Table 5 Developmental findings in rats given tetrahydrofurfuryl alcohol (THFA) by gavage | | Dose (mg/kg/da | y) | | | | |--|----------------|----------------|----------------|-----------------|----------------| | | 0 | 15 | 50 | 150 | 500 | | No. of pregnant females | 12 | 10 | 12 | 11 | 12 | | No. of corpora lutea ^a | 17.7 ± 2.1 | 16.5 ± 2.7 | 17.8 ± 1.5 | 16.4 ± 2.0 | 17.0 ± 2.8 | | Implantation index ^{n,b} | 88.8 ± 7.4 | 93.5 ± 7.4 | 90.7 ± 8.0 | 84.5 ± 13.1 | 87.9 ± 23. | | No. of implantation sites ^a | 15.6 ± 1.3 | 15.3 ± 1.9 | 16.1 ± 1.8 | 13.7 ± 2.1 | 14.5 ± 3.7 | | No. of litters | 12 | 10 | 12 | 4 | 0 | | Delivery index ^{a,c} | 95.3 ± 7.1 | 94.7 ± 6.2 | 91.9 ± 5.9 | 46.4 ± 14.0° | | | Total no. of pups born ^a | 14.8 ± 1.6 | 14.5 ± 2.1 | 14.8 ± 1.7 | 7.0 ± 1.4** | | | Live birth index ^{a,d} | 100 ± 0 | 100±0 | 98.8 ± 2.8 | 43.1 ± 29.3° | | | No. of live pups on PND 0 ^a | 14.8 ± 1.6 | 14.5 ± 2.1 | 14.6 ± 1.8 | 3.0 ± 2.2** | | | No. of dead pups on PND 0a | 0 | 0 | 0.2 ± 0.4 | 4.0 ± 2.2** | | | Sex ratio of live pups (male/female) | 86/92 | 72/73 | 82/93 | 6/6 | | | Viability index on PND 4a,c | 98.9 ± 2.6 | 99.3 ± 2.1 | 97.7 ± 3.5 | 26.7 ± 46.2 | | | No. of live pups on PND 4 ^a | 14.7 ± 1.6 | 14.4 ± 2.1 | 14.3 ± 2.0 | 1.3 ± 2.3** | | | Body weight of live pups on PND 0 (g) ^a | | | | | | | Male | 7.3 ± 0.7 | 7.4 ± 0.5 | 7.1 ± 0.6 | 5.9 ± 0.6 | | | Female | 7.0 ± 0.6 | 7.0 ± 0.5 | 6.9 ± 0.6 | 6.3 ± 0.1 | | | Body weight of live pups on PND 4 (g) ^a | | | | | | | Male | 11.8 ± 1.0 | 11.5 ± 0.7 | 11.0 ± 1.1 | 9.1 | | | Female | 11.2 ± 1.0 | 10.9 ± 0.7 | 10.7 ± 0.9 | 8.4 | | | External examination of pups | | | | | | | No. of pups (litters) examined | 178 (12) | 145 (10) | 176 (12) | 28 (4) | | | No. of pups (litters) with malformations | 0 (0) | 0 (0) | 0 (0) | 1(1) | | | General edema | 0 (0) | 0 (0) | 0 (0) | 1 (1) | | | nternal examination of pups | | | | | | | No. of pups (litters) examined | 178 (12) | 144 (10) | 175 (12) | 27 (4) | | | No. of pups (litters) with malformations | 0 (0) | 0 (0) | 0 (0) | 0 (0) | | | No. of pups (litters) with variations | 8 (6) | 3 (2) | 18 (7) | 1(1) | | | Thymic remnants in the neck | 6 (4) | 3 (2) | 14 (5) | 1(1) | | | Left umbilical artery | 2 (2) | 0 (0) | 4 (4) | 0 (0) | | a Values are given as the mean ± S.D. not ordinarily carnivorous, including nonhuman primates, are nevertheless likely to eat dead and moribund offspring, as well as those with malformations that involve skin lesions allowing the loss of body fluids or the exposure of viscera [21]. The malformations and variations found in the current study are those that occur spontaneously among control rats [22–24], and the incidence in the THFA-treated group was very low and not different from that of the control group. However, in the present study, only external and internal examination was performed for pups, and no skeletal examinations were performed. Furthermore, the effects of THFA on the morphological development of offspring could not be evaluated at higher doses because a sufficient number of offspring was not obtained. To accurately evaluate prenatal developmental toxicity, including teratogenicity, it is necessary to interrupt pregnancy a few hours or days before the expected term, either by hysterectomy or the necropsy of maternal animals [21,25]. Such a prenatal developmental toxicity study of THFA is only available as a dose range-finding study using a small number of animals [11]. In this study, an insufficient number of fetuses were morphologically examined due to high embryonic loss at 500 mg/kg and above. This prenatal study adopted a wide dose range, and the next lowest dose was 100 mg/kg. Prenatal developmental effects of THFA at the higher dose should be examined with a sufficient number of dams and fetuses. The present study was performed in compliance with the OECD guideline 421 "Reproduction/Developmental Toxicity Screening Test" [13]. This screening test guideline does not provide complete information on all aspects of reproduction and development due to the relatively small numbers of animals in the dose groups and selectivity of endpoints, and, therefore, had reduced power in detecting any small effects. Although the results of the current study clearly showed the adverse effects of THFA on the reproduction and development of rats, information on the effects of THFA on reproduction and development is not sufficient at this time. The present results showed that a full reproductive and developmental toxicity study of THFA is required. b Implantation index (%) = no. of implantation sites/no. of corpora lutea x 100. ^c Delivery index (%) = total no. of pups born/no. of implantation sites × 100. ^d Live birth index (%) = no. of liver pups on PND 0/total no. of pups born \times 100. ^c Viability index on PND 4 (%) = no. of liver pups on PND 4/no. of live pups on PND 0 × 100. ^{*} Significantly different from the control group (P < 0.05). ^{**} Significantly different from the control group (P < 0.01). In conclusion, the results of this reproductive and developmental toxicity study provide a more comprehensive toxicity profile of THFA than has been previously reported, and the NOAELs for parental and reproductive/developmental toxicity were concluded to be 50 mg/kg/day. #### Acknowledgement This study was supported by the Ministry of Health, Labour and Welfare, Japan. #### References - OECD (Organisation for Economic Co-operation and Development). 2-Furanmethanol, tetrahydro-. SIDS documents for SIAM 20, April 19–21, 2005. Available at: http://cs3-hq.oecd.org/scripts/hpv/, accessed on August 8, 2007. - [2] METI (Ministry of Economy, Trade and Industry, Japan). Research results on the actual production and import volume of chemicals in 2004 (in Japanese). Available at: http://www.meti.go.jp/policy/chemical_ management/kasinhou/jittaichousa/kakuhouchi18.pdf, accessed on August 8, 2007. - [3] Penn Specialty Chemicals, Inc. Technical Bulletin of Tetrahydrofurfuryl alcohol. 2005. Available at: http://www.pschem.com/pdfs/thfabulletin4 .pdf, accessed on August 8, 2007. - [4] Allen LVJr. Compounding topical dosage forms: ointments, creams, pastes and lotions. Secundum Artem—current & practical compounding information for the pharmacist, Vol. 3, No. 2. Minnesota: Paddock Laboratories, Inc. Available at: http://www.paddocklabs.com/forms/secundum/volume_3_2.pdf, accessed on July 30, 2007. - [5] MHLW (Ministry of Health, Labour and Welfare, Japan). Flavoring agents as food additives. 