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mitotic recombination between homologous alleles, or
whole chromosome loss [20]. Molecular analysis can
distinguish between them and reveal the mechanism and
the characteristics of the mutants. In this study, KBrO3
predominantly induced large deletions that resulted in
hemizygous LOH (Table 1). The large deletions were
mainly terminal deletions in the proximal region of
chromosome 17q, which were rarely observed in spon-
taneously arising 7K mutants (Fig. 3). The mutational
spectrum and LOH pattern induced by KBrO3 were sim-
ilar to those induced by X-irradiation (Figs. 2 and 3)
[20,21]. DSBs induced X-rays cause large deletions
[19,20]. When the DSBs are repaired by the non-
homologous end-joining pathway, interstitial deletions
result. The broken chromosome ends can be also stabi-
lized by the addition of new telomere sequences. Because
TKG6 cells have high telomerase activity [20], the result
is terminal deletions. Thus, the major genotoxicity of
KBrO3 may be due to DSBs, but not to 8OHdG convert-
ing GC > TA transversion.

Some 80HAG lesions can convert DSBs through the
BER pathway [37]. In the initial step of BER, Oggl
removes 8OHdG by DNA glycosylase activity and nicks
the DNA backbone because of its associated lyase activ-
ity. The resulting SSB is processed by an apurinic
endonuclease, which generates a single nucleotide gap.
The gap is filled in by a DNA polymerase and sealed by
a DNA ligase [38]. Clustered 80HdG lesions induced
by KBrO3 may not be appropriately repaired by BER
and cause DSB, however, because it is possible that two
closely opposed 80OHdGs convert two closely opposed
SSBs by BER resulting DSB [39,40]. Yang et al. devel-
oped Ogg1 over-expressing TK6 cell (TK6-hOGG1) and
examined cytotoxic and mutagenic responses to gamma-
irradiation [41]. They demonstrated that TK6-hOGG1
cells are more sensitive than the parental TK6 cells
to cytotoxicity and mutagenicity by gamma-irradiation,
and most of the induced TK mutants in TK6-OGG1
exhibited SG phenotype, which were probably large
deletion mutants resulted by DSBs. This result clearly
indicates that BER pathway contributes to convert oxida-
tive damages to DSBs. Some clustered 8OHAG induced
by KBrO3; may covert to DSBs in TK6 cells, because
TK6 is Oggl proficient cells {37].

To clarify the genotoxic characteristics of KBrOs,
we investigated the gene expression profile using
Affymetrix GeneChip® Expression analysis. Many
genes were up- or down-regulated by exposure to 2.5 mM
KBrO; (Tables 2 and 3). Akerman et al. investigated
the alterations of gene expression profiles in ionizing
radiation-exposed TK6 cells [42]. They reported a >50%
increase in expression of ATF-3 (stress response), Cyclin

G (cell cycle), FAS antigen (apoptosis), GADDA45 (repair
and apoptosis), PCNA (repair), Rad51 (repair), and p21
(cell cycle) and a 40% decrease in expression of c-
Myc (transcription factor), interferon stimulatory gene
factor-3 (cell signaling), and pS5CDC (cell cycle). We
also observed up-regulation of p21 and down-regulation
of c-Myc. Up-regulation of p21, however, is observed
in TK6 cells exposed to any DNA-damaging chemi-
cal [43]. Islaih et al. also demonstrated the relationship
between the gene expression profiles and the DNA
damaging agents using TK6 cells [43]. They examined
six chemicals including H;O; and bleomycin which
induce oxidative DNA damage. Although 10 genes were
commonly up-regulated between H>O» and bleomycin
treatments, these genes except for p21 were not observed
in our experiment. Thus, we could not find the simi-
larity of gene expression profile by the treatment with
KBrOj to by the treatment with ionizing radiation as
well as oxidative damage inducers. Comparing gene
expression profiles across platforms, laboratories, and
experiments must be difficult [44]. Although it is dif-
ficult to judge from the expression analysis of the
single chemical, information on genes which altered
their expression gives a clue to understand the mech-
anism of action. Firstly, predominance of DNA repair
and cell cycle related genes in up-regulated genes sup-
ports the genotoxic action of KBrO3. Up-regulation of
stress genes and apoptosis related genes suggests an
involvement of oxidative stress. Up-regulation of cata-
lase may be responsible for the oxidative damage by
KBrOj3 (Table 2). Unclassified genes for alteration may
have a functional relationship with genotoxic mecha-
nism.

