92 Table 7: Histopathological findings in the liver of male rats given HDBB by gavage. | | | | Dose (mg/kg/day) | | | | |---|------------------------|--------------|-------------------|---------------|------------------|--------------| | | Grade | 0 | 0.1 | 0.5 | 2.5 | - | | At completion of the 13-week administration No. of animals Centrilobular hypertrophy of hepatocytes ^a Focal necrosis | period
+
++
+ | 10
0
0 | 10
0
0
0 | 10
3
0 | 9
6
3
2 | ** | | At completion of the 52-week administration No. of animals Centrilobular hypertrophy of hepatocytes ^a | period
+
++ | 10
0 | 8 | 10
5* | 10
7 | ** | | Focal necrosis
Lipofuscin deposition in hepatocytes ^b
Altered hepatocellular foci | + + + ++ | 1 0 0 | 0
0
1 | 3
0
7** | 6**
6 | ** | | Cystic degeneration of hepatocytes | + | 0 | 0
2 | 2 | 4* | | Values represent the number of animals with findings. Table 8: Histopathological findings in the liver of female rats given HDBB by gavage. | | Grade | Dose (mg/kg/day) | | | | |--|-----------------------|-------------------|--------------|-------------------|-------------------| | | | 0 | 0.5 | 2.5 | 12.5 | | At completion of the 13-week administration p
No. of animals
Centrilobular hypertrophy of hepatocytes ^a
Focal necrosis | period
+
+ | 10
0
0 | 10
- | 10
0
1 | 10
6**
0 | | At completion of the 52-week administration property No. of animals Centrilobular hypertrophy of hepatocytes Focal necrosis Lipofuscin deposition in hepatocytes b | period
+
+
+ | 10
0
2
0 | 10
-
- | 10
0
0
0 | 9
4*
0
2 | Values represent the number of animals with findings. ⁺ = mild; ++ = moderate. *Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01 Description of the standard of the standard of the Hall method. Description of the standard of the Hall method. Description of the Hall method. $^{+ = \}text{mild}; - = \text{not examined}.$ *Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. **Accompanied with eosinophilic granular cytoplasm. bldentified by the Schmorl method, Berlin blue staining, and the Hall method. hepatocellular foci (clear cell foci) at 0.5 mg/kg and higher and of cystic degeneration and lipofuscin deposition in hepatocytes at 2.5 mg/kg were found in males at the completion of the 52-week administration. Centrilobular hypertrophy of hepatocytes with eosinophilic granular cytoplasm is known to be a characteristic change observed in rodents administered with peroxisome proliferators, such as fibrate hypolipidemic drugs and phthalate plasticizers (Cattley and Popp, 2002). Prolonged exposure to these substances has been shown in many studies to induce liver tumors in rats and mice (IARC, 1995), and preferential growth of altered hepatocytes, as detected in the present 52-week study, could be observed in the developmental process. In addition, increased mitosis of hepatocytes, indicating hepatocellular proliferation, was observed in the higher dose group in the previous 28-day study of HDBB (Hirata-Koizumi et al., 2007). Further longer-term studies are needed to precisely evaluate whether HDBB induces liver tumors in rats. In the current study, lipofuscin deposition in hepatocytes was also apparent at the completion of the 52-week administration. While lipofuscin accumulates in hepatocytes with aging, increased amounts of lipofuscin have also been reported in the liver of rats treated for long periods with peroxisome proliferators (IARC, 1995; Cattley and Popp, 2002). Based on these findings, HDBB might exert an effect on the liver via the mechanism of peroxisome proliferation, although the ultrastructure or peroxisome-associated enzyme was not analyzed in the current study. The hepatic changes caused by this mechanism are considered not to be significant for human risk assessment (Hasegawa et al., 2004) because primates are much less sensitive to peroxisome proliferators than rodents (Elcombe and Mitchell, 1986; Blaauboer et al., 1990). For HDBB, however, the incidence of cystic degeneration of hepatocytes was increased at the end of the current 52-week study, and increased incidence of focal necrosis, vacuolar degeneration of hepatocytes, and bile duct proliferation in the liver was found in the previous 28-day study (Hirata-Koizumi et al., 2007). These changes may not be necessarily associated with the mechanism of peroxisome proliferation. Considering the possible induction of neoplastic change in the liver by mechanisms relevant to humans, further study is required. In the current study, histopathological changes in the heart were not detected even at the highest dose of 2.5 mg/kg in males and 12.5 mg/kg in females, at which degeneration and hypertrophy of the myocardium or cell infiltration were found in the previous 28-day study (Hirata-Koizumi et al., 2007). Although the cause of this difference between studies is not clear, the borderline dose of HDBB for affecting the heart is considered to be around 2.5 mg/kg in males and 12.5 mg/kg in females. As functional parameters are considered to be more sensitive than histopathological changes in the heart (Glaister, 1992), further studies are required to clarify the adverse effects of HDBB on cardiac function. Histopathological changes in the kidneys and thyroids, detected in the previous 28-day study (Hirata-Koizumi et al., 2007), were also not observed in the present study, which would be due to the low dosage administered; however, changes in osmotic pressure, specific gravity, or volume of urine, and/or increase in the levels of BUN, noted at 0.5 mg/kg and higher in males and at 12.5 mg/kg in females, suggest renal effects of HDBB. Based on these findings in the current study, the NOAEL for chronic toxicity of HDBB was concluded to be 0.1 mg/kg/day in male rats and 2.5 mg/kg/day in female rats based on the induction of altered hepatocellular foci and/or hypertrophy of hepatocytes. This result showed that male rats are nearly 25 times more susceptible to HDBB toxicity than female rats, which is consistent with the results of the previous 28-day study (Hirata-Koizumi et al., 2007). Since male rats showed higher susceptibility to various effects of HDBB (on the liver, blood, etc.) consistently, sex-related variations in toxicokinetic determinants, such as metabolism and elimination, might increase the blood concentration of causative substances (i.e., HDBB or its metabolites) in males. In order to clarify the cause of the sexual differences in the HDBB toxicity, we are planning a toxicokinetic study of HDBB, which would include the identification of metabolites and the related metabolic enzyme as well as measurement of the blood concentration of HDBB both after single and repeated administration of HDBB to rats. Gender-related differences in toxic susceptibility have been documented for other substances. For example, a recent subchronic toxicity study using F344 rats showed that fluoranthene, a polycyclic aromatic hydrocarbon, had greater effects on males than females, especially in the kidneys (Knuckles et al., 2004). In contrast, it was reported that female rats exhibited a greater susceptibility to hypothermic effects and inhibition of hypothalamic cholinesterase by a carbamate cholinesterase inhibitor, rivastigmine (Wang et al., 2001). For such gender differences, sexual hormones must play an important role. In fact, Wang et al. (2001) reported that orchidectomy completely abolished the above-mentioned sex differences in hypothalamic cholinesterase inhibition induced by rivastigmine. Since testosterone decreased cholinesterase inhibition in gonadectomized males and females, it is apparent that testosterone interferes with the effects of rivastigmine. It is interesting to investigate the role of sex steroids in the mediation of sex differences in toxic susceptibility to HDBB; therefore, we are currently performing a repeateddose toxicity study of HDBB using male and female castrated rats. #### **CONCLUSIONS** The current results showed that the oral administration of HDBB for 52 weeks principally affected the liver. The NOAEL for chronic toxicity was concluded to be 0.1 mg/kg/day in male rats and 2.5 mg/kg/day in female rats. #### **ACKNOWLEDGMENTS** This study was supported by the Ministry of Health, Labour and Welfare, Tokyo, Japan. # REFERENCES - Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. *Proc. R. Soc. Lond. Ser. A* 160:268–282. - Blaauboer, B. J., van Holsteijn, C. W., Bleumink, R., Mennes, W. C., van Pelt, F. N., Yap, S. H., van Pelt, J. F., van Iersel, A. A., Timmerman, A., Schmid, B. P. (1990). The effect of beclobric acid and clofibric acid on peroxisomal β-oxidation and peroxisome proliferation in primary cultures of rat, monkey, and human hepatocytes. *Biochem. Pharmacol.