(Scion Corporation, USA).



Results

Figure 2 shows successive images obtained from CA after stenting (top), as well
as the enhanced images (middle). To extract the vortex movement, after the
post-processing of two images, two images at successive times were subtracted
one by one (bottom). The subtracted images exhibit the fluid entering the
aneurysm with sufficient image contrast. The fluid in the aneurysm was
composed of an inflow zone at the distal neck and an outflow zone at the
proximal neck. A rotating vortex was formed in the distal zone of the aneurysm in
each systole phase. The vortex circulated along the aneurysm wall rotating on
itself. As the vortex traveled, it grew in diameter and lost its cohesion. The fluid in
the aneurysm was pushed out in the diastole phase and at thg beginning of the
following systole phase. After enhancement of these images, two images of
successive times were subtracted one by one to extract the vortex movement
and then the center of the vortex was traced to measure the movement distance.
The slipstream line method was employed to compare and validate the images
by contrast with CA. Figure 3 shows successive enhanced images of the

slipstream line indicating vortex movement. The inflow and outflow zones and



the rotating direction of the vortex are the same as in the images from the CA
with contrast.

Figure 4 shows a graph of movement distances depending on time of the
vortexes without the stent after application of the S\‘/C method. From Figure 5,
which shows the distances with the sient, it can be seen that the contrast with
CA corresponds with the slipstream line. Figures 4 and 5 show that the speed of
movement was reduced after stenting.

Table 1 shows the flow speed after applic‘ation of the SVC method from 0 to 0.4
seconds, respectively. The speed with CA was consistent with that with the

slipstream line. The speed was reduced after stent placement.



Discussion

Flow speed in the anéurysm cavity is one of the most important parameters to
evaluate circulation of the blood in a cerebral aneurysm, shear stress, and the
functioning of medical devices.

The integration of the SVC method into medical imaging devices may allow not
only medical engineers but also all clinical operators to use this method for
analysis of the flow in aneurysms and evaluation of the influence of medical
devices on blood speed. The results of contrast movements were consistent with
those of the slipstream line, indicating the possibility of using the SVC method in
the medical field.

The SVC we employed in our study consisted of several free or relatively
inexpensive software packages, which means that many operators or
technicians can easily adopt this system.

The contrast image was performed by CA, which is cépable of imaging 25 fps.
When compared with conventional frames per second such as 2 or 6 fps, CAcan
trace the vortgx more smoothly and accurately (15).

The reduction in speed of vortex movement after stent placement in the



aneurysm was consistent with many previous results (7, 8, 12, 17, 19). Such
réduction may lead to formation of a thrombus and allow repair of the aneurysm
by occlusion.

Several drawbacks of application of the SVC method to medical images should
be mentioned.

The tubular model, which was simplified with one straight parent artery and one
simple aneurysm in this study, may induce a different flow pattern than that of a
realistic model or that of an actual patient. However, since Barath performed the
SVC method with a realistic model and the employed particles exhibited a
rotating vortex along the aneurysm (17), it should be possible to apply and carry
out this method with CA in a realistic model or patient if the vortex is detected.
The tubular model made of silicone may limit lateral displacements of the wall
with the pulsatile flow because silicone has a lower compliance than a real
vessel. The wall displacements may be larger when used with the Poly (vinyl
alcohol) model developed by Ohta et al. (20) and may change the flow pattern.
Nitinol used for a self-expandable stent is hard to visualize with angiography, and
with stent markers, only the position of a stent can be detected. Although the

LEO stent (Balt, France) w'ith'highly radiopaque wires allowed greater visibility in



this study, the structure near the neck was invisible compared with the case of a
coronary stainless steel stent (21).

The spatial resolution of DSA should be improved if contrast images are to be
used as way of measuring flow speed. The resolution in this study was 0.36
mm/pixel and so there were only about around 28 pixels on the diameter of
aneurysm. Micro- angiography may provide a good view around the neck of an

aneurysm in perforated vessels (22).

Conclusion

To measure the blood flow speed in a cerebral aneurysm using DSA, the SVC
method was applied to successive images of CA. The obtained successive
images were clear, indicating the possibility of its use for evaluating the impact of
stents on flow speed in cerebral aneurysms. The rotating vortex along the
aneurismal wall was observed and its movement was consistent with the images

of the slipstream line.
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Figure captions
Figure 1 Transparent silicone model of an aneurysm with a 5 mm neck and a
diameter of 10 mm on a straight parent artery with a diameter of 3.5 mm.