In conclusion, KBrO3 predominantly induced large
deletions at chromosomal level in human TKS6 cells. The
major genotoxicity leading to carcinogenesis of KBrO;
may be due to DSBs rather than to 80OHdG adducts that
lead to GC > TA transversions, as is commonly believed.
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Objective. SLC3 is a Friend erythroleukemic cell line established from the Pk-I" mouse,
a mouse model of red blood cell type-pyruvate kinase (R-PK) deficiency. This study was aimed
to elucidate the mechanisms attributing to apoptosis induced by R-PK deficiency.

Materials and Methods. SLC3 and a control Friend cell line, CBA2, were cultured in a condition
of glucose deprivation or supplementation with 2-deoxyglucose, and apoptosis was detected by
annexin V. We established two stable transfectants of SLC3 cells with human R-PK c¢DNA, and
examined the effect of R-PK on an apoptotic feature by cell cycle analysis. Intracellular oxida-
tion was measured with 2',7'-dichlorofiuorescin diacetate. DNA microarray analysis was per-
formed to examine gene-expression profiles between the two transfectants and parental SLC3.
Results. SLC3 was more susceptible than CBA2 to apoptosis induced by glycolytic inhibition.
The forced expression of R-PK significantly decreased cells at the sub G¢/G; stage in an
expression-level dependent manner. Microarray analysis showed that proapoptotic genes,
such as Bad, Bnip3, and Bnip3l, were downregulated in the transfectants. In addition, perox-
iredoxin 1 (Prdx1) and other antioxidant genes, such as Cat, Txnrdl, and Girxl were also
downregulated. A significant decrease of dichlorofluorescein fluorescence was observed by
R-PK expression. Preincubation with a glutathione precursor showed a significant decrease
of apoptosis.

Conclusion. These results indicated that glycolytic inhibition by R-PK gene mutation aug-
mented oxidative stress in the Friend erythroleukemia cell, leading to activation of hypoxia-
inducible factor-1 as well as downstream proapoptotic gene expression. Thus, R-PK plays

an important role as an antioxidant during erythroid differentiation. © 2007 ISEH - Society
for Hematology and Stem Cells. Published by Elsevier Inc.

Glycolysis is an essential metabolic pathway in all organ-
isms. Pyruvate kinase (PK) is a key glycolytic enzyme, and
has four isoenzymes in mammals, designated M;, M,, L
(liver), and R (red blood cell). In humans, these isozymes
are encoded by two structural genes, PKM and PKLR, respec-
tively {1]. M,-PK is the only isozyme that is active in early
fetal tissues and also almost ubiquitously expressed in adult
tissues, including hematopoietic stem cells, progenitors,
leukocytes, and platelets. Red blood cell type-pyruvate
kinase (R-PK) becomes a major isozyme during erythroid
differentiation/maturation [2,3], and in mature red blood

Offprint requests to: Hitoshi Kanno, M.D. Ph.D., Department of Trans-
fusion Medicine and Cell Processing, Tokyo Women’s Medical University,
Tokyo 162-8666, Japan.

cells (RBCs), R-PK is the only detectable PK isozyme. De-
ficiency of R-PK causes shortened RBC survival, resulting
in hemolytic anemia. In humans, PK deficiency is the most
prevalent glycolytic enzyme defect, which is responsible
for hereditary hemolytic anemia [4,5].

We have previously established SLC3 [6], a line of
Friend erythroleukemic cells from the Pk-I* mouse [7],
which has chronic hemolytic anemia with marked spleno-
megaly due to a missense mutation of the murine Pkir
gene {8]. SLC3 showed spontaneous apoptosis during rou-
tine passage and in vitro erythroid differentiation by buty-
rate exacerbated apoptosis of SLC3 [6]. Recently, we
examined the spleen of a subject with severe PK deficiency
[9], and discovered enhanced extramedullary hematopoiesis
as well as apoptotic erythroid cells. Enhanced apoptosis

0301-472X/07 $-see front matter. Copyright © 2007 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
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was also identified in TER119-positive erythroid cells iso-
lated from Pk-1° mice [10]. These results provide evidence
that the metabolic disturbances in PK deficiency affect not
only the survival of RBCs but also the maturation of
erythroid progenitors, which results in apoptosis.