* 40:521–528. - Cattley, R. C., Popp, J. A. (2002). Liver. In Haschek, W. M., Rousseaux, C. G., Wallig, M.A., (eds.)., *Handbook of Toxicologic Pathology*, 2nd ed. Vol. 2. San Diego: Academic Press, pp. 187–225. - Commerce Online. (2007). Product Keywords on Wujiang Dongfeng Chemical Co., Ltd. Accessed on April 25, 2007 from http://www.commerce.com.tw/company_inside. php?ID=C0013309. - Dunnett, C. W. (1964). New tables for multiple comparisons with a control. *Biometrics* 20:482-491. - EA, MHW and MITI (Environment Agency, Ministry of Health and Welfare, and Ministry of International Trade and Industry of Japan). (2000). "Testing Facility Provided in the Article 4 in the Ordinance Prescribing Test Relating
to New Chemical Substances and Toxicity Research of Designated Chemical Substances," Planning and Coordination Bureau, Environment Agency No. 41 and Environmental Health Bureau, Ministry of Health and Welfare No. 268, dated March 1, 2000, and Basic Industries Bureaus, Ministry of International Trade and Industry No. 1, dated February 14, 2000. - Elcombe, C. R., Mitchell, A. M. (1986). Peroxisome proliferation due to di(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms. *Environ. Health Perspect.* 70:211–219. - Fisher, R. A. (1973). Statistical Methods of Research Workers, 14th ed.New York: Hapner Publishing Company, p. 6. - Glaister, J. R. (1992). Histopathology of target organs—cardiovascular. In *Principles of Toxicological Pathology (Japanese version supervised by Takahashi, M.)*, Tokyo: Soft Science Inc., pp. 135–142. - Hasegawa, R., Koizumi, M., Hirose, A. (2004). Principles of risk assessment for determining the safety of chemical: recent assessment of residual solvents in drugs and di(2-ethylhexyl)phthalate. *Congenit. Anom. Kyoto* 44:51–59. - Hirata-Koizumi, M., Watari, N., Mukai, D., Imai, T., Hirose, A., Kamata, E., Ema, M. (2007) A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats. *Drug Chem. Toxicol.* 30:327–341. - IARC (International Agency for Research on Cancer). (1995). Peroxisome Proliferation and its Role in Carcinogenesis (Technical Report no. 24). Lyon: IARC Press. - Knuckles, M. E., Inyang, F., Ramesh, A. (2004). Acute and subchronic oral toxicity of fluoranthene in F-344 rats. *Ecotoxicol. Environ. Saf.* 59:102–108. - Mann, H. B., Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. *Ann. Math. Stat.* 18:50-60. - METI (Ministry of Economy, Trade and Industry of Japan). (2006). 2-(2H-1,2,3-Benzotriazole-2-yl)-4,6-di-tert-butylphenol, document distributed in Committee on Safety of Chemical Substances, Chemical Substances Council, 30 June 2006. Accessed on April 25, 2007 from http://www.meti.go.jp/committee/materials/g60705aj.html. - MHLW (Ministry of Health, Labour and Welfare of Japan). (2003). 2-(2'-Hydroxy-3',5'-de-tert-butylphenyl)benzotriazole. In *Toxicity Testing Reports of Environmental Chemicals (Ministry of Health, Labour and Welfare, ed.)*, Vol. 10. Tokyo: Chemicals Investigation Promoting Council, pp. 215–247. - MHLW (Ministry of Health, Labour and Welfare of Japan). (2006). 2-(2'-Hydroxy-3',5'-de-tert-butylphenyl)benzotriazole. In *Toxicity Testing Reports of Environmental Chemicals (Ministry of Health, Labour and Welfare, ed.)*, Vol. 13, Tokyo: Chemicals Investigation Promoting Council, pp. 187–202. - OECD (Organization for Economic Co-operation and Development). (1981). Guideline 452, Chronic Toxicity Studies (adopted 12th May 1981), OECD Guidelines for the Testing of Chemicals, section 5, OECD, Paris. - OECD (Organization for Economic Co-operation and Development). (1998). Principles on Good Laboratory Practice (as revised in 1997), OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring, No. 1, OECD, Paris. - Steel, R. D. (1959). A multiple comparison rank sum test: treatment versus control. *Biometrics* 15:560–572. - Tenkazai.com. (2007). Market Trend of Resin Additives "Light Stabilizer." Accessed on April 25, 2007 from http://www.tenkazai.com/market.html. - Wang, R. H., Schorer-Apelbaum, D., Weinstock, M. (2001). Testosterone mediates sex difference in hypothermia and cholinesterase inhibition by rivastigmine. *Eur. J. Pharmacol.* 433:73–79. Drug and Chemical Toxicology, 31:115-126, 2008 Copyright © Informa Healthcare USA, Inc. ISSN: 0148-0545 print / 1525-6014 online DOI: 10.1080/01480540701688808 informa healthcare # Gonadal Influence on the Toxicity of 2-(2'-Hydroxy -3',5'-di-*tert*-butylphenyl) benzotriazole in Rats Mutsuko Hirata-Koizumi,¹ Takashi Matsuyama,² Toshio Imai,¹ Akihiko Hirose,¹ Eiichi Kamata,¹ and Makoto Ema¹ ¹Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan ²Shin Nippon Biomedical Laboratories, Ltd., Drug Safety Research Laboratories (SNBL DSR), Kagoshima, Japan Previously, we showed that susceptibility of male rats to the toxicity of an ultraviolet absorber, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole (HDBB), was nearly 25 times higher than that of females. In the current study, we investigated the role of sex steroids in the mediation of the gender-related difference using castrated rats. Male and female castrated CD(SD) rats were given HDBB by gavage at 0, 0.5, 2.5, or 12.5 mg/kg/day for 28 days. No deaths, clinical signs of toxicity, or changes in body weight or food consumption were found at any doses. Blood biochemical changes suggestive of hepatic damage, such as increased levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase, were detected at 12.5 mg/kg/day in males. Absolute and relative liver weight increased at 0.5 mg/kg/day and above in males and at 12.5 mg/kg/day in females. In the liver, histopathological changes, such as nucleolar enlargement, increased mitosis, hypertrophy in hepatocytes, and/or focal necrosis were observed at 0.5 mg/kg/day and above in males, and at 2.5 mg/kg/day and above in females. These findings indicate that castration markedly reduced the gender-related differences in toxicity of HDBB in rats. Keywords Benzotriazole UV absorber, Castration, Gender-related difference, Rats. #### INTRODUCTION 2-(2'-Hydroxy-3',5'-di-*tert*-butylphenyl)benzotriazole (CAS No. 3846-71-7; HDBB) is an ultraviolet (UV) absorber used in plastic resin products, such as Address correspondence to Makoto Ema, Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; E-mail: ema@nihs.go.jp building materials and automobile components (METI, 2006). Previously, we showed a marked difference in the susceptibility of male and female rats to the toxicity of HDBB in 28-day and 52-week repeated oral dose toxicity studies (Hirata-Koizumi et al., 2007; 2008). In the 28-day study, toxic