2003. Available at: http://www.jetro.go. jp/jpn/regulations/guidebook/pdf/free/flavor2003aug-c.pdf#search= 'Tetrahydrofurfuryl%20alcohol%209799-4', accessed on July 30, 2007. - [6] FDA (Food and Drug Administration, USA). Synthetic flavoring substances and adjuvants. Code of Federal Regulations. Title 21, Vol.3, 21 CFR 172.515, lastly amended at 69 FR 24511, May 4, 2004. - [7] EC (European Commission). Commission decision of 23 February 1999 adopting a register of flavouring substances used in or on foodstuffs drawn up in application of Regulation (EC) No. 2232/96 of the European Parliament and of the Council of 28 October 1996 (1999/217/EC). Official Journal of the European Communities. L 84:March 27;1999. - [8] Deichmann WB, Heyroth FW, Rowe VK, et al. Tetrahydrofurfuryl alcohol, C₄H₇OCH₂OH. In: Fassett DW, Irish DD, editors. Industrial hygiene and toxicology, Vol. 2. Sydney: Interscience Publishers; 1963. p. 1491–2. - [9] Coquet PH, Durand G, Laillier J, Plazonnet B. Evaluation of ocular irritation in the rabbit: objective versus subjective assessment. Toxicol Appl Pharmacol 1977;39:129–39. - [10] Lashmar UT, Hadgraft J, Thomas N. Topical application of penetration enhancers to the skin of nude mice: a histopathological study. J Pharm Pharmacol 1989;41:118–22. - [11] TSCA. A dose range-finding developmental toxicity study in rats with THFA. 8EHQ-1092-8576S; October 1992. - [12] MHLW (Ministry of Health, Labour, Welfare, Japan). Tetrahydrofurfuryl alcohol. Toxicity testing reports of environmental chemicals, Vol. 11. Tokyo: Chemicals Investigation Promoting Council; 2004. p. 155– 194. - [13] OECD (Organisation for Economic Co-operation and Development). Guideline 421, Reproduction/Developmental Toxicity Screening Test (adopted on July 27, 1995), OECD Guidelines for the Testing of Chemicals, section 5. - [14] EPA (Environmental Protection Agency, USA). Hazard assessment for the tolerance reassessment of tetrahydrofurfuryl alcohol (THFA). Office of Prevention, Pesticides and Toxic Substances; February, 21; 2006. - [15] OECD (Organization for Economic Co-operation and Development). Principles on Good Laboratory Practice (revised in 1997). OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring. No. - [16] EA, MHW, MITI (Environment Agency, Ministry of Health and Welfare, Ministry of International Trade and Industry, Japan). Testing Facility Provided in the Article 4 in the Ordinance Prescribing Test Relating to New Chemical Substances and Toxicity Research of Designated Chemical Substances. Joint notification by Planning and Coordination Bureau, Environment Agency (Kanpogyo No. 39), Pharmaceutical Affairs Bureau, Ministry of Health and Welfare (Yakuhatsu No. 229) and Basic Industries Bureaus, Ministry of International Trade and Industry (Kikyoku No. 85), March 31, 1984, lastly amended on January 23–24, 2001. - [17] Kandori H, Chatani F, Miyajima H. Male reproductive organs. In: The Japanese society of toxicologic pathology editor Toxicologic Histopathology (in Japanese). Tokyo: International Press Editing Centre Incorporation; 2000. p. 283–314. - [18] Parker RM. Testing for reproductive toxicity. In: Hood RD, editor. Developmental and reproductive toxicology—a practical approach. Florida:
CRC Press, Taylor & Fransis Group; 2006. p. 425–87. - [19] Robaire B, Smith S, Hales BF. Suppression of spermatogenesis by testosterone in adult male rats: effect on fertility, pregnancy outcome and progeny. Biol Reprod 1984;31:221–30. - [20] Aafjes JH, Vels JM, Schenck E. Fertility of rats with artificial oligozoospermia. J Reprod Fertil 1980;58:345–51. - [21] Wilson JG. Methods for administering agents and detecting malformations in experimental animals. In: Wilson JG, Warkany J, editors. Teratology: principles and techniques. Chicago: The University of Chicago Press; 1965. p. 262–77. - [22] Kameyama Y, Tanimura T, Yasuda M, editors. Spontaneous malformations in laboratory animals-photographic atlas and reference data. Cong Anom 1980;20:25–106. - [23] Morita H, Ariyuki F, Inomata N, Nishimura K, Hasegawa Y, Miyamoto M, et al. Spontaneous malformations in laboratory animals: frequency of external, internal and skeletal malformations in rats, rabbits and mice. Cong Anom 1987;27:147–206. - [24] Nakatsuka T, Horimoto M, Ito M, Matsubara Y, Akaike M, Ariyuki F. Japan Pharmaceutical Manufacturers Association (JPMA) survey on background control data of developmental and reproductive toxicity studies in rats, rabbits and mice. Cong Anom 1997;37:47–138. - [25] Wilson JG. Collection and interpretation of results. In: Wilson JG, editor. Environment and birth defects, vol. 1. New York: Academic Press; 1973. p. 173–93. This article was downloaded by:[Ema, Makoto] On: 28 December 2007 Access Details: [subscription number 789019941] Publisher: Informa Healthcare Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Drug and Chemical Toxicology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597244 A 52-Week Repeated Dose Toxicity Study of Ultraviolet 2-(2'-Hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in Mutsuko Hirata-Koizumi ^a; Hidehiro Ogata ^b; Toshio Imai ^a; Akihiko Hirose ^a; Eiichi Kamata ^a; Makoto Ema ^a Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan ^b Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., Kumamoto, Online Publication Date: 01 January 2008 To cite this Article: Hirata-Koizumi, Mutsuko, Ogata, Hidehiro, Imai, Toshio, Hirose, Akihiko, Kamata, Elichi and Ema, Makoto (2008) 'A 52-Week Repeated Dose Toxicity Study of Ultraviolet Absorber 2-(2'-Hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in Rats', Drug and Chemical Toxicology, 31:1, 81 - 96 To link to this article: DOI: 10.1080/01480540701688758 URL: http://dx.doi.org/10.1080/01480540701688758 ### PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Drug and Chemical Toxicology, 31:81–96, 2008 Copyright © Informa Healthcare USA, Inc. ISSN: 0148-0545 print / 1525-6014 online DOI: 10.1080/01480540701688758 informa healthcare # A 52-Week Repeated Dose Toxicity Study of Ultraviolet Absorber 2-(2'-Hydroxy-3',5'-di-*tert*butylphenyl)benzotriazole in Rats Mutsuko Hirata-Koizumi,¹ Hidehiro Ogata,² Toshio Imai,¹ Akihiko Hirose,¹ Eiichi Kamata,¹ and Makoto Ema¹ ¹Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan ²Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd., Kumamoto, Japan A 52-week repeated dose toxicity study of an ultraviolet absorber, 2-(2'-hydroxy-3',5' di-tert-butylphenyl)benzotriazole (HDBB), was conducted according to OECD TG 452 under GLP. CD(SD)IGS rats were given HDBB by gavage at 0, 0.1, 0.5, or 2.5 mg/kg/ day in males and 0, 0.5, 2.5, or 12.5 mg/kg/day in females. No substance-related deaths or clinical signs of toxicity were observed in any group; however, a lowered body weight was found from day 36 to the end of the 52-week administration period at 2.5 mg/kg in males. At the completion of the dosing period, a decrease in red blood cells at 0.5 mg/kg and higher, and in hematocrit at 2.5 mg/kg, was detected in males. Blood biochemical changes, including increases in the levels of alkaline phosphatase and glucose and the A/G ratio, were also found at 0.5 mg/kg and higher in males and at 12.5 mg/kg in females. At necropsy, absolute and relative liver weight was increased at 0.5 mg/kg and higher in males and at 12.5 mg/kg in females. Histopathological changes were observed in the liver; centrilobular hypertrophy of hepatocytes at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females, and altered hepatocellular foci at 0.5 mg/kg and higher, and cystic degeneration and lipofuscin deposition in hepatocytes at 2.5 mg/ kg in males. Based on these findings, the no observed adverse effect level was concluded to be 0.1 mg/kg/day in male rats and 2.5 mg/kg/day in female rats. Keywords Benzotriazole UV absorber, Chronic toxicity, Rat, Gender-related difference. Address correspondence to Makoto Ema, Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; E-mail: ema@nihs.go.jp # INTRODUCTION Ultraviolet (UV) absorbers are added to plastics to prevent polymer degradation due to UV rays, such as loss of strength, reduced flexibility and electric properties, discoloration, scratching, and loss of gloss (Commerce Online, 2007; Tenkazai.com, 2007). Currently, many kinds of UV absorbers are used: benzotriazoles, benzophenones, salicylates, cyanoacrylates, nickels, triazines, etc. Among them, benzotriazole UV absorbers are known to have the most excellent absorption capacity with a full spectrum of UV absorption and are, therefore, used in a variety of polymers. 