In this study, we examined whether Friend erythroleuke-
mic cell lines showed apoptosis when glycolysis was in-
hibited. To evaluate whether overexpression of the normal
R-PK gene ameliorated apoptosis, we established stable
transfectants of SLC3 and compared their apoptotic charac-
teristics and transcriptional profiles with parental SLC3. We
present here several pieces of evidence, revealing the bio-
logical significance of R-PK to suppress oxidative stress
during erythroid differentiation.

Materials and methods

Cell culture and flow cytometric analysis

Friend erythroleukemic cell lines SLC3 and CBA2 have been de-
scribed previously [6]. Both cell lines are maintained in Iscove’s
modified Dulbecco’s medium (Invitrogen, Carlsbad, CA; USA)
supplemented with 10% heat-inactivated fetal calf serum, 20 uM
2-mercaptoethanol, and a mixture of penicillin-streptomycin
(Sigma-Aldrich, St Louis, MO, USA).

To evaluate the adverse effects of glycolytic inhibition, cells
were cultured in either glucose-free RPMI-1640 (Invitrogen) or
RPMI-1640 with 2-deoxyglucose (2-DG) at final concentrations
of 0.1, 1, and 10 mM. Iscove’s modified Dulbecco’s medium con-
taining 110 mg/L sodium pyruvate, and RPMI-1640 containing no
pyruvate.

Flow cytometric analysis was performed by EPICS XL and an-
alyzed with software, EXPO32 ADC (Beckman-Coulter, Fuller-
ton, CA, USA). Annexin V-Alexa568 and rhodamine 123 were
obtained from Roche Diagnostics (Basel, Switzerland) and Sigma,
respectively. To examine the effect of N-acetyl-L-cysteine upon
apoptosis, we preincubated cells in RPMI-1640 supplemented
with 10 mM N-acetyl-L-cysteine for 12 hours, followed by 12- to
24-hour incubation with RPMI-1640.

Establishment of stable transfectants

expressing normal R-PK in SLC3 cells

We constructed a human R-PK cDNA expression plasmid vector
in erythroid cells. A 1.7-kb fragment covering the entire coding re-
gion of human R-PK ¢DNA [11] was introduced into Kpnl-EcoRV
sites of pcDNA3.1 (Invitrogen). Plasmid DNA was purified with
an EndoFree Maxi DNA purification kit (Qiagen, Hilden,
Germany). Transfection was done with Effectene Transfection Re-
agent (Qiagen) as indicated by the manufacturer. Transfected cells
were selected using G418 (400 pg/mL).

RT-PCR, Western blotting, and enzyme assay

Total cellular RNA was extracted with an RNeasy purification kit
(Qiagen), and 2 pg RNA was reverse-transcribed (RT) at 42°C for
90 minutes with 50 pmole oligo (dT)17 primer, 0.5 U/puL cloned
RNase inhibitor (Takara Bio, Shiga, Japan), 10 mM dithiothreitol,
1 mM deoxyribonucleoside triphosphate, and 50 U Expand Re-
verse Transcriptase (Roche Diagnostics). Aliquots (1/10) were
subjected to PCR using primer pairs specifically amplified with
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human and murine R-PK c¢DNA, hRPK-F (5'-TGGCCCAGC
CTACCCTTGTA-3')/hRPK-R (5'-CTTAAAGGTGGGGCTTTG
GA-3') and mRPK-F (5-GCAGATGATGTGGACCGAAG-3')/
mRPK-R (5'-CTAGATGGCAGATGTGGGACTA-3'), respectively.
The reaction mixtures were subjected to 40 cycles of amplification
consisting of 94°C for 20 seconds, 60°C for 10 seconds, and 72°C
for 10 seconds for hRPK and 94°C for 20 seconds, 60°C for 20
seconds, and 72°C for 20 seconds for mRPK in a GeneAmp
PCR system 2400 (Roche Diagnostics, Switzerland), and sepa-
rated using 2% agarose gel electrophoresis.