effects in the liver, heart, kidneys, thyroids, and blood were observed. The no observed adverse effect level (NOAEL) for females was 2.5 mg/kg/day based on histopathological changes in the liver and heart detected at 12.5 mg/kg/day. However, the NOAEL for males could not be determined because hepatic changes were noted even at the lowest dose of 0.5 mg/kg/day. In the 52-week study, the NOAEL was concluded to be 0.1 mg/kg/day in males and 2.5 mg/kg/day in females based on histopathological changes in the liver. These findings consistently showed that male rats have a nearly 25 times higher susceptibility to HDBB toxicity than female rats. Gender-related differences in susceptibility to toxicity have been documented for other substances; for example, a subchronic toxicity study in rats showed that fluoranthene, a polycyclic aromatic hydrocarbon, had greater effects on males than females, especially on the kidneys (Knuckles et al., 2004). In contrast, female rats exhibited greater susceptibility to hypothalamic cholinesterase inhibitory and hypothermic effects of a carbamate cholinesterase inhibitor, rivastigmine (Wang et al., 2001). Such gender-related variations are also reported in humans, mostly for medicines. Examples include the more severe adverse effects, but with greater improvement in response, to antipsychotic drugs such as chlorpromazine and fluspirilene in women (Harris et al., 1995). Sex hormones are likely to play an important role in gender differences in toxicity responses. In fact, Wang et al. (2001) reported that orchidectomy completely abolished the above-mentioned sex differences in hypothalamic cholinesterase inhibition induced by rivastigmine, and testosterone treatment to gonadectomized males and females decreased the cholinesterase inhibitory effects of rivastigmine; therefore, it is apparent that testosterone interferes with the effects of rivastigmine. On the other hand, estrogen has been shown to act as a dopamine antagonist (Harris et al., 1995), which is considered to contribute, at least in part, to sex differences in response to antipsychotic drugs. The role of sex hormones in differences between sexes in toxicity responses seems to vary from case to case. In the present study, we performed a repeated dose toxicity study of HDBB using male and female castrated rats to investigate the role of sex steroids in the mediation of sex difference in the susceptibility of rats to the toxicity of HDBB. Administration was conducted in the same way as the previous 28-day study using intact animals (Hirata-Koizumi et al., 2007) for comparison, and effects on the liver and heart, which were principally affected in the previous study of HDBB, were examined. # MATERIALS AND METHODS This study was performed at Shin Nippon Biomedical Laboratories, Ltd., Drug Safety Research Laboratories (SNBL DSR; Kagoshima, Japan). The experiment was approved by the Institutional Animal Care and Use Committee of SNBL DSR and was performed in accordance with the ethics criteria contained in the bylaws of the Committee of SNBL DSR. # Chemicals HDBB (Lot no. AY11) was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). The HDBB used in this study was 100% pure and was kept in a light-resistant and airtight container at room temperature. Test solutions were prepared as suspensions in corn oil twice a week and kept cool in a light-resistant and airtight container until dosing. Stability under refrigerated conditions was confirmed for seven days in the previous 28-day repeated dose toxicity study using intact animals (Hirata-Koizumi et al., 2007). All other reagents used in this study were of specific purity grade. # **Animals** Crl:CD(SD) rats (SPF, three weeks old) were purchased from
Hino Breeding Center, Charles River Laboratories Japan, Inc. (Yokohama, Japan). All animals were maintained in an air-conditioned room at 21.8-22.8°C, with a relative humidity of 45%-55%, a 12-h light/dark cycle, and ventilation with 15 air changes/h. Animals were housed individually in stainless cages suspended over a cage board. A basal diet (CE-2; CLEA Japan, Inc., Tokyo, Japan) and water, which meets the drinking water standard under the Water Works Law of Japan, were provided ad libitum. Male and female rats were castrated under ether anesthesia between five and eight days after purchase. After a two-week acclimation, they were subjected to treatment at six weeks of age. Rats found to be in good health were selected and assigned to four groups of 10 males and 10 females by stratified random sampling based on body weight. One female in the highest dose group was excluded from the present study because remnants of the left ovary were confirmed at necropsy. # **Experimental Design** Male and female castrated rats were given HDBB once-daily at 0 (vehicle control), 0.5, 2.5, and 12.5 mg/kg/day by gavage for 28 days. The dosage levels were determined based on the results of our previous 28-day study using intact rats given HDBB by gavage at 0.5, 2.5, 12.5, or 62.5 mg/kg/day, at which adverse effects, mainly on the liver and heart, were found at all doses in males and at # 118 Hirata-Koizumi et al. 12.5 mg/kg/day and above in females (Hirata-Koizumi et al., 2007). The volume of each dose was adjusted to 10 mL/kg based on the latest body weight. All animals were observed daily before and one to two hours after dosing for clinical signs of toxicity. Body weight was measured on days 0, 3, 7, 10, 14, 17, 21, 24, and 28 of the dosing period, and food consumption was recorded on days 0, 3, 7, 10, 14, 17, 21, 24, and 27 of the dosing period. On the day after the last dosing, blood was drawn from the caudal vena cava in the abdomen with a heparin-added syringe under ether anesthesia and centrifuged to obtain plasma. The plasma was examined for biochemical parameters, such as total protein, albumin, glucose, total cholesterol, triglycerides, total bilirubin, urea nitrogen (BUN), creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatinine phosphokinase, calcium, inorganic phosphorus, sodium, potassium, and chlorine. Following the collection of blood, all animals were euthanized by exsanguination, and the surface of the body, and organs and tissues of the entire body, were examined macroscopically. The liver and heart were then removed and weighed. Both organs were fixed in 10% neutral-buffered formalin, processed routinely for embedding in paraffin, and sections were prepared for staining with hematoxylin and eosin. Histopathological observation was performed for all groups. # **Data Analysis** Parametric data, such as body weight, food consumption, blood biochemical parameters, and organ weights, were analyzed by Bartlett's test (Bartlett, 1937) for homogeneity of distribution (p < 0.05). When homogeneity was recognized, Dunnett's test (Dunnett, 1964) was conducted to compare control and individual treatment groups (p < 0.01 or 0.05). If not homogeneous, the data were analyzed using a Dunnett-type mean rank test (p < 0.01 or 0.05) (Hollander and Wolfe, 1973). #### **RESULTS** No deaths or clinical signs of toxicity were found in any groups. There was no significant difference in body weight between the control and HDBB-treated groups (Fig. 1). Food consumption was also not significantly changed, except for a transient increase on day 21 of the administration period at 12.5 mg/kg/day and on day 27 of the administration period at 2.5 mg/kg/day in males (data not shown). Blood biochemical examination revealed significant increases in the level of albumin at 0.5 mg/kg/day and above in males and at 2.5 mg/kg/day and above in females, total protein at 0.5 mg/kg/day and above in females, glucose at 12.5 mg/kg/day in males, and BUN at 12.5 mg/kg/day in both sexes (Table 1). Figure 1: Body weight of male and female castrated rats given HDBB by gavage for 28 days. Table 1: Blood biochemical findings in male and female castrated rats given HDBB by gavage for 28 days. | Dose (mg/kg/day) | 0 | 0.5 | 2.5 | 12.5 | |--------------------------------|--------------------------------|---------------------------|--------------------------|---------------------------| | Male | | | | | | No. of animals | 10 | 10 | 10 | 10 | | Total protein (g/aL) | 6.19 ± 0.32 | 6.44 ± 0.23 | 6.45 ± 0.40 | 6.26 ± 0.31 | | Albumin (g/dL) | 4.43 ± 0.18 | 4.90 ± 0.17** | $4.99 \pm 0.25**$ | 5.03 ± 0.18** | | AST (IU/L) | 61.0 ± 6.2 | 54.4 ± 3.5 | 63.6 ± 8.0 | 91.4 ± 24.0** | | ALT (IU/L) | 40.2 ± 8.9 | 37.9 ± 4.2 | 46.2 ± 8.6 | $55.5 \pm 7.2**$ | | ALP (IU/L) | 868 ± 200 | 995 ± 267 | 989 ± 344 | 1552 ± 538** | | LDH (IU/L) | 112 ± 28
