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Figure 2 Viability of protein transduction domain (PTD)-treated
cells. Hela cells (a) and Jurkat cells (b) were incubated with serially
diluted biotin-conjugated Tat, antennapedia (Antp), Rev and VP22 at
37 °C. After 24 h, cell viability was analysed using a WST-8 assay.
Data shown are the mean £ s.d. of triplicate assays.

and Rev induced significant LDH leakage in Jurkat cells, but
only low LDH leakage was detected in Antp-treated Hela
cells (Figure 3). The membrane-perturbing effect of Antp and
Rev contributed to the uptake of peptides, which are shown
in Figure 1. Jurkat cells appear more sensitive to Antp or Rev
treatment than Hela cells; this difference in cytotoxicity and
translocation efficiency may indicate a difference in the
PTD-uptake mode.

Intracellular transduction mechanism of PTDs

The results of in vitro studies suggest that PTDs enter the cell
via an energy-dependent endocytotic pathway (Lundberg
et al., 2003; Richard et al., 2003). In particular, studies using
various macropinocytosis inhibitors, such as methyl-p-
cyclodextrin, to deplete cholesterol from the membrane
(Grimmer et al., 2002; Liu et al., 2002), cytochalasin D, to
inhibit F-actin elongation (Sampath and Pollard, 1991), or
amiloride, to inhibit the Na*-H* exchanger (West et al.,
1989), indicate that Tat is taken up into the cell via lipid raft-
dependent macropinocytosis. To the best of our knowledge,
however, few comparative studies have analysed the cellular
uptake pathway of the four PTDs discussed in this paper.
Therefore, we used flow cytometry analysis to determine
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Figure 3 Membrane integrity of protein transduction domain
(PTD)-treated cells. Hela cells (a) and Jurkat cells (b) were incubated
with serially diluted biotin-conjugated Tat, antennapedia (Antp), Rev
and VP22 at 37 °C. After 3h, the release of lactate dehydrogenase
(LDH) was analysed. Data shown are the mean*s.d. of triplicate
assays.

whether PTD uptake is energy dependent or occurs via lipid
raft-mediated macropinocytosis. First, we treated cells with
PTD-FAM at 37 or 4 °C and then measured cell fluorescence
(Figure 4). At 4°C, transferrin, which enters cells by clathrin-
dependent endocytosis (Schmid, 1997), inhibited the trans-
duction efficiency compared with that at 37 °C. All four PTDs
had low transduction ability at 4°C, indicating that their
cellular uptake was energy dependent. We next examined
the PTD-FAM uptake efficiency in methyl-p-cyclodextrin-,
cytochalasin D- and amiloride-treated HelLa cells. These cell
treatments inhibited PTD-FAM incorporation in a dose-
dependent manner, but transferrin was not affected
(Figure S). Furthermore, in Hela cells treated with PTD-FAM,
only punctuate fluorescence was observed using confocal
laser scanning microscopic analysis (Figure 6). These results
indicated that all the PTDs evaluated in this study enter the
cell through the macropinocytotic pathway and that most of
them were trapped in intracellular vesicles, the macropino-
somes.

Intracellular localization of PTD-protein conjugates
We next examined the intracellular behaviour of the
individual PTDs in more detail. To investigate whether
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Figure 4 Effects of temperature on protein transduction domain
(PTD) transduction efficiency. Hela cells were preincubated at 37 or
4°C for 1h prior to adding FAM-labelled PTDs or fluorescein
isothiocyanate-labelled transferrin for 3h. Cells were washed in
trypsin and analysed by flow cytometry. Data shown are the
mean +s.d. of triplicate assays.