For Western blot analysis, cells were harvested, followed by
washing with phosphate-buffered saline twice. Following three-
times freezing and thawing in extraction buffer (10 mM Tris/
HCI, pH 8.0, 10 mM MgCl,, 0.003% 2-mercaptoethanol, 0.02
mM ethylenediamine tetraacetic acid), cell extracts were obtained
for Western blot analysis. Protein assays were performed by the
method of Bradford using a commercial kit (Bio-Rad Laborato-
ries, Hercules, CA, USA).Western blot analysis was conducted us-
ing anti-rat L-PK (kindly provided Tamio Noguchi, Nagoya
University) and ECL advance Western Blotting Detection Kit
(Amersham Biosciences, Buckinghamshire, UK).

PK and lactate dehydrogenase (LDH) activity was measured,
as described [12].

Microarray analysis

To prepare high-quality total cellular RNA for the GeneChip as-
say, RNA was extracted with modified protocols using the TRIzol
LS (Invitrogen) and RNeasy purification kit (Qiagen). Briefly,
cells were harvested with no washing step, and immediately ho-
mogenized with the RLT buffer. The lysate was then mixed with
3 volumes of the TRIzol LS. After a 10-minute incubation at
room temperature, the sample solution was mixed with an equal
volume of chloroform. The sample was centrifuged at 10,000g
for 15 minutes at 4°C, and then the upper aqueous phase was
transferred to a fresh tube. After mixing with an equal volume
of 70% ethanol, the sample was incubated for 10 minutes at
room temperature. Without any flash step, the sample solution
was transferred to the RNeasy column, and then processed by
the manufacturer recommended protocol.

To normalize the variation in data based on the cell count, we
used Bacillus subtilis RNA for an external standard signal, which
was added to the cell lysate in proportion to the sample’s DNA con-
tents [ 13]. Ten microliters of cell lysate was provided for DNA quan-
tification using Picogreen (Invitrogen). GeneChip (Affymetrix,
Santa Clara, CA, USA) analysis was carried out according to the
Affymetrix-recommended protocols. Processed RNA was hybrid-
ized to the Affymetrix Murine Genome 430A arrays (22960 probe
sets). Signal values were calculated from scanned images by the Af-
fymetrix Microarray Operation System (GCOS). The cell sample
was pooled from six culture dishes at each condition and one
GeneChip was used per one pooled sample.

Data analysis

Data were normalized by an original program (SCal), which pro-
cesses data in proportional conversion based on the DNA content
of each biosample [13]. This DNA content-based normalization
method improves the measurement accuracy of GeneChip. For ex-
ample, a series of samples was measured by quantitative PCR and
Affymetrix GeneChip microarrays using this method, and the
results showed up to 90% concordance [13].
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To identify differentially expressed genes, we used an empiri-
cal threshold calculated by an original algorithm (Fx). The Fx
threshold is based on the signal intensity level and is calculated
as follows: ¥ = X - (1 + RC* "2 My and ¥y = X - (1 + C™'e
My (Fx1 and Fx2 respectively; C and w are constant parameters
reflecting actual measurement data by GeneChip hybridized with
the standard sample). C and w were set to 3.0 and 2.5, respec-
tively, which was equivalent to p < 0.02. In the scatter plot, the
spots above the Fx1 line were evaluated as upregulated, and the
spots below the Fx2 line were evaluated as downregulated.

Results

SLC3 is more susceptible than

the control to apoptosis due to glycolytic inactivation
Figure | shows flow cytometric analysis using annexin V
(horizontal axis) and rhodamine 123 (vertical axis) to ex-
amine the effects of glycolysis inhibition on Friend leuke-
mic cells with or without R-PK mutation. SLC3 showed
spontaneous apoptosis during routine passage, and apopto-
sis preceded mitochondrial dysfunction in the R-PK-—
deficient erythroleukemia cells as reported previously [6].
The result showed that a part of apoptotic cells kept similar
mitochondrial transmembrane potentials and that SLC3
were much more susceptible to glucose deprivation as
well as 2-DG.