2-(2'-Hydroxy-3',5'-di-tert-butylphenyl)benzotriazole (CAS No. 3846-71-7; HDBB) is a benzotriazole UV absorber added at ~0.02%–2% mainly to unsaturated polyester resin, polycarbonate, vinyl chloride resin, polyacrylic acid ester, polyacetal, polyolefin, polymethacrylic acid ester, and polyamide (METI, 2006). From these resins, plastic resin products, such as building materials and automobile components, are manufactured. In addition, HDBB is also used in printing or sensitive materials and coating compounds, all intended for UV absorption. In spite of such widespread use, no reliable data were available on the toxicity of HDBB; therefore, this chemical was selected as an object substance in an existing chemical testing program by the Japanese Government (MHLW, 2003; 2006). Previously, we reported the result of a 28-day repeated dose toxicity study of HDBB conducted under this program (Hirata-Koizumi et al., 2007). In this study, CD(SD)IGS rats were administered HDBB by gavage at a dose of 0.5, 2.5, 12.5, or 62.5 mg/kg/day. As a result, adverse effects, mainly on the liver and heart, were found at all doses in males and at 12.5 mg/kg and higher in females. Anemic changes and histopathological changes in the kidneys and thyroids were also observed at the higher dose. These changes remained after the 14-day recovery period. The no observed adverse effect level (NOAEL) for females was concluded to be 2.5 mg/kg/day based on the induction of hypertrophy and increased mitosis of hepatocytes, and the degeneration and hypertrophy of the myocardium at 12.5 mg/kg. On the other hand, the NOAEL for males could not be determined because hypertrophy and decreased incidence of fatty change of hepatocytes and bile duct proliferation were noted at the lowest dose of 0.5 mg/kg. Considering the toxic effects observed at a relatively low dose and the incomplete recovery, more severe damage induced by longer exposure was a concern; therefore, a chronic toxicity study was performed under the Japanese existing chemical testing program. We here report the details of the results of a 52-week repeated dose toxicity study in rats. # MATERIALS AND METHODS This study was performed in compliance with the OECD Guideline 452 "Chronic Toxicity Studies" (OECD, 1981) and in accordance with the principles for Good Laboratory Practice (OECD, 1998; EA, MHW and MITI, 2000) at the Safety Assessment Laboratory, Panapharm Laboratories Co., Ltd. (Kumamoto, Japan). # Chemicals HDBB was obtained from Shipro Kasei Kaisha, Ltd. (Osaka, Japan). The HDBB (Lot no. S4-034-1) used in this study was 100% pure, based on analysis using liquid chromatography, and it was kept at room temperature. The purity and stability during the study were verified by analysis before and after animal experiments. HDBB was dissolved in corn oil once or twice a week and kept in a dark, cool place until dosing since stability under these conditions was confirmed for up to eight days. The concentrations of formulations were confirmed to be 98.0%–102.0% of the target by analysis using high-performance liquid chromatography (HPLC). All other reagents used in this study were of specific purity grade. # **Animals** Crj: CD (SD) IGS rats (SPF, five weeks old) were purchased from Atsugi Breeding Center, Charles River Laboratories Japan, Inc. (Yokohama, Japan). After a seven- or eight-day acclimation, they were subjected to treatment at six weeks of age. Rats found to be in good health were selected and
assigned to four groups of 20 males and 20 females by stratified random sampling based on body weight. All animals were maintained in an air-conditioned room at 21–27°C, with a relative humidity of 47%–60%, a 12-h light/dark cycle, and ventilation with 13–15 air changes/h. They were housed individually, except during the acclimation period, in stainless steel hanger cages. A basal diet (CRF-1; Oriental Yeast Co., Ltd., Tokyo, Japan) and sodium-hypochlorite-added well water were provided *ad libitum*. This experiment was approved by the Ethical Committee for Animal Experiments of Panapharm Laboratories, Co., Ltd. and performed in accordance with the Guidance for Animal Experiments of Panapharm Laboratories, Co., Ltd. # **Experimental Design** Male and female rats were given HDBB once-daily by gavage for 52 weeks at 0 (vehicle control), 0.1, 0.5, or 2.5 mg/kg/day and at 0, 0.5, 2.5, or 12.5 mg/kg/day, respectively. The dosage levels were determined based on the results of our previous 28-day repeated dose toxicity study in rats given HDBB by gavage at 0.5, 2.5, 12.5, or 62.5 mg/kg/day, in which adverse effects, mainly on the liver and hearts, were found at all doses in males, and at 12.5 mg/kg and more in females (Hirata-Koizumi et al., 2007). The volume of each dose was adjusted to 5 mL/kg of body weight, based on the latest body weight. At the end of the 13-week administration period, 10 males and 10 females from each group were euthanized for the assessment of hematology, blood biochemistry, organ weights, and macroscopic and microscopic findings. The remaining animals in all groups (10 rats/sex/dose) were fully examined at the completion of the 52-week administration period. All animals were observed daily before and after dosing for clinical signs of toxicity. Body weight and food consumption were recorded weekly for the first 13 weeks of the administration period, and once every four weeks for the remainder of the dosing period. At weeks 13 and 52 of the dosing period, fresh urine was collected. It was examined microscopically for urinary sediment and analyzed for dipstick parameters, such as occult blood, pH, protein, glucose, ketone bodies, bilirubin, and urobilinogen. In addition, a 24-h urine sample was also collected for the determination of sodium, potassium, and chlorine levels, color, specific gravity, osmotic pressure, and volume of urine. Prior to necropsy at the end of the 13- and 52-week dosing periods, blood was collected from the caudal vena cava in the abdomen under deep anesthesia by the intraperitoneal (i.p.) injection of pentobarbital sodium after overnight starvation. One portion of the blood was treated with ethylenediaminetetraacetic acid (EDTA)-2K and examined for hematological parameters, such as red blood cell count, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), white blood cell count, platelet count, reticulocyte count, and differential leukocyte count. Prothrombin time (PT) and activated partial thromboplastin time (APTT) were measured using plasma separated from another blood sample treated with 3.8% sodium citrate. Serum from the remaining portions of blood was analyzed for blood biochemistry (total protein, protein fraction ratio, albumin-globulin (A/G) ratio, glucose, total cholesterol, triglycerides, phospholipid, total bilirubin, urea nitrogen (BUN), creatinine, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase (ALP)., calcium, inorganic phosphorus, sodium, potassium, and chlorine). Following the collection of blood, all animals were sacrificed by exsanguination, and organs and tissues of the entire body were macroscopically observed. The brain, pituitary, thymus, thyroids (including parathyroids), heart, lungs (including bronchus), liver, spleen, kidneys, adrenals, testes, epididymides, ovaries, and uterus were then excised and weighed. The trachea, pancreas, lymph nodes (mandibular and mesenteric), tongue, sublingual gland, submandibular gland, parotid gland, esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, urinary bladder, eyeballs, optic nerve, Harderian gland, spinal cord (pectoral and lumbar