individual PTDs are located in the same vesicles, we used
Tat-fused HA2 peptide (HA2-Tat), an influenza virus-derived
endosome-disrupting peptide. HA2-Tat improves the activity
of Tat-fused Cre recombinase (Wadia et al., 2004). Because
HAZ alone cannot enter the cell, HA2-Tat is thought to enter
the cell in a Tat-dependent manner and to disrupt the
membrane of endosomal vesicles in which the Tat cargo is
trapped. Thus, if Antp, Rev and VP22 are trapped in the same
vesicles as Tat, the fluorescence should spread throughout
the cytosol following cotreatment of the cells with HA2-Tat.
As predicted, in HeLa cells cotreated with Antp-, Rev- or
VP22-Venus and HA2-Tat, the Venus-derived fluorescence
spread throughout the cytosol, whereas in the cells treated
with Antp-, Rev- or VP22-Venus alone, only punctuate
fluorescence was observed (Figure 7). These results suggested
that all the PTDs evaluated in this study entered the cell
through a macropinocytotic pathway and were trapped in
the same vesicles as Tat.

Discussion

In the present study, we have systematically compared PTD-
mediated molecular transduction mechanisms. Our findings
indicated that individual PTDs have different levels of
transduction efficiency and cytotoxicity, suggesting that
PTD:s are internalized into live cells via different mechanisms.
We also examined the internalization pathway and intra-
cellular localization of Tat, Antp, Rev and VP22. Unexpectedly,
all the PTDs evaluated in this study entered the cell through
the macropinocytotic pathway and were trapped in the same
vesicles as Tat. The finding that the intracellular transduc-
tion pathways of the four PTDs were the same suggests that
the method of cell internalization does not contribute to the
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Figure 5 Effects of endocytosis inhibitors on transduction efficiency
of protein transduction domains (PTDs). Hela cells were pretreated
with a range of concentrations of (a) methyl-B-cyclodextrin, (b)
cytochalasin D or (c) amiloride for 30 min prior to adding FAM-
labelled PTDs or fluorescein isothiocyanate-labelled transferrin for 1 h
(a and b) or 30 min (c). Cells were washed in trypsin and analysed by
flow cytometry. Data shown are the mean % s.d. of triplicate assays.

differences in the PTD transduction efficiency or cytotoxi-
city. Although the reason for this phenomenon is not clear,
we speculate that the primary structure of the individual
PTDs or the cell surface proteins that interact with the
individual PTDs contribute to the differences in their
transduction efficiency and cytotoxicity.

The initial step in the mechanism of cellular entry of PTDs
is thought to be the strong ionic interaction between the
amino-acid residues of the PTDs and the plasma membrane
constituents. Because the translocation is solely physically
mediated, the charge distribution and amphipathicity of
the peptide and its interaction with the plasma membrane
is critical (Pujals et al., 2006). Although most PTDs, if not all,
contain a large number of basic amino acids, such as arginine
or lysine, the theoretical isoelectric point (pl) value of each
PTD used in this study was essentially identical (Tat, Antp,
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Figure 6 Intracellular behaviour of protein transduction domain (PTD)-FAM in living cells. Hela cells were treated with 10uM PTD-FAM for
3 h. Fluorescence images were acquired using confocal laser scanning microscopy and the signals were merged electronically. The nucleus was
counterstained with Hoechst 33342 (blue). From top to bottom: Tat-, antennapedia (Antp)-, Rev- and VP22-FAM. From left to right: FAM
(green), nucleus (blue), merged fluorescence and transmission image. Scale bars in each microphotograph indicate 20 um.

Rev and VP22 have pl values of 12.70, 12.31, 12.60 and
12.01, respectively). Therefore, the internalization efficiency
does not appear to depend on the cationic features of the
PTDs.

The amphipathicity of the carrier is probably responsible
not only for the strong interaction with the lipid membranes
(Yandek et al., 2007), but also for the disruption of the
cellular membrane, which results in cell death (Hallbrink
et al., 2001; Jones et al., 2005; Saar et al., 2005; El-Andaloussi
et al., 2007). In terms of cytotoxicity, our data indicate that
Antp and Rev both disrupt the membrane (Figure 3), but Rev
does not contain an amphipathic structure. Furthermore,
there was no correlation between hydrophobicity and
transduction efficiency. Thus, differences in the PTD-
mediated transduction efficiency and cytotoxicity might be
due to the molecular weight or pl of the conjugated cargo.