Overexpression of wild-type
R-PK decreases apoptosis of SLC3
In order to evaluate how wild-type R-PK rescues apoptotic
phenotypes, we established two stable transfectants of
SLC3 with overexpression of the human R-PK cDNA. Fig-
ure 2 shows RT-PCR and Western blot analysis of a parental
SLC3 and SLC3-hRPK.Hi (hRPK.Hi) and SLC3-hRPK.Lo
(hRPK.Lo). As shown in Figure 2A, the expression level of
the transgene was higher in hRPK.Hi than hRPK.Lo. Over-
expression of human R-PK suppressed endogenous R-PK
expression as observed in the lane of hRPK.Hi.
Enzymatic analysis of transfectants revealed that PK ac-
tivities of hRPK.Lo and Hi were 17.2 and 24.2 IU/mg pro-
tein, respectively. The PK activity of hRPK.Hi was almost
comparable to parental SL.C3, 23.5 IU/mg protein. It should
be noted that endogenous LDH activity was decreased by
transgene expression, leading to a PK/LDH ratio increase
from 0.4 (SLC3) to 0.48 (hRPK.Lo) and 0.6 (hRPK.Hi).
We evaluated apoptosis of the two transfectants by cell
cycle analysis. Figure 2C shows that the expression of
wild-type R-PK decreased the number of cells at the sub-
Go/G, stage. While hRPK.Lo showed almost the same
number of sub-Gy¢/G, cells (55.5%) as SLC3 (57.4%),
only 19.3% of hRPK.Hi were arrested at the sub G;-stage.
Because apoptotic cells were rescued from apoptosis in an
R-PK expression level-dependent manner, it is most likely
that R-PK activity is required to suppress apoptosis of
erythroid cells.
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Microarray analysis elucidates the differential

expression of genes involved in reactive

oxygen species removal, cell cycle, and apoptosis

Gene expression profiles between the two transfectants and
the parental SLC3 cell line were analyzed by DNA micro-
array analysis. After exchanging culture medium, SLC3,
hRPK.Lo, and Hi were sampled at 24 and 67 hours, which
were the phase of reentry into cell cycling and of subcon-
fluence, respectively. Transgene expression upregulated
only about 2% (469 probe sets) of genes, whereas approx-
imately 25% (5754 probe sets) of genes were downregu-
lated both in hRPK.Hi and hRPK.Lo at 24 and/or
67hours. As shown in Figure 3B, major categories of the
downregulated genes involved the cell cycle, development,
and apoptosis. Proapoptotic genes including Bad, Bnip3,
and Bnip3!, as well as Casp 2, 6, 7, and 8 were downregu-
lated (Figs. 3A and 4).

Genes of key glycolytic enzymes such as hexokinase-2
(Hk2), phosphofructokinase (Pfkl), phosphoglycerate
kinase (Pgkl), and PK (Pkir) were downregulated, and ex-
pression levels were characteristically decreased after 67
hours of transfection, suggesting that suppression requires
protein synthesis.

It should be noted that genes for antioxidant protein,
such as peroxiredoxin 1 (Prdxl) and related genes, such
as catalase (Cat), thioredoxin reductase 1 (Txnrdl), and
glutaredoxin 1 (Glrx!), which have a role in the modulation
of oxidative stress, are also downregulated. As for Prdx2,
expression change by the transgene was not evident. Intra-
cellular reactive oxygen species (ROS) are known to cause
DNA damage, inducing the expression of DNA repair
genes. In this experiment, expressions of genes involved
in DNA repair were decreased, including Brcal, Brca2,
and Rad51.

PK gene mutation and glycolytic

inhibition by 2-DG augment intracellular ROS

We examined intracellular ROS in SLC cells and control
CBA2 cells by 2’,7'-dichlorofluorescin-diacetate (DCFH-
DA), an indicator of the intracellular formation of hydrogen
peroxide and free radicals. Nonfluorescent DCFH-DA turns
into DCFH (2',7'-dichlorofluorescin) in the presence of hy-
drogen peroxide, and then DCFH is quickly photo-oxidized
to fluorescent DCF (2’,7'-dichlorofluorescein).

Figure SA shows that SLC3 is hypersensitive to a glyco-
lytic inhibitor, 2-DG, producing intracellular DCF by add-
ing 1’ mM 2-DG. In contrast, control CBA2 cells do not
produce DCF even at 10 mM 2-DG for 30 minutes.