part), sciatic nerve, seminal vesicles, prostates, vagina, mammary gland, aorta (thoracic), bone (sternum and femur including bone marrow), skeletal muscle (biceps femoris muscle), and skin (hypogastric) as well as the above organs were fixed in 10% neutral-buffered formalin solution (following Bouin's fixation for testes and epididymides, and 2.5% glutaraldehyde fixation for eyeballs, optic nerve, and Harderian gland). Histopathological examination of these organs was conducted for all animals found dead or moribund, and for scheduled-sacrifice animals in the control and highest dose groups. In addition, the livers of males in the lowest dose group and of both sexes in the middle-dose group were examined, since test substance—related changes were found in the higher group. Paraffin sections for microscopic examination were routinely prepared and stained with hematoxylin and eosin. # **Data Analysis** Parametric data, such as body weight, food consumption, urinalysis findings (sodium, potassium, chlorine, specific gravity, osmotic pressure, and volume), hematological and blood biochemical findings, and organ weights were analyzed by Bartlett's test (Bartlett, 1937) for homogeneity of distribution. When homogeneity was recognized, Dunnett's test (Dunnett, 1964) was conducted for comparison between control and individual treatment groups. If not homogenous, data were analyzed using Steel's multiple comparison test (Steel, 1959). For dipstick parameters, color, and sediment of urine, the grades were converted into numeric values, for which Steel's multiple comparison test (Steel, 1959) was conducted. Macroscopic and histopathological findings were analyzed using Fisher's exact test (Fisher, 1973) and Mann-Whitney's U test (Mann and Whitney, 1947), respectively. These analyses were all conducted by a two-tailed test with a significance level of 1% and 5%. # **RESULTS** One male at 2.5 mg/kg was found dead on day 54 of the administration period. Two males at 0.1 mg/kg were also found dead on days 231 or 357 of the administration period. In addition, one female at 12.5 mg/kg was found moribund and was, therefore, euthanized on day 354 of the administration period. In animals surviving to completion of the 13- or 52-week administration period, no substance-related clinical signs of toxicity were observed; however, body weight was significantly lowered from day 36 to the end of the 52-week dosing period at 2.5 mg/kg in males. A significant increase in food consumption was also detected on days 120, 204–288, and 364 of the dosing period in this group of males. Examination at Completion of the 13-Week Administration Period With urine analysis, a significant increase in osmotic pressure and specific gravity was detected at 2.5 mg/kg in males. No changes were noted in other parameters of urinalysis in any HDBB-treated groups (data not shown). In hematological examination, a significant decrease in hemoglobin and hematocrit at 0.5 mg/kg and higher, decrease in red blood cell count, and increase in platelet count at 2.5 mg/kg was found in males (Table 1). In females, a significant decrease in hematocrit and MCV was noted at 12.5 mg/kg (Table 2). Blood biochemical examination revealed a significant increase in serum levels of glucose, BUN, and ALP at 0.5 mg/kg and higher in males (Table 3) and of total protein at 12.5 mg/kg in females (Table 4). A significant change in the serum protein fraction, such as an increase in albumin and decrease in α_2 - and β -globulin at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females, and a decrease in α_1 -globulin at 0.5 mg/kg and higher in males, was also found with a significant increase in the A/G ratio at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females. There were no substance-related changes in other blood biochemical parameters, including total bilirubin level (data not shown). At necropsy, enlargement of the liver was observed in five of nine males at 2.5 mg/kg and in one of ten females at 12.5 mg/kg, and the absolute and relative liver weight was significantly increased at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females (Tables 5 and 6). A significant increase in Table 1: Hematological findings in male rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.1 | 0.5 | 2.5 | |--|--|---|---|--| | At completion of the 13-V
No. of animals
Red blood cells (10 ⁴ /µL)
Hemoglobin (g/dL)
Hematocrit (%)
MCV (fL)
MCH (pg)
MCHC (g/dL)
Reticulocyte (10 ⁴ /µL)
Platelet count (10 ⁴ /µL)
PT (s)
APTT (s) | veek administr
10
855 ± 27
15.6 ± 0.4
43.3 ± 1.6
50.6 ± 1.6
18.3 ± 0.5
36.1 ± 0.7
15.8 ± 2.8
103.4 ± 11.2
15.2 ± 2.7
24.6 ± 1.9 | ation
period
10
870 ± 29
15.5 ± 0.5
43.2 ± 1.2
49.6 ± 1.1
17.8 ± 0.5
35.9 ± 0.4
16.3 ± 1.8
108.7 ± 8.2
14.9 ± 1.1
24.1 ± 1.9 | 10 828 ± 43 $15.0 \pm 0.6^*$ $41.6 \pm 1.8^*$ 50.3 ± 0.9 18.1 ± 0.5 36.0 ± 0.7 16.2 ± 3.2 112.9 ± 16.0 15.1 ± 1.5 23.0 ± 1.5 | 9 $807 \pm 22^{**}$ $14.3 \pm 0.6^{**}$ $40.0 \pm 1.3^{**}$ 49.6 ± 2.6 17.7 ± 1.0 35.7 ± 0.5 14.8 ± 3.6 $130.5 \pm 27.1^{*}$ 14.3 ± 1.4 23.5 ± 3.1 | | At completion of the 52-v
No. of animals
Red blood cells (10 ⁴ /µL)
Hemoglobin (g/dL)
Hematocrit (%)
MCV (fL)
MCH (pg)
MCHC (g/dL)
Reticulocyte (10 ⁴ /µL)
Platelet count (10 ⁴ /µL)
PT (s)
APTT (s) | week administr
10
840 ± 68
14.0 ± 1.1
44.2 ± 2.9
52.7 ± 2.1
16.7 ± 0.8
31.7 ± 0.8
18.2 ± 8.4
106.5 ± 12.6
13.5 ± 1.0
21.5 ± 1.5 | 780 ± 145
13.1 ± 2.7
41.3 ± 7.4
53.1 ± 1.2
16.7 ± 0.7
31.5 ± 1.5
20.1 ± 9.8
110.2 ± 28.5
13.8 ± 1.0
20.9 ± 2.7 | $ \begin{array}{c} 10 \\ 754 \pm 133 * \\ 12.7 \pm 2.1 \\ 40.3 \pm 5.7 \\ 53.9 \pm 4.5 \\ 16.9 \pm 1.0 \\ 31.3 \pm 1.1 \\ 27.1 \pm 20.4 \\ 123.7 \pm 28.5 \\ 14.5 \pm 1.9 \\ 21.2 \pm 2.6 \end{array} $ | 10
778 ± 66*
12.9 ± 1.1
40.7 ± 3.6*
52.3 ± 2.3
16.6 ± 0.7
31.8 ± 0.3
15.7 ± 3.3
140.1 ± 13.6**
21.8 ± 9.0**
29.5 ± 9.3 | Values are expressed as the mean \pm SD. ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Table 2: Hematological findings in female rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.5 | 2.5 | 12.5 | |--|---|--|---|---| | At completion of the 13-v
No. of animals
Red blood cells (10 ⁴ /µL)
Hemoglobin (g/dL)
Hematocrit (%)
MCV (fL)
MCH (pg)
MCHC (g/dL)
Reticulocyte (10 ⁴ /µL)
Platelet count (10 ⁴ /µL)
PT (s)
APTT (s) | veek administra
10
768 ± 38
13.9 ± 0.5
40.1 ± 1.7
52.2 ± 1.1
18.1 ± 0.4
34.6 ± 0.5
16.5 ± 3.4
106.1 ± 12.1
11.7 ± 0.5
19.2 ± 1.5 | ation period
10
793 ± 40
14.1 ± 0.6
40.7 ± 2.2
51.3 ± 0.7
17.7 ± 0.4
34.6 ± 0.6
13.9 ± 1.9
110.4 ± 6.8
11.7 ± 0.3
19.7 ± 0.9 | $ \begin{array}{c} 10 \\ 762 \pm 23 \\ 13.8 \pm 0.4 \\ 39.5 \pm 0.9 \\ 51.9 \pm 1.3 \\ 18.1 \pm 0.5 \\ 35.0 \pm 0.3 \\ 14.8 \pm 3.4 \\ 117.4 \pm 11.6 \\ 11.7 \pm 0.3 \\ 19.0 \pm 1.6 \end{array} $ | 10 753 ± 25 13.4 ± 0.5 $38.1 \pm 1.2*$ $50.6 \pm 1.0**$ 17.7 ± 0.5 $35.1 \pm 0.5*$ 13.7 ± 1.6 106.2 ± 9.9 11.8 ± 0.4 19.2 ± 1.5 | | At completion of the 52-v
No. of animals
Red blood cells (10 ⁴ /µL)
Hemoglobin (g/dL)
Hematocrit (%)
MCV (fL)
MCH (pg)
MCHC (g/dL)
Reticulocyte (10 ⁴ /µL)
Platelet count (10 ⁴ /µL)
PT (s)
APIT (s) | veek administra
10
707 ± 100
13.2 ± 1.4
40.3 ± 3.8
57.5 ± 4.3
18.8 ± 1.0
32.7 ± 0.9
14.9 ± 8.9
90.2 ± 10.0
12.3 ± 0.8
18.4 ± 0.9 | ation period 10 708 ± 62 13.5 ± 0.8 41.0 ± 2.5 58.1 ± 2.3 19.1 ± 0.7 33.0 ± 0.5 16.4 ± 9.6 94.2 ± 14.7 12.9 ± 0.7 18.5 ± 0.9 | $ \begin{array}{c} 10 \\ 730 \pm 55 \\ 13.5 \pm 1.0 \\ 41.3 \pm 3.0 \\ 56.6 \pm 2.4 \\ 18.5 \pm 0.8 \\ 32.7 \pm 0.6 \\ 13.9 \pm 5.8 \\ 101.5 \pm 13.9 \\ 12.5 \pm 0.5 \\ 17.7 \pm 1.4 \end{array} $ | 9
673 ± 115
12.3 ± 1.5
37.3 ± 4.4
56.1 ± 4.8
18.4 ± 1.4
32.9 ± 0.4
17.1 ± 15.1