The cellular events required for internalization, however,
differ between reports and are often conflicting. The first
mechanistic studies led to the proposal that PTD internaliza-
tion occurs rapidly in a receptor- and energy-independent
manner, perhaps by destabilizing the lipid bilayer or by the
formation of inverted micelles with subsequent release of
their contents within the intracellular space (Berlose et al.,
1996). More recently, an active mechanism based on
vesicular uptake was proposed as the general mode of cell

internalization of PTDs. In our experiment, although all four
PTDs tended to be present in the same vesicles, the detailed
mechanism for this colocalization is not yet known. It has
been suggested that PTD internalization requires cell surface
heparan sulphate proteoglycans (Tyagi et al., 2001; Console
et al., 2003; Ziegler and Seelig, 2004). Because Tat interacts
electrostatically with heparan sulphate proteoglycan present
on the cell surface, it is possible that some PTDs are taken
into the same vesicles when they interact with one heparan
sulphate proteoglycan. In contrast, as shown in Figure 7,
although fluorescence was observed throughout the cytosol,
punctate fluorescence was also observed when the cells were
cotreated with PTD-Venus and HAZ2-Tat. This
suggested that the PTDs did not all exist in the same vesicles
and that some PTDs entered the cell through another
pathway. This is just speculation, however, and we are now
using proteome analysis, such as liquid chromatography
coupled with mass spectrometry or two-dimensional gel
electrophoresis, to examine whether there are individual cell

finding

surface receptors for different PTDs.

In summary, our data suggest that Antp, Rev, VP22 and Tat
cross the plasma membrane and reach the macropinosomes
via different mechanisms. Our findings also indicate that
several issues, such as endosome entrapment and low cell
specificity, which limit the therapeutic activity of the cargo,
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Figure 7 Intracellular behaviour of protein transduction domain (PTD)-Venus in living cells. Hela cells were treated with 10 uM PTD-Venus
alone (a) or 10 um HA2-Tat (b) for 3 h. Fluorescence images were acquired using confocal laser scanning microscopy and the signals were
merged electronically. The nucleus was counterstained with Hoechst 33342 (blue). From top to bottom: Tat-, antennapedia (Antp)-, Rev- and
VP22-Venus. From left to right: Venus (green), nucleus (blue), merged fluorescence and transmission image. Scale bars in each
microphotograph indicate 20 pm.
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must be overcome before effective PTD-based drug delivery
carriers can be fully developed. We previously reported that
cotreatment with HAZ2-Tat enhances the cytosolic release of
Tat-fused peptide-blockers and their biological activities,
thereby overcoming the issue of endosome entrapment
(Sugita et al., 2007). Furthermore, although the transduction
mechanism of PTDs is not yet well understood, these
differences led us to explore the possibility of creating novel
PTDs. We successfully created novel PTDs that have higher
transduction efficiencies than Tat, using a unique phage
display-based screening strategy that we previously devel-
oped (Mukai et al., 2006; Kamada et al., 2007). Moreover,
based on our PTD-screening system, we are currently working
to create more useful PTDs with cell type specificity.
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We have generated the first TNFR1-selective antagonistic TNF mutant based on structural human TNF
variants using our phage display technology. This TNF mutant did not activate TNFR1-mediated responses,
although its affinity for TNFR1 was equivalent to human wild-type TNF (WiITNF). The TNF mutant neutralized
wtTNF-induced TNFR1-mediated bioactivity without influencing TNFR2-mediated bioactivity. In hepatitis
mouse models, the antagonistic TNF mutant significantly blocked liver injury caused by inflammation. These
results indicate that antagonistic TNF mutants may be clinically useful for anti-TNF therapy and that phage

display libraries of protein ligands can be used to select for receptor subtype-selective antagonists.
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Inflammation is induced by physiological and chemical stimu-
lation and is known to be mediated by the association of many
biological factors. Inflammation-mediating proteins, typified by
cytokines and chemokines, act in the host defense system by
stimulating lymphocytes, macrophages, and endothelial cells to
heal external injuries". When a productive balance of these me-
diators collapses, inflammatory exacerbation occurs. Long-
term over-expression of cytokines causes autoimmune disease?.
Thus, development of therapeutic techniques to remedy the im-
balance of cytokine production is necessary.