Reduced glutathione (GSH) is an important antioxidant
in erythrocytes. GSH is produced by a two-step enzymatic
reaction involving y-glutamylcystein synthetase and gluta-
thione synthetase (GSH-S). Apoptosis induced either by the
glycolytic gene mutation (SLC3) or the glycolytic inhibitor
(CBA with 2-DG) was suppressed by preincubation with
the glutathione precursor, NAC (Fig. 5B). Finally, the



Control

Glucose
deprivation

2-deoxy-glucose

10.0mM

0.1mMm

1.0mM

RMI23

RM2)

RN 23

RN123

RR123

3.9%
-
10° 10’ 16* 10°* 10°
AmnexnV.AlexaSes
E
5.7%
8.1%
2
10° 10' 10* 10? 10°
Annexin-AlexeSES
5 - -
1.3%
g
2.3%
8
10° 10° 167 10° 10°
AmnexinY-Alexas68

S
2.8%
8 -
10 10" 0? 407 10
Areexinh.Alexeiss
er —— -
4.7%

10°

't srd

-486-

RN123

RNM23

RM123

RM123

Rh123)

10

10

2 H
13.0%
%
10° 1 10 10’ 10
Arcexinv-Alexase3
S
13.0%

10+

100

25.0%
23.5%
10* 10° 10° 10°
Annexiny-AexatEs
—— e e
29.1%




1194 K.-1. Aisaki et al./ Experimental Hematology 35 (2007) 11901200

A RT-PCR B Anti-rat L-PK Al
o — [o] —
3 I 3 i
8 8 ¥ £ 5 £ £
§ 3 g ¢ a £ £
— —
c SLC3 hRPK.Lo hRPK.Hi
g &
57.4% 55.5% . 19.3%

AN

VAN ]

10° 0’ 102 10° 10°

P ey T TR

102 102 10° 0! 102 10°

DNA contents

Figure 2. Establishment of the transfectants, SLC3-hRPK.Hi (hRPK.Hi) and SLC3.hRPK.Lo (hRPK.Lo), by introducing the human red blood cell type-
pyruvate kinase (R-PK) gene into murine R-PK —deficient cells. Transgene-expression was confirmed by reverse transcriptase polymerase chain reaction
(A) and Western blotting (B). The expression level of hRPK.Hi was higher than that of hRPK.Lo. (C) Apoptosis induction in the PK-deficient ceils and
transfectants. Transfected human R-PK recovered the glycolytic function and showed reduced spontaneous apoptotic changes. The numbers in figures rep-

resent the apoptotic change ratio.

forced overexpression of the PK gene reduced intracellular
ROS in an expression-level dependent manner (Fig. 5C).

Discussion

Overexpression of human R-PK in SLC3 results in the re-
duction of apoptotic cells (Fig. 2C), and DNA microarray
analysis showed that genes involved in the cell cycle,
DNA repair, and antioxidants were downregulated. In gen-
eral, gene expression levels of transfectants were lower than
that of SLC3 (Fig. 3). However, aberrant apoptosis and in-
valid cell proliferation were restrained in the transfectants.
These observations suggested that the cellular activity was
not suppressed but was reverted to the normal level by the

transgene. It is most likely that the candidate genes sup-
pressed in transfectants were induced in R-PK mutant cells.

Although there were several candidate genes attributing
to apoptosis-induction in SLC3, it was still unclear whether
these genes were associated with each other or independent.
However, there was a possibility that a signal cross-talk phe-
nomenon occurred [14]. Bad, a gene encoding a member of
the Bcl2-family proapoptotic molecules in mitochondria was
significantly downregulated by the transgene (Figs. 3A and
4). Danial et al. [15] reported that Bad, BCL2-antagonist of
cell death, formed a functional holoenzyme complex together
with several molecules, such as glucokinase (hexokinase-4)
in liver mitochondria, and contributed to apoptosis induction
by glucose deprivation. Our observation suggested that Bad

Figure 1. Apoptosis induced by glycolytic inhibition in erythroid cell lines. Glucose deprivation or exposure to 2-deoxyglucose inhibits glycolysis and fi-
nally causes apoptosis. The red blood cell type-pyruvate kinase (R-PK)—deficient erythroid cell line (SLC3) is more susceptible than wild-type cells (CBA2)
in these conditions. The horizontal axis shows AnnexinV-Arexa568 (= apoptotic change) and the vertical axis shows Rhodamin123 fluorescence (= mito-

chondrial membrane potential).
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All probe sets were categorized by the Biological Process Ontology keywords provided by the Gene Ontology project (http://www.geneontology.org/).
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Figure 4. Continued

could be involved in the apoptosis induced by glycolysis
defect in erythroid cells as well as in the liver.