Figure 2 Successive images obtained from CA and the post-processing of the
images. The top shows raw images, the middle presents an enhanced
images and the bottom shows subtracted images.

Figure 3 Successive images obtained from a slipstream line and the
post-processing of the images. The top shows raw images and the bottom
presents subtracted images.

Figure 4 Graph of movement distances depending on time of the vortexes
without the stent application of the SVC method for comparison between
CA and slipstream line.

Figure 5 Graph of movement distances depending on time of the vortexes with
the stent after application of the SVC method for comparison between CA
and slipstream line. The flow speeds are reduced after the stenting when
compared with Figure 4.

Table 1 List of flow speeds after application of the SVC method from 0 to 0.4
second
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Safety Evaluation of Tissue Engineered Medical Devices Using Normal Human
Mesenchymal Stem Cells

Rumi SAWADA,* Tomomi ITO, and Toshie TSUCHIYA

Division of Medical Devices, National Institute of Health Sciences, 1-18-1
Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan

(Received January 17, 2007)

Several recent studies demonstrated the potential of bioengineering using somatic stem cells in regenerative medi-
cine. Adult human mesenchymal stem cells (hMSCs) derived from bone marrow have the pluripotency to differentiate
into cells of mesodermal origin, e.g., bone, cartilage, adipose, and muscle cells; they, therefore, have many potential
clinical applications. On the other hand, stem cells possess a self-renewal capability similar to cancer cells. For safety
evaluation of tissue engineered medical devices using normal hMSCs, in this study, we investigated the expression levels
of several genes that affect cell proliferation in hMSCs during in vitro culture. We focused on the relationship between
the hMSC proliferation and their transforming growth factor § (TGFf) signaling during in vitro culture. The prolifera-
tion rate of hMSCs gradually decreased and cellular senescence was observed for about 3 months. The mRNA expres-
sions of TGFB1, TGFf2, and TGF receptor type I (TGFBRI) in hMSCs increased with the length of cell culture. The
mRNA expressions of Smad3 increased, but those of c-myc and nucleostemin decreased with the length hMSCs were in
in vitro culture. In addition, the expression profiles of the genes which regulate cellular proliferation in hMSCs were sig-
nificantly different from those of cancer cells. In conclusion, hMSCs derived from bone marrow seldom underwent spon-
taneous transformation during 1—2 months in vitro culture for use in clinical applications. In hMSCs as well as in

" epithelial cells, growth might be controlled by the TGFS family signaling.

Key words——human mesenchymal stem cells; tissue engineered medical devices; proliferation; transforming growth

factor §
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Fig. 1. Proliferation of hMSC in 3rd, 5th, 7th, and 12th
Passages!®
hMSC were seeded at 1.7 X 10° cells/ #60 mm dish (6000 cells/cm?) , and
cells were counted after 2, 4, and 8 days. The initial cell number (0 day) is ex-
pressed as 1, and the other cell numbers (2, 4, and 8§ days) are relative to that
of day 0. n=3.
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Table 1. Comparison of Gene Expressions in hMSC a
Month Culture) and hMSC (Over 2 Months)

The genes concerned with the following functions were
ip-regulated with the culture term

s Cell cycle

o Cell adhesion receptors/proteins

* Immune system proteins

* Oncogenes and tumor suppressors

» Stress response proteins

e DNA binding and chromatin proteins

« Cell receptors (by ligands)

» Cell receptors (by activities)

« Intracellular transducers/effectors/modulators

» DNA synthesis, recombination, and repair

The genes concerned with the following functions were
down-regulated with the culture term

+ Membrane channels and transporters

» Metabolism

¢ Translation

* Apoptosis associated proteins

* RNA processing, turnover, and transport
¢ Protein turnover
» Cytoskeleton/motility proteins
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Fig. 2. Effect of In vitro Culture Length on the mRNA Ex-
pressions of c-myc (A) and Nucleostemin (B) in hMSC!®
Expressions of the two genes relative to GAPDH in confluent cultures of
hMSC in the 3rd, Sth, 7th, and 12th passages were investigated by quantita-
tive RT-PCR. Mean values with standard deviations from three independent
experiments are presented. Asterisks denote statistically significant differ-
ences compared with the 3rd passage (*p<0.05).
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Fig. 3. Effect of In vitro Culture Length on mRNA Ex
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time RT-PCR. Mean values with standard deviations from three independent experiments are presented. Asterisks denote statistically significant differences com-
pared with the 3rd passage (*p<0.05).
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