176 ± 12 | 129 ± 18
199 ± 13** | 173 ± 30* | 403 ± 189** | | Glucose (mg/dL)
BUN (mg/dL) | 170 ± 12
15.8 ± 2.0 | 15.3 ± 2.1 | 176 ± 7
16.0 ± 1.8 | 196 ± 22*
19.7 ± 1.6** | | Creatinine (mg/dL) | 0.208 ± 0.020 | $0.174 \pm 0.022**$ | $0.176 \pm 0.027**$ | $0.175 \pm 0.016**$ | | Na (mEq/L) | 145 ± 1 | 145 ± 1 | 145 ± 1 | 142 ± 1** | | CI (mEq/L) | 107 ± 1 | 106 ± 2 | 106 ± 2 | 104 ± 2** | | Female | | | | | | No. of animals | 10 | 10 | 10 | 9ª | | Total protein (g/dL) | 5.81 ± 0.21 | $6.17 \pm 0.26**$ | 6.15 ± 0.18 * | $6.41 \pm 0.34**$ | | Albumin (g/dĹ) | 4.19 ± 0.12 | 4.39 ± 0.22 | $4.55 \pm 0.19**$ | $5.14 \pm 0.32**$ | | AST (IU/L)
ALT (IU/L) | 54.8 ± 3.5
39.1 ± 4.6 | 62.4 ± 5.1*
43.2 ± 7.8 | 57.4 ± 6.2
39.5 ± 5.9 | 58.4 ± 10.0
45.8 ± 8.7 | | ALP (IU/L) | 727 ± 164 | 742 ± 122 | 703 ± 199 | 1026 ± 217** | | LDH (IU/L) | 138 ± 44 | 254 ± 27** | 209 ± 44* | 235 ± 116* | | Glucose (mg/dL) | 202 ± 25 | 181 ± 13 | 182 ± 10 | 216 ± 16 | | BUN (mg/dL) | 20.0 ± 1.6 | 20.2 ± 2.1 | 18.2 ± 2.6 | 23.2 ± 2.2** | | Creatinine (mg/dL) | 0.230 ± 0.022 | 0.229 ± 0.025 | $0.196 \pm 0.022*$ | 0.208 ± 0.030 | | Na (mEq/L) | 142 ± 1 | 143 ± 1 | $144 \pm 1**$ | 141 ± 1 | | CI (mEq/L) | 104 ± 1 | 105 ± 2 | 106 ± 1** | 102 ± 2* | Values are expressed as the mean \pm SD. ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. One female was excluded because left ovary remnants were found at autopsy. The levels of LDH at 2.5 mg/kg/day and above in males and at 0.5 mg/kg/day and above in females, ALP at 12.5 mg/kg/day in both sexes, and AST and ALT at 12.5 mg/kg/day in males were also significantly increased. In addition, significant decreases in the levels of creatinine at 0.5 mg/kg/day and above, of sodium at 12.5 mg/kg/day in males, and of chloride at 12.5 mg/kg/day in both sexes were detected. At necropsy, no gross abnormality was found at any dose. Absolute and relative liver weight was significantly increased at 0.5 mg/kg/day and above in males and at 12.5 mg/kg/day in females (Table 2). No significant change was found in the absolute and relative heart weight. Histopathological findings in the liver are summarized in Table 3. Diffuse hypertrophy of hepatocytes were observed at 0.5 mg/kg/day and above in males and at 2.5 mg/kg/day and above in females. The cytoplasm of the hepatocytes was slightly eosinophilic. At these doses, anisokaryosis, nucleolar enlargement, and decreased glycogen in hepatocytes were also found. In addition, focal coagulative necrosis at 12.5 mg/kg/day in males and at 2.5 mg/kg/day and above in females, and increased mitosis of hepatocytes at 2.5 mg/kg/day and above and mononuclear cell infiltration at 12.5 mg/kg/day in males, were detected. No substance-related histopathological findings were detected in the heart. #### DISCUSSION The current study was designed to investigate the role of sex steroids in the mediation of gender-related differences in HDBB toxicity. The dosage of HDBB used in the present study was sufficiently high to be expected to induce **Table 2:** Organ weight of the heart and liver in male and female castrated rats given HDBB by gavage for 28 days. | Dose (mg/kg/day) | 0 | 0.5 | 2.5 | 12.5 | |------------------|-----------------------------|---------------------|---------------------|---------------------| | Male | | | | | | No. of animals | 10 | 10 | 10 | 10 | | Heart (g) | 1.30 ± 0.07 | 1.25 ± 0.09 | 1.35 ± 0.12 | 1.37 ± 0.12 | | 107 | $(0.352 \pm 0.022)^{\circ}$ | (0.331 ± 0.028) | (0.362 ± 0.020) | (0.373 ± 0.030) | | Liver (g) | 15.5 ± 1.5 | $18.2 \pm 2.7*$ | $21.6 \pm 3.0**$ | ` 26.9 ± 1.9** ´ | | | (4.18 ± 0.27) | $(4.78 \pm 0.47*)$ | $(5.76 \pm 0.61**)$ | $(7.32 \pm 0.40**)$ | | Female | • | | | - 1- | | No. of animals | 10 | 10 | 10 | 9 ^b | | Heart (g) | 1.14 ± 0.07 | 1.11 ± 0.09 | 1.15 ± 0.10 | 1.25 ± 0.14 | | | (0.342 ± 0.027) | (0.322 ± 0.027) | (0.329 ± 0.024) | (0.352 ± 0.035) | | Liver (g) | 14.5 ± 1.9 | 14.8 ± 1.4 | 16.2 ± 2.5 | $27.0 \pm 3.3**$ | | .5. | (4.33 ± 0.34) | (4.28 ± 0.19) | (4.63 ± 0.32) | $(7.63 \pm 0.87**)$ | Values are expressed as the mean \pm SD. ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Relative organ weight (g/100 g body weight). bOne female was excluded because left ovary remnants were found at autopsy. Table 3: Histopathological findings in the liver of male and female castrated rats given HDBB by gavage for 28 days. | | i. i. | Dose (mg/kg/day) | | | | |--|-----------------------|-----------------------------
----------------------------------|----------------------------------|-----------------------------| | | Grade | 0 | 0.5 | 2.5 | 12.5 | | Male | | | | | | | No. of animals
Anisokaryosis of hepatocytes | ±
+ | 10
0
0 | 10
1
0 | 10
8
0 | 10
3
7 | | Nucleolar enlargement in hepatocytes | ±
+ | Ŏ
0 | ì | 10
0 | 5
5 | | Increased mitosis of hepatocytes
Hypertrophy of hepatocytes
Decreased glycogen in hepatocytes | ±
±
± | 0
0
0 | 0
4
1 | 1
10
6
0 | 4
10 | | Focal necrosis
Mononuclear cell infiltration
Female | ±
± | Ö
1 | 0
0 | 0
0 | 8
2
3
5 | | No. of animals Anisokaryosis of hepatocytes Nucleolar enlargement in hepatocytes Hypertrophy of hepatocytes Decreased glycogen in hepatocytes Focal necrosis Mononuclear cell infiltration | ±
±
±
±
± | 10
0
0
0
0
0 | 10
0
0
0
0
0
1 | 10
5
5
2
2
3
1 | 9°
8
9
8
2
0 | Values represent the number of animals with the findings. toxicological effects on the liver, based on the results of the previous 28-day and 52-week repeated dose toxicity study using intact rats (Hirata-Koizumi et al., 2007; 2008). As expected, absolute and relative liver weight increased at 0.5 mg/kg/day and above in males and at 12.5 mg/kg/day in females, and histopathological changes in the liver, including anisokaryosis, nucleolar enlargement, increased mitosis, hypertrophy and decreased glycogen in hepatocytes, focal necrosis, and/or mononuclear cell infiltration, were observed at 0.5 mg/ kg/day and above in males and at 2.5 mg/kg/day and above in females. Blood biochemical changes, such as increases in the level of total protein, albumin, AST, ALT, ALP, and/or LDH, were also found at all doses in both sexes. Although these changes in blood biochemical parameters were mostly slight and lacked dose dependence in some cases, simultaneous increase in hepatic enzymes (AST, ALT, ALP, and LDH) at 12.5 mg/kg/day in males is considered to be related to hepatic damage caused by HDBB. A previous 28-day study using intact rats showed the cardiac toxicity of HDBB; degeneration and hypertrophy of the myocardium or cell infiltration were found at 2.5 mg/kg/day and above in males and at 12.5 mg/kg/day and above in females (Hirata-Koizumi et al., 2007). In the present study, using castrated rats, however, histopathological changes in the heart were not $[\]pm = \text{very slight}; + = \text{slight}.