The genes of apoptosis-inducers related to hypoxia such
as Bnip3 and Bnip3!, which are known as inducible genes
by hypoxia-inducible factor-1e., were inactivated markedly
by the forced expression of the wild-type R-PK gene. Al-
though the extent of downregulation was smaller than for
Bnip3, Bnip3l showed a significant decrease of expression
by the transgene (Fig. 3A). Moreover, the downregulation
was more obvious at 24 hours, suggesting that these genes
may contribute to the initial response caused by a glycolytic
defect. These observations strongly suggested that the apo-
ptosis induction by the glycolysis disorder was executed by
the Bnip3-Bnip3! signal.

It is noticeable that several genes important for respond-
ing to oxidative stress are upregulated, suggesting that
R-PK deficiency might account for intracellular ROS pro-
duction. This speculation is supported by the following
experimental observations: Firstly, SLC3 cells were more
sensitive to glycolytic inhibitions such as glucose depriva-
tion and supplementation with 2-DG (Fig. 1), and these
conditions induced ROS production detected by DCFH-
DA (Fig. 5A). Apoptotic changes induced by 2-DG were
partly rescued by preincubation with the glutathione precur-
sor (Fig. 5B). Finally, transgene expression reduced intra-
cellular ROS in an expression-level—dependent manner
(Fig. 5C).

Glycolytic disorders may cause cellular conditions sim-
ilar to those of hypoxia. Shim et al. [16] reported that
induction of the LDH-A gene by c-Myc was advantageous
to transformed cells that exist under hypoxic conditions

[15]. However, glucose deprivation induces the extensive
apoptosis of cells overexpressing c-Myc. Overexpression
of LDH-A alone in fibroblasts is sufficient to sensitize cells
to this glucose deprivation-induced apoptosis. They pro-
posed a hypothesis that LDH-A was a downstream target
of c-Myc that mediates this unique apoptotic phenotype.
We noticed that pyruvate was the final product as well as
the substrate of the PK and LDH reaction, respectively.
Both LDH hyperactivity and PK deficiency may cause the
depletion of intracellular pyruvate, suggesting that pyruvate
has an important role in preventing apoptosis.

Several studies have revealed that pyruvate acts as an an-
tioxidant and that PK has a protective role against oxidative
stress in this respect. Brand et al. [17] reported that prolif-
erating thymocytes mainly depend on energy derived from
aerobic glycolysis, and that their sensitivity to 12-myristate
13-acetate—induced ROS production is much lower than
that of resting thymocytes, which produce ATP mainly
through oxidative phosphorylation. They suggested that
pyruvate functions as an ROS scavenger, because the incu-
bation of proliferating thymocytes with pyruvate reduced
ROS formation.

The PK-overexpressing neuronal cells could attenuate
oxidative stress and maintain cell viability [18]. Lee et al.
[19] showed that hydrogen peroxide depleted intracellular
GSH in human umbilical vein endothelial cells, and that
was prevented by pyruvate but not by L-lactate or aminoox-
yacetate. The activation of caspases was strongly inhibited
by pyruvate, but markedly enhanced by L-lactate and ami-
nooxyacetate, implicating the redox-related antiapoptotic
mechanisms of pyruvate. Myocardial ischemia-reperfusion

Figure 4. Representative list of the genes affected by the functional recovery of glycolysis. Genome-wide expression analysis was performed using Affy-
metrix GeneChip Mouse Expression Array 430A, which contains about 20,000 genes. In the comparison among hRPK.Hi, hRPK.Lo, and SLC3, about 6000
genes were downregulated and about 500 genes were upregulated by the functional recovery of glycolysis at 24 and/or 67 hours after regular passage. These
lists contain the affected genes related to apoptosis and/or the oxidative stress response.
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Figure 6. Glycolytic defect causes oxidative stress and hypoxia-like signal activation. Pyruvate, which is final metabolic product of the glycolytic pathway,
acts as an antioxidant. Therefore, glycolytic defect elevates intracellular reactive oxygen species (ROS) and causes cellular damage, such as DNA damage and
lipid oxidation. At the same time, glycolytic defect is most likely to activate signal transduction through hypoxia-inducible factor-1a (HIF-1a). These cellular

responses could be accountable for the apoptosis induced by glycolytic defect.