105.6 ± 11.9
12.1 ± 0.5
17.7 ± 1.2 | Values are expressed as the mean \pm SD. the relative weight of the brain, heart, kidneys, and testes was also found at 2.5 mg/kg in males, but the absolute weight was not significantly changed. On histopathology, centrilobular hypertrophy of hepatocytes, accompanied with eosinophilic granular cytoplasm, was observed in the liver (Tables 7 and 8). The incidence was significantly increased at 2.5 mg/kg in males and at 12.5 mg/kg in females. # Examination at Completion of the 52-Week Administration Period Urinalysis revealed a significant increase in osmotic pressure at 0.5 mg/kg and higher in males, while it was significantly decreased at 12.5 mg/kg in females. A significant increase in urine volume was also detected at 12.5 mg/kg in females (data not shown). On hematological examination, a significant decrease in the red blood cell count at 0.5 mg/kg and higher, and in hematocrit at 2.5 mg/kg in males, and increase in platelet count at 2.5 mg/kg in males, and at 12.5 mg/kg in females was found (Tables 1 and 2). In addition, PT was significantly prolonged at 2.5 mg/kg in males. In the blood biochemical examination, a significant ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Table 3: Blood biochemical findings in male rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.1 | 0.5 | 2.5 | |--|---|---|--|---| | At completion of the
No. of animals
Total protein (g/dL)
A/G ratio | 13-week admin
10
5.8 ± 0.3
1.22 ± 0.12 | istration period
10
5.8 ± 0.2
1.30 ± 0.09 | 10
5.7 ± 0.5
1.67 ± 0.23** | 9
5.8 ± 0.5
2.09 ± 0.27** | | Protein fraction ratio α_1 -Globulin (%) α_2 -Globulin (%) β -Globulin (%) γ -Globulin (%) Albumin (%) ALP (IU/L) Glucose (mg/dL) BUN (mg/dL) | 18.7 ± 1.6
7.1 ± 0.7
15.2 ± 0.8
4.2 ± 0.5
54.8 ± 2.3
164 ± 23
121 ± 9
12.3 ± 1.1 | 17.9 ± 1.6
6.8 ± 0.6
14.4 ± 0.6
4.3 ± 0.6
56.6 ± 1.6
216 ± 57
120 ± 7
11.8 ± 1.7 | $15.6 \pm 1.3**$ $5.9 \pm 0.6**$ $11.5 \pm 1.0**$ 4.6 ± 0.8 $62.4 \pm 2.9**$ $373 \pm 60**$ $154 \pm 13**$ $14.2 \pm 1.7*$ | 12.1 ± 2.4** 5.6 ± 0.6** 9.9 ± 0.7** 5.0 ± 1.4 67.4 ± 3.0** 619 ± 115** 151 ± 9** 14.8 ± 1.8** | | At completion of the
No. of animals
Total protein (g/dL)
A/G ratio | 52-week admin
10
5.8 ± 0.2
1.01 ± 0.21 | histration period 8 5.8 ± 0.3 1.01 ± 0.29 | 10
5.8 ± 0.5
1.42 ± 0.31** | 10
5.8 ± 0.2
1.75 ± 0.30** | | Protein fraction ratio α ₁ -Globulin (%) α ₂ -Globulin (%) β-Globulin (%) γ-Globulin (%) Albumin (%) ALP (IU/L) Glucose (mg/dL) BUN (mg/dL) | 19.2 ± 2.2
7.5 ± 0.5
17.9 ± 2.3
5.7 ± 2.3
49.7 ± 5.4
141 ± 42
125 ± 27
9.1 ± 1.5 | 18.2 ± 1.8
7.1 ± 1.4
18.5 ± 4.5
6.9 ± 3.1
49.3 ± 8.4
165 ± 56
115 ± 11
8.8 ± 0.9 | 15.2 ± 2.4**
6.1 ± 1.3*
15.3 ± 3.0
5.2 ± 1.7
58.1 ± 5.4**
364 ± 87**
139 ± 17
10.4 ± 1.9 | 13.4 ± 2.0**
5.0 ± 1.1**
12.7 ± 2.2**
5.8 ± 1.2
63.2 ± 4.7**
565 ± 137**
125 ± 16
12.8 ± 1.5** | Values are expressed as the mean \pm SD. increase in the levels of ALP at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females, of BUN at 2.5 mg/kg in males, and of glucose at 12.5 mg/kg in females was found (Tables 3 and 4). For the serum protein fraction ratio, a significant increase in albumin and decrease in α_1 - and α_2 -globulin at 0.5 mg/kg and higher, and a decrease in β -globulin at 2.5 mg/kg was detected in males. The A/G ratio was significantly increased at 0.5 mg/kg and higher in males. No substance-related changes were found in other blood biochemical parameters, including total bilirubin level (data not shown). At necropsy, enlarged liver was observed in seven of ten males at 0.5 mg/kg, nine of ten males at 2.5 mg/kg, and five of nine females at 12.5 mg/kg, and light gray macules were grossly detected in the liver of two of ten males at 2.5 mg/kg and of one of nine females at 12.5 mg/kg. Absolute and relative liver weight was significantly increased at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females (Tables 5 and 6). A significant increase in the relative weight of the brain, pituitary, thyroids, lungs, heart, kidneys, testes, and epididymides at 2.5 mg/kg in males was also found, but no statistically significant ^{*}Significantly different from the control, p < 0.05; **Significantly different from the control, p < 0.01. Table 4: Blood biochemical findings in female rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.5 | 2.5 | 12.5 | |--|---------------------------------|-------------------------------
-------------------------------|----------------------------------| | - Cose (mg/kg/ddy) | • | 0.5 | 2.5 | 12.5 | | At completion of the No. of animals | 13-week admin
10 | istration period | 10 | 10 | | Total protein (g/dL) | 6.2 ± 0.4 | 6.3 ± 0.2 | 10
6.4 ± 0.4 | 10
6.7 ± 0.5* | | A/G ratio | 1.78 ± 0.16 | 1.87 ± 0.22 | 1.93 ± 0.19 | 2.24 ± 0.31** | | Protein fraction ratio | | | | | | α ₁ -Globulin (%) | 13.8 ± 1.0 | 12.9 ± 1.7 | 12.6 ± 1.6 | 12.9 ± 1.8 | | α ₂ -Globulin (%)
β-Globulin (%) | 5.6 ± 0.8
12.6 ± 0.9 | 5.6 ± 0.2 12.4 ± 1.2 | 5.5 ± 0.6 12.1 ± 1.4 | 4.7 ± 0.5*
9.9 ± 0.8** | | γ-Globulin (%) | 3.9 ± 0.8 | 4.3 ± 1.0 | 4.2 ± 1.0 | 3.6 ± 1.1 | | Albumin (%) | 64.0 ± 2.0 | 64.9 ± 2.8 | 65.7 ± 2.2 | 68.9 ± 2.9** | | ALP (IU/L)
Glucose (mg/dL) | 92 ± 30
119 ± 13 | 107 ± 25
117 ± 10 | 101 ± 31 | 136 ± 81 | | BUN (mg/dL) | 14.5 ± 1.7 | 14.3 ± 1.7 | 118 ± 15 13.6 ± 1.1 | 130 ± 10 14.1 ± 1.8 | | At completion of the | 52-week admini | istration period | | | | No. of animals | 10 | 10 | 10 | 9 | | Total protein (g/dL)
A/G ratio | 6.4 ± 0.3 1.79 ± 0.25 | 6.7 ± 0.2 1.69 ± 0.17 | 6.7 ± 0.3 1.73 ± 0.17 | 6.5 ± 0.5
2.00 ± 0.19 | | Protein fraction ratio | 1177 ± 0.20 | 1.07 ± 0.17 | 1.70 ± 0.17 | 2.00 ± 0.17 | | α ₁ -Globulin (%) | 13.5 ± 1.6 | 14.2 ± 1.6 | 12.8 ± 1.4 | 12.1 ± 1.0 | | α ₂ -Globulin (%) | 4.8 ± 0.6 | 4.8 ± 0.5 | 5.0 ± 0.9 | 4.1 ± 0.4 | | β-Globulin (%)
γ-Globulin (%) | 13.2 ± 1.5
4.6 ± 0.9 | 13.5 ± 0.7
4.9 ± 1.2 | 13.6 ± 1.6
5.4 ± 1.2 | 12.2 ± 1.2
5.0 ± 1.2 | | Albumin (%) | 63.9 ± 3.1 | 62.6 ± 2.5 | 63.3 ± 2.3 | 66.5 ± 2.1 | | ALP (IU/L) | 57 ± 26 | 59 ± 16 | 57 ± 14 | 86 ± 20** | | Glucose (mg/dL)
BUN (mg/dL) | 103 ± 9
13.4 ± 2.7 | 110 ± 9
12.6 ± 2.8 | 106 ± 16
12.7 ± 3.1 | 119 ± 16* | | DOIT (ITIG/GL) | 10.4 ± 2.7 | 12.0 ± 2.0 | 12./ I 3.1 | 12.1 ± 2.0 | change was noted in the absolute weight. As observed at the end of the 13-week administration period, centrilobular hypertrophy of hepatocytes with eosinophilic granular cytoplasm was observed on histopathological examination, and the incidence was significantly increased at 0.5 mg/kg and higher in males, and at 12.5 mg/kg in females (Tables 7 and 8). In addition, significant increases in the incidence of cystic degeneration and lipofuscin deposition in hepatocytes at 2.5 mg/kg, and of altered hepatocellular foci (clear cell foci) at 0.5 mg/kg and higher were found in the liver of males. # DISCUSSION In the present study, one male receiving the highest dose of 2.5 mg/kg died early in the dosing period. Although the cause of death was not identified on histopathological examination, it is unlikely that this death was due to treatment with HDBB because no deaths in this group occurred during the remaining dosing period. Other the deaths of two males at 0.1 mg/kg and the Values are expressed as the mean \pm SD. *Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Downloaded by: [EIIIa, Makolo] At. 02:04 20 December 2007 Table 5: Relative organ weight in male rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.1 | 0.5 | 2.5 | |--|------------------------------------|------------------------------------|----------------------------------|------------------------------------| | At completion of th | e 13-week adm | inistration period | d | | | No. of animals | 10 | 10 | 10 | 9 | | Body weight ^a | 530.1 ± 32.1 | 566.3 ± 42.2 | 546.5 ± 40.3 | 450.1 ± 27.8** | | Brainb | 0.42 ± 0.02 | 0.40 ± 0.03 | 0.42 ± 0.03 | $0.49 \pm 0.03**$ | | Pituitary | 2.7 ± 0.3 | 2.5 ± 0.2 | 2.6 ± 0.2 | 2.8 ± 0.2