$ ^aOne female was excluded because left ovary remnants were found at autopsy. #### 122 Hirata-Koizumi et al. detected even at the highest dose of 12.5 mg/kg/day. Considering that histopathological effects on the heart were also not found at the highest dose of 2.5 mg/kg/day in males and 12.5 mg/kg/day in females in the previous 52-week study using intact rats (Hirata-Koizumi et al., 2008), the present results would not necessarily mean that castration caused a change in the cardiac effect of HDBB. Although the cause of the difference in the cardiac toxicity of HDBB in our studies is not clear, further study is required to investigate the toxicological effects of HDBB on the heart in more detail, including the effect on cardiac function (e.g., electrocardiographic parameters, blood pressure, etc.). In the previous 28-day study, male and female intact rats were given HDBB by gavage at 0.5, 2.5, 12.5, or 62.5 mg/kg/day (Hirata-Koizumi et al., in press). Histopathological findings similar to those observed in the present study were detected in the liver at all doses in males and at 12.5 mg/kg/day and above in females. The changes were accompanied with an increase in the absolute and/or relative liver weight. Serum levels of hepatic enzymes increased at 12.5 mg/kg/day and above in males and slightly at 62.5 mg/kg/day in females. When comparing the sensitive endpoint for hepatotoxicity of HDBB, histopathological changes in the liver, between sexes, the changes detected at 0.5 mg/kg/day in male rats were comparable in severity and incidence to those at 12.5 mg/kg/day in females. Thus, it was considered that male rats showed a nearly 25 times higher susceptibility to the hepatotoxicity of HDBB than females. In the present study, using castrated rats, histopathological findings in the liver were detected in males but not in females at the lowest dose of 0.5 mg/kg/day. The hepatic changes at 0.5 mg/kg/day in males were slightly milder than those at 2.5 mg/kg/day in females, showing that the difference in the susceptibility of male and female castrated rats was less than five times. Thus, castration markedly reduced gender-related differences in the hepatotoxicity of HDBB. As shown in Figure 2, a comparison of the rate of changes in the relative liver weight provided a more clear description of a nearly 25 times difference in the susceptibility of male and female intact rats to HDBB hepatotoxicity and the marked reduction by castration. When comparing the histopathological findings of the liver from the previous 28-day study using intact rats and the present study using castrated rats, those in males were approximately equivalent at the same dose. On the other hand, for females, hepatic changes were observed at 12.5 mg/kg/day and above in intact rats, but clear changes in the histopathology of the liver were detected in castrated rats at a lower dose of 2.5 mg/kg/day. Therefore, castration of female rats enhanced the adverse effects of HDBB on the liver, suggesting suppressive effects of estrogen on HDBB hepatotoxicity in rats. Comparison of the relative liver weight change (Fig. 2) showed decreased male susceptibility as well as increased female susceptibility by castration. Androgen might have an enhancing effect on the hepatotoxicity of HDBB. Figure 2: Comparison of change in relative liver weight of male and female intact and castrated rats given HDBB by gavage. The result of the previous 28-day repeated dose toxicity study, in which male and female intact rats were given HDBB once-daily at 0 (vehicle control), 0.5, 2.5, 12.5, and 62.5 mg/kg/ day by gavage (Hirata-Koizumi et al., 2007) The current study showed that the gender-related difference in susceptibility to HDBB hepatotoxicity was reduced, but not abolished, by castration. Sexual differences found in the present study were considered to be due to exposure to sexual hormones before four weeks of age, when castration was conducted. In female rats, serum estradiol concentration during the first three weeks after birth is as high as or higher than the level during the proestrus stage in young adults (Döhler and Wuttke, 1975); however, because serum estradiol concentration is similarly high during this preweaning period in male rats, it is unlikely that exposure to estradiol during this period contributes to the sexual difference in susceptibility of rats to the toxicity of HDBB. On the other hand, serum androgen levels before four weeks of age are much higher in male than female rats (Döhler and Wuttke, 1975). Ketelslegers et al. (1978) reported that plasma testosterone level in male rats was as high as 50 ng/100 mL two days after birth and it remained at the same level until day 8. The progressive decline occurred from days 8-24, and the testosterone level remained low, at the limit of detection of the assay (18 ng/ 100 mL), until day 30. There is a possibility that neonatal exposure to testosterone plays some role in the different susceptibility of male and female rats to the toxicity of HDBB. In fact, neonatal exposure to androgen irreversibly programs brain centers involved in the hypothalamo-pituitary control of hepatic sex-dependent metabolism (Gustafsson et al., 1981). We are currently in the process of performing a repeated dose toxicity study of HDBB using preweaning rats to clarify when gender-related differences in susceptibility to the toxicity of HDBB develop. As in the case of HDBB, the male-predominant induction of toxicity in rats has been reported for many other substances, such as adenine (Ogirima et al., 2006), acetaminophen (Raheja et al., 1983), dapsone (Coleman et al., 1990), fluoranthene (Knuckles et al., 2004), 3-nitropropionic acid (Nishino et al., 1998), and mercuric chloride (Muraoka and Itoh, 1980). Various causes of such gender-related differences are indicated mainly for toxicokinetic determinants. It is well known that hepatic metabolism differs between the sexes, with male rats generally having higher activity than females (Gad, 2006). Furthermore, gender differences in membrane transport in various organs, including the kidneys, liver, intestine, and brain, have emerged relatively recently (Morris et al., 2003). In the case of HDBB, male rats consistently showed greater susceptibility to various effects of HDBB (e.g., on the liver, blood, etc.) in the previous 28-day and 52-week studies (Hirata-Koizumi et al., 2007; 2008); therefore, such differences in metabolism or transport between the sexes might increase the blood concentration of causative substances (i.e., HDBB or its metabolites) in males. For gender-related variations in toxicokinetic determinants, many mechanistic studies on the metabolic enzyme cytochrome P450 have been reported (Waxman and Chang, 2005). In rats, a subset of P450s is expressed in a sexdependent fashion and is subject to endocrine control. Whereas testosterone has a major positive regulatory influence on male-specific P450 forms, estrogen plays a somewhat lesser role in the expression of the female-specific predominant liver P450 enzymes. If the male-specific/predominant metabolic enzymes have an intimate involvement in the toxic activation of HDBB, our results, showing the higher susceptibility of male rats to HDBB toxicity than females and decreased susceptibility by castration of male rats, could be explained. Interestingly, it was reported that estradiol suppressed the expression of male-specific/predominant P450 enzymes (Waxman and