Tumor necrosis factor- a (TNF) is a major inflammatory
cytokine and has a central role in host defense and inflammation?®.
To exent its biological function, TNF binds to two receptor sub-
types, TNFR1 and TNFR2, which form homotrimers by
preassembling on the cell surface®. Deregulation of TNF pro-

duction promotes TNF-dependent pathologies and correlates with
the severity and progression of inflammatory diseases such as
rheumatoid arthritis (RA)%, inflammatory bowel disease®, sep-
tic shock™ and hepatitis®. TNF blocking agents (monoclonal
antibodies or soluble receptors) have shown significant clinical
efficacy in certain inflammatory diseases. The major impact of
TNF blocking agents on the immunological system, however,
raises some concerns about the safety of this approach, espe-
cially with regard to severe infections?, malignancies'® and im-
mune-mediated diseases'"). For example, in rheumatoid arthritis
and Crohn's disease, studiés indicated a higher incidence of tu-
berculosis reactivation'? and the induction of demyelination',
Although the distinction between the role of TNFR1 and
TNFR2 on the immune system remains unclear, TNF secreted
from activated immune cells in these diseases predominantly
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Fig.1 Generation antagonistic protein mutant for
receptor targeting

activates TNFR1 and accelerates inflammation. In addition, pre-
vious studies using animal models of diseases such as arthritis'®
and hepatitis'® indicated that mainly TNFR1 caused develop-
ment and exacerbation of inflammation. Moreover, given that in
mice lacking the TNFRI the clinical course of EAE is suppressed
both at the pro-inflammatory and the autoimmune phases, the
TNFRI1 is clearly indicated as an important target for therapy'®,
From this perspective, blocking TNFR 1 signal transduction may
emerge as a powerful and effective therapy for certain inflam-
matory diseases (Fig.1).

To develop receptor-selective protein ligands, several studies
have described useful mutant proteins created by the substitu-
tion of amino acids using a site-directed mutagenesis method, as
typified by Kunkel's method'™'®. 1t is difficull, however, to ob-
tain an exhaustive and functional panel of protein mutants using
this mutagenesis method. Alternatively, the phage display sys-
tem is a powerful in vitro technique that enables polypeptides
with desired properties to be selected from a large collection of
variants encoded by cDNAs in phagemid vectors (Fig.2). Fila-
mentous phage display of peptide or protein variants has been
widely used for rapid selection of protein variants that bind with
improved affinity and specificity to target molecules'. The key
feature of such selection schemes is that the genotype of a par-
ticular variant packaged inside a virion particle is linked to the
phenotype of a displayed protein or peptide that has been fused
to phage coat proteins, i.e., the gene IlI protein. Phage particles
can be selected by binding to an affinity matrix propagated in E.
coli and identified by DNA sequencing. These procedures allow
phage libraries 1o be subjected 1o a selection step, called “affinity
panning” . Recovered clones are identified by sequencing and

Fig.2 Benefit for engineering protein library using

phage display system

re-grown for further rounds of selection.

Using the phage display system, we previously isolated a
lysine-deficient TNF mutant from a protein library in which all
six lysine residues in the TNF molecule, including the receptor-
binding site, were simultaneously replaced with other amino
acids'**. This strategy created novel mutant TNFs that exhib-
ited only a slightly different mode of receptor-binding. In the
present study, we used the phage display system to isolate novel
TNFRI-selective antagonistic TNF mutants that efficiently in-
hibited a wide variety of TNFR1 mediated effects in vitroand in
vivo without affecting TNFR2-mediated bioactivity.