is reported to be associated with bursts of ROS, such as su-
peroxide radicals, and cardiac superoxide formation can be
inhibited by pyruvate [20]. Thus cytotoxicities due to car-
diac ischemia-reperfusion ROS can be alleviated by redox
reactants such as pyruvate. These results support our
 present data, which showed that a mutation of the PK
gene as well as inhibition of glycolysis by 2-DG augmented
intracellular ROS of erythroid cells, leading to apoptosis.
Introduction of the wild-type PK gene into SLC3 cells
partly reduced ROS and apoptosis (Figs. 2C and 6C).

In human RBC, the most important antioxidant is GSH.
Mutations of enzymes involving the synthesis and reduction
of GSH, such as y-glutamylcystein synthetase, GSH-S, glu-
tathione reductase, and glucose-6-phosphate dehydrogenase
account for the shortened RBC survival [1,21]. Recently,
Neumann et al. [22] and Lee et al. [23] reported the essen-
tial roles of both peroxiredoxin (Prdx) 1 and 2 in RBC pro-
tection from oxidative stress. The hemolytic anemia of
mice with targeted inactivation of Prdx/ is characterized
by an increase in erythrocyte reactive oxygen species, lead-
ing to protein oxidation and Heinz body formation. Simi-

larly, the Prdx2 knockout mice had Heinz body-positive
hemolytic anemia with splenomegaly. The dense RBC frac-
tions contained markedly higher levels of ROS. These stud-
ies highlighted a pivotal role of Prdx as a scavenger of
hydrogen peroxide in RBC. Prdx] may be concerned
.with the initial response to glycolytic deficiency, because
the gene expression in SLC3 was higher than that in trans-
fectants only at 24 hours (Fig. 3A). The mechanisms
responsible for upregulation of Prdx/ and similar antioxi-
dant enzymes in SLC3 remain to be elucidated.

It is most likely that the main pathogenesis of PK defi-
ciency is decreased ATP production due to impaired glycol-
ysis, resulting in the premature destruction of RBC in the
reticuloendothelial system, i.e., extravascular hemolysis. In
most cases, hemolysis is partly compensated by enhanced
erythropoiesis. We have previously shown that the numbers
of hematopoietic progenitors including colony-forming
unit (CFU)-erythroid, CFU-granulocyte macrophage, burst-
forming unit-erythroid, and CFU-granulocyte-erythrocyte
monocyte-megakaryocyte were increased in Pk-1° mice
[10]. The proliferation of erythroid progenitors might require

Egure 5. The oxidative stress pathway might play some role in the apoptosis induced by glycolytic disorder. (A) The SLC3 cells produce 2',7'-dichloro-
fluorescein (DCF) continuously with and without 2-deoxyglucose (2-DG) due to the red blood cell type-pyruvate kinase (R-PK) defect. The control CBA2
cells produce DCF with 10 mM 2-DG for 30 minutes. The gray area shows the nontreated group and the red line shows the treated group with 2-DG. The
horizontal axis shows the fluorescence intensity of the DCF. (B) The apoptosis induced by glycolytic defect or by glycolysis inhibitor was suppressed by the
preincubation with the glutathione precursor, N-acetyl-cysteine (NAC). The gray area shows the nonpretreated group and the blue line shows the pretreated
group with NAC. The horizontal axis shows the fluorescence intensity of the Annexin V-Alexa568.
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activation of glycolysis in order to suppress intracellular
ROS. Therefore, R-PK deficiency becomes a serious problem
for erythroid cells to avoid apoptosis. In summary, we con-
cluded that the premature destruction of RBC as well as ap-
optosis of erythroid progenitors accounts for the
pathogenesis of R-PK deficiency. .

Although most severe cases die either in utero or during
the neonatal period [24,25], there is no curative therapy of
PK deficiency except hematopoietic stem cell transplanta-
tion [26] at present. Because hematopoietic stem cell trans-
plantation may accompany life-threatening complications,
a safer treatment should be considered. Studies on the apo-
ptotic induction of erythroid progenitors in R-PK deficiency
may be useful for the identification of molecular targets of
causal treatment.
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