Chang, 2005). This is consistent with our results that female susceptibility to the hepatotoxicity of HDBB was increased by castration, given that the male-specific/ predominant P450 enzymes activate HDBB. Since the expression of femalespecific/predominant P450 enzymes is reduced by testosterone treatment as well as by castration of females (Waxman and Chang, 2005), there is also the possibility that these enzymes might be involved in the detoxication of HDBB. In order to clarify the cause of the sexual differences in susceptibility of rats to the toxicity of HDBB, we are planning a toxicokinetic study of HDBB, which would include the identification of metabolites and the related metabolic enzyme as well as measurement of the blood concentration of HDBB both after a single and repeated administration of HDBB to rats. #### CONCLUSIONS The current results showed that an oral administration of HDBB to castrated rats for 28 days caused hepatotoxicity at 0.5 mg/kg/day and above in males and at 2.5 mg/kg/day and above in females. Castration markedly reduced gender-related differences in the toxicity of HDBB in male and female rats. #### **ACKNOWLEDGMENT** This study was supported by the Ministry of Health, Labour and Welfare, Tokyo, Japan. ### **REFERENCES** - Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. *Proc. R. Soc. Lond. Ser. A* 160:268–282. - Coleman, M. D., Tingle, M. D., Winn, M. J., Park, B. K. (1990). Gonadal influence on the metabolism and haematological toxicity of dapsone in the rat. *J. Pharm. Pharmacol.* 42:698-703. - Döhler, K. D., Wuttke, W. (1975). Changes with age in levels of serum gonadotropins, prolactin, and gonadal steroids in prepubertal male and female rats. *Endocrinology* 97:898-907. - Dunnett, C. W. (1964). New tables for multiple comparisons with a control. *Biometrics* 20:482-491. - Gad, S. C. (2006). Metabolism. In Gad, S. C., (ed.), Animal Models in Toxicology, 2nd ed. Florida, USA: CRC Press, pp. 217–247. - Gustafsson, J. A., Eneroth, P., Hokfelt, T., Mode, A., Norstedt, G., Skett, P. (1981). Role of the hypothalamo-pituitary-liver axis in sex differences in susceptibility of the liver to toxic agents. *Environ. Health Perspect.* 38:129–141. - Harris, R. Z., Benet, L. Z., Schwartz, J. B. (1995). Gender effects in pharmacokinetics and pharmacodynamics. *Drugs* 50:222-239. - Hirata-Koizumi, M., Ogata, H., Imai, T., Hirose, A., Kamata, E., Ema, M. (2008). A 52-week repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats. *Drug Chem. Toxicol.* 31:In press. - Hirata-Koizumi, M., Watari, N., Mukai, D., Imai, T., Hirose, A., Kamata, E., Ema, M. (2007). A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl) benzotriazole in rats. *Drug Chem. Toxicol.* 30:327-341. - Hollander, M., Wolfe, D. A. (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. - Ketelslegers, J. M., Hetzel, W. D., Sherins, R. J., Catt, K. J. (1978). Developmental changes in testicular gonadotropin receptors: plasma gonadotropins and plasma testosterone in the rat. *Endocrinology* 103:212-222. - Knuckles, M. E., Inyang, F., Ramesh, A. (2004). Acute and subchronic oral toxicity of fluoranthene in F-344 rats. *Ecotoxicol. Environ. Saf.* 59:102–108. - METI (Ministry of Economy, Trade and Industry of Japan). (2006). 2-(2H-1,2,3-Benzotriazole-2-yl)-4,6-di-tert-butylphenol, document distributed in Committee on Safety of Chemical Substances, Chemical Substances Council, 30 June 2006. Accessed on May 18, 2007 from http://www.meti.go.jp/committee/materials/g60705aj.html. - Morris, M. E., Lee, H. J., Predko, L. M. (2003). Gender differences in the membrane transport of endogenous and exogenous compounds. *Pharmacol. Rev.* 55:229–240. - Muraoka, Y., Itoh, F. (1980). Sex difference of mercuric chloride-induced renal tubular necrosis in rats—from the aspect of sex differences in renal mercury concentration and sulfhydryl levels. J. Toxicol. Sci. 5:203–214. #### 126 Hirata-Koizumi et al. - Nishino, H., Nakajima, K., Kumazaki, M., Fukuda, A., Muramatsu, K., Deshpande, S. B., Inubushi, T., Morikawa, S., Borlongan, C. V., Sanberg, P. R. (1998). Estrogen protects against while testosterone exacerbates vulnerability of the lateral striatal artery to chemical hypoxia by 3-nitropropionic acid. *Neurosci. Res.* 30:303–312. - Ogirima, T., Tano, K., Kanehara, M., Gao, M., Wang, X., Guo, Y., Zhang, Y., Guo, L., Ishida, T. (2006). Sex difference of adenine effects in rats: renal function, bone mineral density, and sex steroidogenesis. *Endocr. J.* 53:407-413. - Raheja, K. L., Linscheer, W. G., Cho, C. (1983). Hepatotoxicity and metabolism of acetaminophen in male and female rats. J. Toxicol. Environ. Health 12:143–158. - Wang, R. H., Schorer-Apelbaum, D., Weinstock, M. (2001). Testosterone mediates sex difference in hypothermia and cholinesterase inhibition by rivastigmine. *Eur. J. Pharmacol.* 433:73-79. - Waxman, D. J., Chang, T. K. (2005). Hormonal regulation of liver cytochrome P450 enzymes. In Ortiz de Montellano, P. R. (ed.), Cytochrome P450 Structure, Mechanism, and Biochemistry, 3rd ed. New York: Kluwer Academic/ Plenum Publishers, pp. 347–376 Available online at www.sciencedirect.com Reproductive Toxicology 25 (2008) 231-238 # Reproductive and developmental toxicity screening test of tetrahydrofurfuryl alcohol in rats Mutsuko Hirata-Koizumi^a, Atsushi Noda^b, Akihiko Hirose^a, Eiichi Kamata^a, Makoto Ema^{a,*} a Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan b Department of Toxicology, Research Institute for Animal Science in Biochemistry & Toxicology, Sagamihara, Japan Received 24 August 2007; received in revised form 7 November 2007; accepted 15 November 2007 Available online 22 November 2007 #### **Abstract** Twelve male and female rats per group were given tetrahydrofurfuryl alcohol (THFA) by gavage at 0, 15, 50, 150 or 500 mg/kg/day. Males were dosed for 47 days, beginning 14 days before mating, and females were dosed for 42–52 days beginning 14 days before mating to day 4 of lactation throughout the mating and gestation period. Changes in locomotor activity, inhibition of body weight gain, and/or histopathological changes in the thymus, spleen, testes and/or epididymides were observed in males and females at 150 mg/kg and above. No effects of THFA were found on the copulation index, fertility index, or the number of corpora lutea and implantations in pregnant females. At 500 mg/kg, no pregnant females delivered any pups. At 150 mg/kg, gestation length was prolonged, and the total number of pups born and the number of live pups on postnatal days 0 and 4 was markedly decreased. No effects of THFA were found on the sex ratio and body weight of live pups, or the incidence of pups with malformations or variations. Based on these findings, the NOAELs for parental and reproductive/developmental toxicity of THFA were concluded to be 50 mg/kg/day in rats. © 2007 Elsevier Inc. All rights reserved. Keywords: Tetrahydrofurfuryl alcohol; Reproductive and developmental toxicity; Postimplantation loss; Postnatal loss; Testicular toxicity: Rat #### 1. Introduction Tetrahydrofurfuryl alcohol (THFA; CAS No. 97-99-4) is a colorless and flammable liquid with a slight ether odor [1]. In Japan, the annual production and import volume of THFA was reported to be from 100 to 1000 tonnes in 2004 [2], but there is no data available on that in other countries. The major uses of this chemical are as a solvent for various products (fats, waxes, resins, dyes and others) and as an intermediate in industrial applications [1]. While the extensive use of THFA by industry creates significant potential for occupational exposure, there is also the possibility of exposure of the general population