The selection of amino acids to be altered was based on data
from a point mutation study and a TNF structure-function study.
Residues (amino acids 89-94) that were shown to contribute to
TNFR binding were mapped onto the three-dimensional struc-
ture of human TNF. Then, these and other nearby residues were
selected for randomization to generate phage libraries (Fig.3).
Randomization of each of these residues was performed by PCR
with mutated primers in which an NNS codon was incorporated
at each randomized position. Each library contained a total of
six randomized residues.

To select TNF mutants from phage library that bound strongly
1o human TNFR1, the mutant TNF phage library was panned
against human TNFR 1. As a result, we identified ten candidates
as TNFR 1-selective antagonists and selected the most suitable
mutant that possessed the strongest antagonistic activity. To in-
vestigate the properties of this antagonistic clone, we examined
the binding kinetics and binding specificities of this mutant for
TNFR1 and TNFR2 using BIAcore and ELISA techniques, re-
spectively. The antagonistic TNF mutant had an affinity for
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Fig.3 Engineering TNF mutant phage display
library

TNFR1 equivalent to wiTNF, but almost no affinity for TNFR2.
We also measured the bioactivity of the TNF mutant via TNFR-
mediating response assays. The antagonistic TNF mutant bound
to TNFR1 but did not transmit the death signal. To determine
the ability of the TNF mutant to compete with wiTNF, we mea-
sured TNFR I-selective responses in the presence of both wiTNF
and TNF mutant. The antagonistic TNF mutant inhibited wtTNF-
induced cytotoxicity (Fig.4), caspase activation, and NF-«B
activation through TNFR1 in a dose-dependent manner. These
results suggest that the antagonistic TNF mutant is a competi-
tive antagonist, inhibiting TNFR 1-mediated pathways.

For the therapy of autoimmune disease, TNF blockades
(etarnercept, as p75-1gG Fc fusion protein and lenercept as pSS5-
1gG Fc fusion protein) have been developed. However, differ-
ences exist in the mechanisms of action of these agents that might
confer risks of infection and immunogenisity. There are some
reports that tuberculosis disease is a potential adverse reaction
from treatment with etanercept. Moreover, antibody formation
against lenercept was a significant problem which resulted in
significant reduction of the half-life of the receptor. Thus, much
is expected from the development of TNF receptor-selective
agents that inhibit disease-causing TNF bioactivity without in-
terfering host defense system against infection and antibody for-
mation. In the present report, we generated a receptor-selective
antagonistic TNF mutant through the use of phage display. How-
ever, there is a possibility of expressing the new function, which
binds to another receptor like as TNF receptor superfamily. There-
fore, the reasons of showing agonistic or antagonistic activity
should be examined via structural analysis of binding sites. We
are now analyzing the crystal structures of the complex formed
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Fig.4 Inhibitory effect of antagonistic
mutant TNF on TNF-induced cyto-
toxicity ’

Mouse fibrosarcoma L-M cells were treated with

wild-type TNF (10 ng/ml). and serial diluted mu-

tant TNF. After 48 hr incubation, ratio of cell death
were determined by methylene blue assay.

between the antagonistic TNF mutant and TNFR1 so as to better
understand the mechanisms of receptor subtype-selectivity.
While the functions of TNF and its receptors are unclear, their

signaling specificities are being examined in many TNF-related

studies. In this review, we studied mutant TNF antagonist that .

bound selectively to TNFR1. The findings from our TNFR1 and
TNFR2 study are applicable to the receptors in the TNFR super-
family that do not contain a cytoplasmic death domain. How-
ever, we also have produced TNF agonist that binds to TNFR1
and TNFR2. These selective agonists and antagonists are not
only therapeutically useful, but also are effective analytical tools
for elucidating TNF receptor function. Further functional stud-
ies of TNF receptors could uncover interesting receptor biology
and may yield additional targets for immunotherapy.
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