib genes in the mouse genomic
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