to THFA because some of the applications include consumer uses, such as floor polish removers, graffiti removers and oven cleaners [3]. In particular, THFA application as a solvent for nail-cleaning Only limited information is available about the toxicity of THFA. It was reported that oral LD₅₀ was 1.6–3.2 g/kg in rats and 0.8–1.6 g/kg in guinea pigs, and inhalation exposure for 6 h caused 2/3 deaths of rats at 12,650 ppm [8]. THFA showed eye irritation in rabbits [9] but did not irritate mouse skin [10]. agents [1] and absorption enhancer in various lotions and transdermal medications [4] would cause relatively high levels of exposure due to direct use on the skin. Such occupational and consumer exposure could occur through inhalation and dermal routes. On the other hand, THFA is directly added to food as a flavoring agent in Japan [5], and its use as a food additive for flavoring is also permitted in the US [6] and EU [7]. Furthermore, this chemical is known as the "solvent of choice" for a variety of agricultural applications, including pest control, weed control and growth regulation [3]. These uses suggest possible exposure of the general population to THFA via food. For each application, there are no data available on the actual use volume and exposure levels at this time. The possibility of human exposure to THFA has aroused concern regarding its toxicological potential. ^{*} Corresponding author. Tel.: +81 3 3700 9878; fax: +81 3 3700 1408. E-mail address: ema@nihs.go.jp (M. Ema). Unpublished repeated dose toxicity data are briefly summarized in OECD SIDS (Screening Information Data Set) documents [1]. In a 90-day feeding study using rats, body weight gain was depressed at 1000 ppm and above, the relative weight of epididymides decreased at 5000 ppm and above, and relative testis weight decreased with moderate testicular degeneration accompanied with complete loss of spermatogenic activity observed at 10,000 ppm. Adverse effects on body weight gain and male reproductive organs were also found in a 90-day
inhalation and dermal study of THFA using rats. As for reproductive and developmental toxicity, only a dose range-finding developmental toxicity study is available [11]. In rats given THFA by gavage on days 6-15 of pregnancy, total embryonic loss occurred in all females at 500 mg/kg and above, at which inhibition of maternal body weight gain was also observed. Fetuses with a filamentous tail (5/124 fetuses) and lowering of fetal weight were found at 100 mg/kg without maternal toxicity. Since there is insufficient information on toxicity, this chemical was selected as an object substance in an existing chemical testing program by the Japanese government [12]. In this program, a reproduction/developmental toxicity screening test was performed according to OECD test guideline 421 [13], because the evaluation of reproductive and developmental toxicity is essential in the risk assessment of chemicals. The results are summarized in OECD SIDS documents [1] and an assessment report prepared by US EPA, "Hazard assessment for the tolerance reassessment of tetrahydrofurfuryl alcohol (THFA)" [14]; however, detailed data have not been published in scientific journals. In this paper, therefore, we reported the data of a reproduction/developmental toxicity screening test of THFA. #### 2. Materials and methods This study was performed in compliance with OECD guideline 421 "Reproduction/Developmental Toxicity Screening Test" [13], and in accordance with the principles for Good Laboratory Practice [15,16] at the Research Institute for Animal Science in Biochemistry & Toxicology (Sagamihara, Japan). The experiment was approved by the Animal Care and Use Committee of the Research Institute for Animal Science in Biochemistry & Toxicology, and was performed in accordance with the ethics criteria contained in the bylaws of the Committee. #### 2.1. Animals and housing conditions Crj:CD(SD)IGS rats (SPF, 8 weeks old) were purchased from Atsugi Breeding Center, Charles River Japan, Inc. (Yokohama, Japan). This strain was chosen because it is most commonly used in toxicity studies, including reproductive and developmental toxicity studies, and historical control data are available. The animals were acclimatized to the laboratory for 13 days and subjected to treatment at 10 weeks of age. They were carefully observed during the acclimation period, and male and female rats found to be in good health were selected for use. In addition, vaginal smears of each female were recorded, and only females showing a 4- to 5-day estrous cycle were used in the experiment. On the day before initial treatment, the rats were distributed into 5 groups of 12 males and 12 females each by stratified random sampling based on body weight. Throughout the study, animals were maintained in an air-conditioned room at 21.9–22.4 °C, with a relative humidity of 49–57%, a 12-h light/dark cycle, and ventilation with more than 10 air changes/h. A basal diet (Labo MR Stock; Nosan Corporation, Yokohama, Japan) and sterile water were provided ad libitum. They were housed individually, except for mating and nursing periods. From day 0 of pregnancy to the day of sacrifice, individual dams and/or litters were reared using wood chips as bedding (White Flake; Charles River Japan, Inc., Yokohama, Japan). #### 2.2. Chemicals and doses THFA was obtained from Koatsu Chemical Industries, Ltd. (Osaka, Japan) and kept in a cool (4°C) and dark place. The THFA (Lot no. 2002–4) used in this study was 99.5% pure, and stability during the study was verified by gas chromatography. The test article was dissolved in purified water (Kyouei Pharmaceutical Co. Ltd., Takaoka, Japan), and administered to the animals by gastric intubation. Control rats received the vehicle alone. Dosing solutions were prepared at least once a week and kept in a cool (4 °C) and dark place until dosing, as stability under these conditions has been confirmed for up to 7 days. The concentrations of THFA in the formulations were confirmed to be 97.7–103.0% of the target by gas chromatography analysis. Prior to the present reproductive and developmental toxicity screening study, a 14-day dose-finding study was performed. In the dose-finding study, male and female rats were given THFA by gavage at 50, 100, 200, 500 or 1000 mg/kg/day for 14 days. Changes in locomotor activity were observed at 100 mg/kg and above, decreases in absolute and relative weight of the pituitary and thymus were detected at 200 mg/kg and above, and piloerection, decrease in food consumption and dilatation of the cecum were found at 500 mg/kg and above (data not shown). Taking into account the results of this dose-finding study, the dose levels of THFA in the present study were set as 15, 50, 150 or 500 mg/kg/day. The daily application volume (5 ml/kg body weight) was calculated according to the latest body weight. #### 2.3. Study design Male rats were dosed once daily for 47 days, beginning 14 days before mating and throughout the mating period. Female rats were also dosed once daily from 14 days prior to mating, and throughout the mating and gestation periods, to day 4 of lactation. The total administration period was 42-52 days. The day of the first dosing was designated as day 0 of the administration/premating period. During the first 14-day administration period (premating period), vaginal lavage samples of each female were evaluated daily for estrous cyclicity. After this premating period, female rats were transferred to the home cage of a male of the same group, and cohabited on a 1:1 basis until successful copulation occurred or