4.1 ± 0.7 | | Thyroidsc | 3.8 ± 1.0 | 4.7 ± 0.8
0.29 ± 0.02 | 4.5 ± 1.1
0.30 ± 0.02 | $0.33 \pm 0.02**$ | | Heartb | 0.29 ± 0.03
0.29 ± 0.02 | 0.29 ± 0.02
0.28 ± 0.03 | 0.30 ± 0.02 | 0.33 ± 0.02
0.31 ± 0.03 | | Lungs ^b
Liver ^b | 2.75 ± 0.10 | 2.82 ± 0.23 | $3.71 \pm 0.21**$ | $5.12 \pm 0.72**$ | | Kidneysb | 0.62 ± 0.04 | 0.62 ± 0.02 | 0.67 ± 0.06 | 0.70 ± 0.07 * | | Testes | 0.65 ± 0.07 | 0.62 ± 0.07 | 0.61 ± 0.06 | $0.81 \pm 0.07**$ | | Epididymides ^b | 0.26 ± 0.02 | 0.25 ± 0.02 | 0.23 ± 0.02 * | 0.28 ± 0.03 | | At completion of th | e 52-week adm | inistration period | d | | | No. of animals | 10 | 8 | 10 | 10 | | Body weight ^a | 819.9 ± 145.4 | 792.5 ± 140.4 | 842.4 ± 136.3 | 614.2 ± 97.3** | | Brain | 0.30 ± 0.04 | 0.31 ± 0.07 | 0.29 ± 0.04 | $0.39 \pm 0.05**$ | | Pituitary | 2.0 ± 0.2 | 2.0 ± 0.5 | 1.9 ± 0.3 | $2.8 \pm 0.3**$
$4.9 \pm 0.9*$ | | Thyroidsc | 3.8 ± 0.9
0.23 ± 0.02 | 3.9 ± 1.0
0.25 ± 0.04 | 4.1 ± 0.8
0.25 ± 0.03 | $0.31 \pm 0.03**$ | | Heart ^b | 0.23 ± 0.02
0.23 ± 0.02 | 0.23 ± 0.04
0.24 ± 0.05 | 0.23 ± 0.03 | $0.29 \pm 0.03**$ | | Lungs ^b
Liver ^b | 2.22 ± 0.25 | 2.26 ± 0.20 | $2.95 \pm 0.47**$ | $4.13 \pm 0.62**$ | | Kidneysb | 0.47 ± 0.05 | 0.48 ± 0.08 | 0.51 ± 0.06 | $0.68 \pm 0.09**$ | | Testes | 0.45 ± 0.06 | 0.47 ± 0.10 | 0.46 ± 0.07 | $0.61 \pm 0.15**$ | | Epididymides ^b | 0.16 ± 0.03 | 0.18 ± 0.04 | 0.17 ± 0.02 | 0.22 ± 0.06 * | Values are expressed as the mean ± SD. moribund sacrifice of one female at 12.5 mg/kg were related to pituitary, renal, or muscular disorders, which was not observed in scheduled-sacrifice animals, and were considered incidental. In scheduled-sacrifice animals, a lowered body weight was found at 2.5 mg/kg in males. This change was not observed even at the highest dose of 62.5 mg/kg in the previous 28-day repeated dose toxicity study of HDBB (Hirata-Koizumi et al., 2007). Since increased food consumption, blood glucose, and A/G ratio were noted in both previous 28-day and present 52-week studies, prolonged disturbance of metabolic homeostasis might affect body weight gain. Increased relative weight of the brain, heart, kidneys, testes, etc., without changes in the absolute weight, which was noted at 2.5 mg/kg in males in the present study, is considered to be due to the lowering of body weight. Anemic changes, such as decreased red blood cell count, hematocrit, and hemoglobin, were also found at 0.5 mg/kg and higher in males in the current study. In females, slight changes indicative of anemia, such as decreased hematocrit and MCV, were noted at 12.5 mg/kg at the end of the 13-week ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Body weight after overnight starvation following the last dosing (g). By 100 g body weight. mg/100 g body weight. Table 6: Relative organ weight in female rats given HDBB by gavage. | Dose (mg/kg/day) | 0 | 0.5 | 2.5 | 12.5 | |--|------------------------------------|------------------------------------|------------------------------------|--------------------------------------| | At completion of th | e 13-week adm | inistration period | d | haracan salar e | | No. of animals | 10 | 10 | 10 | 10 | | Body weight ^a
Brain ^b | 304.1 ± 26.9 | 303.0 ± 31.0 | 297.0 ± 17.5 | 299.8 ± 23.1 | | Pituitary ^c | 0.68 ± 0.06
5.6 ± 0.5 | 0.69 ± 0.05
6.1 ± 0.7 | 0.70 ± 0.03
6.4 ± 1.0 * | 0.70 ± 0.05
6.2 ± 0.8 | | Thyroids ^c | 5.5 ± 1.1 | 5.9 ± 0.8 | $6.5 \pm 1.1*$ | 6.2 ± 0.7 | | Heartb | 0.32 ± 0.02 | 0.30 ± 0.02 | 0.32 ± 0.02 | 0.32 ± 0.03 | | Lungs ^b
Liver ^b | 0.37 ± 0.03 | 0.37 ± 0.02 | 0.36 ± 0.02 | 0.38 ± 0.03 | | Kidneys ^b | 2.63 ± 0.14
0.70 ± 0.25 | 2.63 ± 0.18
0.64 ± 0.07 | 2.80 ± 0.18
0.64 ± 0.05 | $3.88 \pm 0.50**$
0.66 ± 0.06 | | Ovaries ^c | 26.1 ± 4.0 | 26.5 ± 3.2 | 26.9 ± 4.6 | 27.0 ± 4.0 | | Uterus ^b | 0.19 ± 0.03 | 0.22 ± 0.04 | 0.19 ± 0.03 | 0.21 ± 0.03 | | At completion of th | e 52-week adm | inistration period | d | | | No. of animals | 10 | 10 | 10 | 9 | | Body weight ^a
Brain ^b | 423.2 ± 87.2 | 441.8 ± 71.4 | 481.0 ± 104.7 | 425.8 ± 71.4 | | Pituitary ^c | 0.54 ± 0.12
6.6 ± 2.3 | 0.51 ± 0.07
7.0 ± 3.8 | 0.47 ± 0.10
7.1 ± 3.2 | 0.52 ± 0.08
7.4 ± 2.4 | | Thyroids ^c | 5.7 ± 1.1 | 5.5 ± 1.3 | 5.9 ± 1.1 | 6.4 ± 1.4 | | Hearth | 0.28 ± 0.04 | 0.28 ± 0.04 | 0.26 ± 0.04 | 0.29 ± 0.03 | | Lungs ^b
Liver ^b | 0.33 ± 0.07 | 0.30 ± 0.05 | 0.29 ± 0.07 | 0.32 ± 0.05 | | Kidneys ^b | 2.48 ± 0.39
0.55 ± 0.08 | 2.42 ± 0.14
0.54 ± 0.06 | 2.45 ± 0.32
0.52 ± 0.13 | $3.54 \pm 0.41**$
0.63 ± 0.09 | | Ovaries ^c | 16.0 ± 3.3 | 14.3 ± 4.4 | 13.5 ± 5.5 | 14.3 ± 2.5 | | Uterus ^b | 0.24 ± 0.08 | 0.22 ± 0.06 | 0.22 ± 0.09 | 0.25 ± 0.08 | Values are expressed as the mean \pm SD. administration period but not at the completion of the 52-week administration period. The previous 28-day study also showed anemic effects of HDBB at 2.5 mg/kg and higher in males (Hirata-Koizumi et al., 2007). Since no change in the serum bilirubin level or hemosiderin accumulation in the liver, spleen, or kidneys were found in both the present 52-week and previous 28-day studies, anemic changes seem at least not to come from the hemolytic action of HDBB. In order to clarify the mechanisms, further study is required. In the previous 28-day study, histopathological changes in the liver and heart were observed at 0.5 mg/kg and higher in males, and at 12.5 mg/kg and higher in females (Hirata-Koizumi et al., 2007). At
higher doses, histopathological changes were also found in the kidneys and thyroids. In the current study, histopathological changes were observed in the liver. At the end of the 13-week administration, the incidence of centrilobular hypertrophy of hepatocytes was increased at 2.5 mg/kg in males and at 12.5 mg/kg in females, and this change was accompanied with eosinophilic granular cytoplasm. In addition to these changes, increased incidences of altered ^{*}Significantly different from the control, p < 0.05; **significantly different from the control, < 0.01. p < 0.01. ^aBody weight after overnight starvation following the last dosing (g). ^bg/100 g body weight. ^cmg/100 g body weight. TO DECELLIDE TOO DOWINGAGE Dy. [Ellia, Marolo] At. 02.04 Table 7: Histopathological findings in the liver of male rats given HDBB by gavage. | | | | Dose (mg/kg/day) | | | | | |--|--|-------|------------------|--------------------|------------|----|--| | | Grade | 0 | 0.1 | 0.5 | 2.5 | | | | At completion of the 13-week administration No. of animals Centrilobular hypertrophy of hepatocytes ^a | + | 10 | 10 | 10 | 9 | | | | Focal necrosis | ++ | 0 | 0 | 1 | 2 | ** | | | At completion of the 52-week administration No. of animals Centrilobular hypertrophy of hepatocytes ^a | + | 10 | 8 | 10
5* | 10 | ** | | | Focal necrosis
Lipofuscin deposition in hepatocytes ^b
Altered hepatocellular foci | ++ | 0 0 0 | 0 0 0 1 | 0
3
0
7** | 6**
6 1 | ** | | | Cystic degeneration of hepatocytes | ++ | 0 | 0 | 2 | 4* | ** | | Values represent the number of animals with findings. + = mild; ++ = moderate. *Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01 ^aAccompanied with eosinophilic granular cytoplasm. ^bIdentified by the Schmorl method, Berlin blue staining, and the Hall method. Table 8: Histopathological findings in the liver of female rats given HDBB by gavage. | | | D | Dose (mg/kg/day) | | | | |--|-----------------------|-------------------|------------------|-------------------|-------------------|--| | | Grade | 0 | 0.5 | 2.5 | 12.5 | | | At completion of the 13-week administration property No. of animals Centrilobular hypertrophy of hepatocytes Focal necrosis | period