the mating period of 2 weeks had elapsed. During the mating period, vaginal smears were examined daily for the presence of sperm, and the presence of sperm in the vaginal smear and/or a vaginal plug were considered as evidence of successful mating. The day of successful mating was designated as day 0 of pregnancy. Pregnant females were allowed to deliver spontaneously and nurse their pups, and the day on which parturition was completed by 9:30 was designated as day 0 of lactation or postnatal day (PND) 0. Throughout the study, all parental animals were observed for clinical signs of toxicity at least twice a day. The body weight was recorded on days 0, 7, 14, 21, 28, 35, 42 and 46 of the dosing period in males, and on days 0, 7 and 14 of the premating period, on days 0, 7, 14 and 20 of the gestation period and on days 0 and 4 of the lactation period in females. Food consumption was recorded on days 0, 7, 21, 28, 35, 42 and 45 of the dosing period in males, and on days 0 and 7 of the premating period, on days 0, 7, 14 and 20 of the gestation period and on days 0 and 3 of the lactation period in females. All surviving male rats were euthanized by exsanguination under ether anesthesia on the day after the last administration. All female rats showing successful reproductive performance were euthanized in a similar way on day 5 of lactation. Females that did not copulate were euthanized on the day after the 52nd administration. Females that had not completed parturition were euthanized 5 days after the expected day of parturition (day 22 of gestation). When total litter loss was observed, the dams were euthanized within 4 days. For all parental animals, the external surfaces were examined. The abdomen and thoracic cavity were opened, and gross internal examination was performed. For females, the numbers of corpora lutea and implantation sites were recorded. In males, the testes and epididymides were removed and weighed. The pituitary, thymus and kidneys were also weighed in both sexes. Histopathological evaluations were performed on the pituitary, thymus, testes, epididymides and ovaries of all animals in the control and highest dose groups. In addition, the spleen of five animals in the control group and of all animals in the highest dose group was examined as test substance-related changes were macroscopically found in this organ. As a result of histopathological examination, test substance-related changes were found in the thymus, spleen, testes and epididymides of the highest dose group; therefore, the organs of five animals in the other groups were also examined histopathologically. For females that showed reproductive failure, the pituitary, ovaries, uterus and/or mammary gland were examined histopathologically. For the histopathological examination, the target organs were fixed in 10% neutral-buffered formalin (following Bouin's fixation for the testes and epididymides), processed routinely for embedding in paraffin, and sections were prepared for staining with hematoxylin–eosin. All live and dead pups were counted, and live pups were sexed, examined grossly and weighed on PND 0. They were daily observed for clinical signs of toxicity on PNDs 0-4. On PND 4, the number and body weight of live pups was recorded. The pups were then euthanized by exsanguination under ether anesthesia, and gross internal examinations were performed. #### 2.4. Data analysis Parametric data, such as body weight, food consumption, organ weight, gestation length and the number of corpora lutea, implantations and pups born, were analyzed by Bartlett's test for homogeneity of distribution. When homogeneity was recognized, one-way analysis of variance was performed. If a significant difference was detected, Sheffé's test was conducted for comparisons between control and individual treatment groups. Data without homogeneity or some non-parametric data (implantation index, live birth index, delivery index, variability index, the incidence of pups with malformations or variations) were analyzed using the Kruskal-Wallis's rank sum test. If significant differences were found, the mean rank test of Scheffé's type was conducted for comparison between the control and each dosage group. For toxicological signs, autopsy results and histopathological findings, Fisher's exact test was conducted for comparison of the incidences in each group. The sex
ratio of live pups was also compared by Fisher's exact test. The copulation index, fertility index and gestation index were compared using the χ^2 -test. Pups were statistically analyzed using the litter as the experimental unit. The 5% level of probability was used as the criterion for significance. #### 3. Results #### 3.1. Parental toxicity One male of the 15 mg/kg group was found dead after the 22nd administration. No substance-related clinical signs of toxicity were detected at 15 and 50 mg/kg. Increase and decrease in locomotor activity was observed in 10/12 males and 11/12 females in the 150 mg/kg group and in all animals of the 500 mg/kg group. This change was found mainly in the first half of the administration period in both sexes at 150 mg/kg and in females at 500 mg/kg, and also in the second half of the administration period in males at 500 mg/kg. Vaginal hemorrhage was observed during the late gestation period in 1/11 pregnant female at 150 mg/kg and 2/12 pregnant females at 500 mg/kg, which did not deliver their pups or experienced total litter loss. Table I Body weight of male and female rats given tetrahydrofurfuryl alcohol (THFA) by gavage | | Dose (mg/kg/day) | | | | | | | |--------------------|--------------------|--------------|------------------|-------------------|-------------------|--|--| | | 0 | 15 | 50 | 150 | 500 | | | | Males (no. = 12) | | | | | | | | | Body weight during | administration (g) | | | | | | | | Day 0 | 393 ± 17 | 394 ± 17 | 393 ± 14 | 392 ± 17 | 392 ± 16 | | | | Day 7 | 422 ± 23 | 420 ± 18 | 421 ± 16 | 419 ± 22 | $400 \pm 18^*$ | | | | Day 14 | 448 ± 28 | 441 ± 21 | 445 ± 18 | 444 ± 24 | 424 ± 21 | | | | Day 21 | 470 ± 28 | 459 ± 29 | 469 ± 19 | 466 ± 24 | $443 \pm 19^*$ | | | | Day 28 | 492 ± 31 | 482 ± 22 | 488 ± 21 | 482 ± 21 | $458 \pm 22^*$ | | | | Day 35 | 516 ± 34 | 506 ± 24 | 510 ± 25 | 491 ± 22 | 472 ± 28** | | | | Day 42 | 536 ± 38 | 524 ± 29 | 523 ± 28 | 505 ± 21 | $482 \pm 31**$ | | | | Day 46 | 550 ± 40 | 532 ± 29 | $533 \pm \pm 27$ | 513 ± 21 | 489 ± 32** | | | | Gain | 157 ± 29 | 136 ± 19 | 140 ± 25 | 122 ± 16* | 98 ± 23** | | | | Females (no. = 12) | | | | | | | | | Body weight during | | | | | | | | | Đay 0 | 236 ± 15 | 234 ± 13 | 232 ± 14 | 235 ± 16 | 234 ± 14 | | | | Day 7 | 249 ± 14 | 244 ± 13 | 241 ± 14 | 243 ± 20 | 242 ± 15 | | | | Day 14 | 265 ± 18 | 255 ± 15 | 252 ± 18 | 260 ± 21 | 256 ± 16 | | | | Gain | 29 ± 10 | 21 ± 7 | 20 ± 10 | 25 ± 9 | 22 ± 10 | | | | Body weight during | gestation (g) | | | | | | | | Day 0 | 275 ± 23 | 266 ± 19 | 261 ± 18 | 259 ± 20 | 262 ± 20 | | | | Day 7 | 317 ± 24 | 304 ± 25 | 300 ± 23 | 301 ± 21 | 297 ± 18 | | | | Day 14 | 357 ± 23 | 339 ± 26 | 335 ± 27 | 332 ± 21 | 322 ± 20* | | | | Day 20 | 438 ± 23 | 422 ± 31 | 411 ± 34 | $373 \pm 27^{**}$ | $320 \pm 20^{**}$ | | | | Gain | 164 ± 9 | 156 ± 15 | 150 ± 18 | $114 \pm 20^*$ | 58 ± 8** | | | | Body weight during | lactation (g) | | | | | | | | Day 0 | 343 ± 19 | 327 ± 28 | 321 ± 26 | 308 ± 17 | | | | | Day 4 | 361 ± 22 | 351 ± 34 | 341 ± 28 | 306 | | | | | Gain | 18 ± 12 | 24 ± 13 | 20 ± 9 | 3 | | | | Values are given as the mean \pm S.D. Significantly different from the control group (P < 0.05). ^{**} Significantly different from the control group (P < 0.01).