+
+ | 10
0
0 | 10 | 10
0
1 | 10
6**
0 | | | At completion of the 52-week administration property No. of animals Centrilobular hypertrophy of hepatocytes ^a Focal necrosis Lipofuscin deposition in hepatocytes ^b | period
+
+
+ | 10
0
2
0 | 10 | 10
0
0
0 | 9
4*
0
2 | | Values represent the number of animals with findings. + = mild; - = not examined. *Significantly different from the control, p < 0.05; **significantly different from the control, p < 0.01. Accompanied with eosinophilic granular cytoplasm. bldentified by the Schmorl method, Berlin blue staining, and the Hall method. hepatocellular foci (clear cell foci) at 0.5 mg/kg and higher and of cystic degeneration and lipofuscin deposition in hepatocytes at 2.5 mg/kg were found in males at the completion of the 52-week administration. Centrilobular hypertrophy of hepatocytes with eosinophilic granular cytoplasm is known to be a characteristic change observed in rodents administered with peroxisome proliferators, such as fibrate hypolipidemic drugs and phthalate plasticizers (Cattley and Popp, 2002). Prolonged exposure to these substances has been shown in many studies to induce liver tumors in rats and mice (IARC, 1995), and preferential growth of altered hepatocytes, as detected in the present 52-week study, could be observed in the developmental process. In addition, increased mitosis of hepatocytes, indicating hepatocellular proliferation, was observed in the higher dose group in the previous 28-day study of HDBB (Hirata-Koizumi et al., 2007). Further longer-term studies are needed to precisely evaluate whether HDBB induces liver tumors in rats. In the current study, lipofuscin deposition in hepatocytes was also apparent at the completion of the 52-week administration. While lipofuscin accumulates in hepatocytes with aging, increased amounts of lipofuscin have also been reported in the liver of rats treated for long periods with peroxisome proliferators (IARC, 1995; Cattley and Popp, 2002). Based on these findings, HDBB might exert an effect on the liver via the mechanism of peroxisome proliferation, although the ultrastructure or peroxisome-associated enzyme was not analyzed in the current study. The hepatic changes caused by this mechanism are considered not to be significant for human risk assessment (Hasegawa et al., 2004) because primates are much less sensitive to peroxisome proliferators than rodents (Elcombe and Mitchell, 1986; Blaauboer et al., 1990). For HDBB, however, the incidence of cystic degeneration of hepatocytes was increased at the end of the current 52-week study, and increased incidence of focal necrosis, vacuolar degeneration of hepatocytes, and bile duct proliferation in the liver was found in the previous 28-day study (Hirata-Koizumi et al., 2007). These changes may not be necessarily associated with the mechanism of peroxisome proliferation. Considering the possible induction of neoplastic change in the liver by mechanisms relevant to humans, further study is required. In the current study, histopathological changes in the heart were not detected even at the highest dose of 2.5 mg/kg in males and 12.5 mg/kg in females, at which degeneration and hypertrophy of the myocardium or cell infiltration were found in the previous 28-day study (Hirata-Koizumi et al., 2007). Although the cause of this difference between studies is not clear, the borderline dose of HDBB for affecting the heart is considered to be around 2.5 mg/kg in males and 12.5 mg/kg in females. As functional parameters are considered to be more sensitive than histopathological changes in the heart (Glaister, 1992), further studies are required to clarify the adverse effects of HDBB on cardiac function. Histopathological changes in the kidneys and DOWNING TO DE LENIA, INTENDIO DE DE thyroids, detected in the previous 28-day study (Hirata-Koizumi et al., 2007), were also not observed in the present study, which would be due to the low dosage administered; however, changes in osmotic pressure, specific gravity, or volume of urine, and/or increase in the levels of BUN, noted at 0.5 mg/kg and higher in males and at 12.5 mg/kg in females, suggest renal effects of HDBB. Based on these findings in the current study, the NOAEL for chronic toxicity of HDBB was concluded to be 0.1 mg/kg/day in male rats and 2.5 mg/kg/day in female rats based on the induction of altered hepatocellular foci and/or hypertrophy of hepatocytes. This result showed that male rats are nearly 25 times more susceptible to HDBB toxicity than female rats, which is consistent with the results of the previous 28-day study (Hirata-Koizumi et al., 2007). Since male rats showed higher susceptibility to various effects of HDBB (on the liver, blood, etc.) consistently, sex-related variations in toxicokinetic determinants, such as metabolism and elimination, might increase the blood concentration of causative substances (i.e., HDBB or its metabolites) in males. In order to clarify the cause of the sexual differences in the HDBB toxicity, we are planning a toxicokinetic study of HDBB, which would include the identification of metabolites and the related metabolic enzyme as well as measurement of the blood concentration of HDBB both after single and repeated administration of HDBB to rats. Gender-related differences in toxic susceptibility have been documented for other substances. For example, a recent subchronic toxicity study using F344 rats showed that fluoranthene, a polycyclic aromatic hydrocarbon, had greater effects on males than females, especially in the kidneys (Knuckles et al., 2004). In contrast, it was reported that female rats exhibited a greater susceptibility to hypothermic effects and inhibition of hypothalamic cholinesterase by a carbamate cholinesterase inhibitor, rivastigmine (Wang et al., 2001). For such gender differences, sexual hormones must play an important role. In fact, Wang et al. (2001) reported that orchidectomy completely abolished the above-mentioned sex differences in hypothalamic cholinesterase inhibition induced by rivastigmine. Since testosterone decreased cholinesterase inhibition in gonadectomized males and females, it is apparent that testosterone interferes with the effects of rivastigmine. It is interesting to investigate the role of sex steroids in the mediation of sex differences in toxic susceptibility to HDBB; therefore, we are currently performing a repeateddose toxicity study of HDBB using male and female castrated rats. # **CONCLUSIONS** The current results showed that the oral administration of HDBB for 52 weeks principally affected the liver. The NOAEL for chronic toxicity was concluded to be 0.1 mg/kg/day in male rats and 2.5 mg/kg/day in female rats. # **ACKNOWLEDGMENTS** This study was supported by the Ministry of Health, Labour and Welfare, Tokyo, Japan. # REFERENCES - Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. *Proc. R. Soc. Lond. Ser. A* 160:268–282. - Blaauboer, B. J., van Holsteijn, C. W., Bleumink, R., Mennes, W. C., van Pelt, F. N., Yap, S. H., van Pelt, J. F., van Iersel, A. A., Timmerman, A., Schmid, B. P. (1990). The effect of beclobric acid and clofibric acid on peroxisomal β-oxidation and peroxisome proliferation in primary cultures of rat, monkey, and human hepatocytes. *Biochem.
Pharmacol.* 40:521–528. - Cattley, R. C., Popp, J. A. (2002). Liver. In Haschek, W. M., Rousseaux, C. G., Wallig, M.A., (eds.)., Handbook of Toxicologic Pathology, 2nd ed. Vol. 2. San Diego: Academic Press, pp. 187–225. - Commerce Online. (2007). Product Keywords on Wujiang Dongfeng Chemical Co., Ltd. Accessed on April 25, 2007 from http://www.commerce.com.tw/company_inside.php?ID=C0013309. - Dunnett, C. W. (1964). New tables for multiple comparisons with a control. *Biometrics* 20:482–491. - EA, MHW and MITI (Environment Agency, Ministry of Health and Welfare, and Ministry of International Trade and Industry of Japan). (2000). "Testing Facility Provided in the Article 4 in the Ordinance Prescribing Test Relating to New Chemical Substances and Toxicity Research of Designated Chemical Substances," Planning and Coordination Bureau, Environment Agency No. 41 and Environmental Health Bureau, Ministry of Health and Welfare No. 268, dated March 1, 2000, and Basic Industries Bureaus, Ministry of International Trade and Industry No. 1, dated February 14, 2000. - Elcombe, C. R., Mitchell, A. M. (1986). Peroxisome proliferation due to di(2-ethylhexyl) phthalate (DEHP): species differences and possible mechanisms. *Environ. Health Perspect.* 70:211–219. - Fisher, R. A. (1973). Statistical Methods of Research Workers, 14th ed.New York: Hapner Publishing Company, p. 6. - Glaister, J. R. (1992). Histopathology of target organs—cardiovascular. In *Principles of Toxicological Pathology (Japanese version supervised by Takahashi, M.)*, Tokyo: Soft Science Inc., pp. 135–142. - Hasegawa, R., Koizumi, M., Hirose, A. (2004). Principles of risk assessment for determining the safety of chemical: recent assessment of residual solvents in drugs and di(2-ethylhexyl)phthalate. *Congenit. Anom. Kyoto* 44:51–59. - Hirata-Koizumi, M., Watari, N., Mukai, D., Imai, T., Hirose, A., Kamata, E., Ema, M. (2007) A 28-day repeated dose toxicity study of ultraviolet absorber 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole in rats. *Drug Chem. Toxicol.* 30:327–341. - IARC (International Agency for Research on Cancer). (1995). Peroxisome Proliferation and its Role in Carcinogenesis (Technical Report no. 24). Lyon: IARC Press. - Knuckles, M. E., Inyang, F., Ramesh, A. (2004). Acute and subchronic oral toxicity of fluoranthene in F-344 rats. *Ecotoxicol. Environ. Saf.* 59:102–108. DOWINGARD DY. [LINA, Marolly] AL. VE. - Mann, H. B., Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. *Ann. Math. Stat.* 18:50–60. - METI (Ministry of Economy, Trade and Industry of Japan). (2006). 2-(2H-1,2,3-Benzotriazole-2-yl)-4,6-di-tert-butylphenol, document distributed in Committee on Safety of Chemical Substances, Chemical Substances Council, 30 June 2006. Accessed on April 25, 2007 from http://www.meti.go.jp/committee/materials/g60705aj.html. - MHLW (Ministry of Health, Labour and Welfare of Japan). (2003). 2-(2'-Hydroxy-3',5'-de-tert-butylphenyl)benzotriazole. In *Toxicity Testing Reports of Environmental Chemicals (Ministry of Health, Labour and Welfare, ed.)*, Vol. 10. Tokyo: Chemicals Investigation Promoting Council, pp. 215–247. - MHLW (Ministry of Health, Labour and Welfare of Japan). (2006). 2-(2'-Hydroxy-3',5'-de-tert-butylphenyl)benzotriazole. In *Toxicity Testing Reports of Environmental Chemicals (Ministry of Health, Labour and Welfare, ed.)*, Vol. 13, Tokyo: Chemicals Investigation Promoting Council, pp. 187–202. - OECD (Organization for Economic Co-operation and Development). (1981). Guideline 452, Chronic Toxicity Studies (adopted 12th May 1981), OECD Guidelines for the Testing of Chemicals, section 5, OECD, Paris. - OECD (Organization for Economic Co-operation and Development). (1998). Principles on Good Laboratory Practice (as revised in 1997), OECD Series on Principles of Good Laboratory Practice and Compliance Monitoring, No. 1, OECD, Paris. - Steel, R. D. (1959). A multiple comparison rank sum test: treatment versus control. *Biometrics* 15:560–572. - Tenkazai.com. (2007). Market Trend of Resin Additives "Light Stabilizer." Accessed on April 25, 2007 from http://www.tenkazai.com/market.html. - Wang, R. H., Schorer-Apelbaum, D., Weinstock, M. (2001). Testosterone mediates sex difference in hypothermia and cholinesterase inhibition by rivastigmine. *Eur. J. Pharmacol.* 433:73–79. DOI: 10.1080/01480540701522254 # A 28-Day Repeated Dose Toxicity Study of Ultraviolet Absorber 2-(2'-Hydroxy -3',5'-di-*tert*-butylphenyl) benzotriazole in Rats Mutsuko Hirata-Koizumi, ¹ Nobuaki Watari, ² Daisuke Mukai, ² Toshio Imai, ¹ Akihiko Hirose, ¹ Eiichi Kamata, ¹ and Makoto Ema¹ ¹Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan ²Biosafety Research Center, Foods, Drugs and Pesticides (An-pyo Center), Shizuoka, Japan To examine the possible repeated-dose toxicity of an ultraviolet absorber, 2-(2'hydroxy-3',5'-di-tert-butylphenyl)benzotriazole (HDBB), CD(SD)IGS rats were administered HDBB by gavage at a dose of 0 (vehicle: corn oil), 0.5, 2.5, 12.5, or 62.5 mg kg⁻¹ day-1 for 28 days. At the completion of the administration period, a decrease in red blood cells, hemoglobin, and hematocrit was noted only in males at 2.5 mg/kg and more. Blood biochemical changes were noted at 0.5 mg/kg and more in males and at 62.5 mg/kg in females. Histopathologic changes were observed principally in the liver (vacuolar degeneration and hypertrophy of hepatocytes, bile duct proliferation, etc.) and in the heart (degeneration and hypertrophy of myocardium and cell infiltration). These changes were noted at 0.5 mg/kg and more in males and at 12.5 mg/kg and more in females. At higher doses, hypertrophy of tubular epithelium in the kidneys and diffuse follicular cell hyperplasia in the thyroids in both sexes and increased severity of basophilic tubules in the kidneys and extramedullary hematopoiesis in the spleen in males were also detected. After the 14-day recovery period, these changes mostly recovered in females but not in males. Based on these findings, no observed adverse effect level (NOAEL) was concluded to be less than 0.5 mg kg-1 day-1 in male rats and 2.5 mg kg⁻¹ day⁻¹ in female rats. Keywords Benzotriazole, Gender-related difference, Rat, Repeated dose toxicity, UV absorber Address correspondence to Makoto Ema, Division of Risk Assessment, Biological Safety Research Center, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; E-mail: ema@nihs.go.jp