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ABSTRACT: In order to examine the possibility of determining the molecular mobility of
hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation
measurement, spin—spin relaxation and spin-lattice relaxation were measured for the
11 API hydrates listed in the Japanese Pharmacopeia using pulsed 'H-NMR. For
hydration water that has relatively high mobility and shows Lorentzian decay, mole-
cular mobility as determined by spin-spin relaxation time (T'2) was correlated with ease
of evaporation under both nonisothermal and isothermal conditions, as determined by
DSC and water vapor sorption isotherm analysis, respectively. Thus, Tz may be
considered a useful parameter which indicates the molecular mobility of hydration
water. In contrast, for hydration water that has low mobility and shows Gaussian decay,
T, was found not to correlate with ease of evaporation under nonisothermal conditions,
which suggests that in this case, the molecular mobility of hydration water was too low to
be determined by T5. A wide range of water mobilities was found among API hydrates,
from low mobility that could not be evaluated by NMR relaxation time, such as that of

the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated -
by this method, such as that of-the water molecules in ceftazidime hydrate.

© 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 9999:1-11, 2007
Keywords: NMR relaxation time; dynamics; hydrate; DSC; water vapor sorption

isotherm

INTRODUCTION

Correlations between chemical stability and
molecular mobility have been demonstrated for
various amorphous pharmaceuticals in the solid
state.! Furthermore, the chemical stability of
active pharmaceutical ingredient (API) hydrates
is suggested to be correlated with the molecular
mobility of water of hydration present in the
crystalline structure.®?
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DISCOVER SOMEIHING GREAT

Water molecules in API hydrates exhibit a
variety of physical states,*® suggesting a range
of molecular mobilities; water molecules incorpo-
rated into rigid crystalline structures may have
low molecular mobility, whereas less rigid struc-
tures contain water molecules with greater
mobility. Hydration water plays an important
role in determining the physical characteristics—
such as solubility® and flowability—of the API
hydrate. Therefore, an understanding of the
physical properties of hydration water, such as
molecular mobility, is critical in the formulation of
API hydrates.

The molecular mobility of water in solids may
be determined by various methods, such as die-
lectric relaxation spectroscopy’ and FT-Raman .
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Figure 1. Free induction decay for ceftazidime and
cefazolin sodium hydrates.

spectroscopy.® NMR is also utilized to determme
the molecular mobility of water in the solid state,?
and to examine the various mechanisms by which
solids interact with water.1®!! However, there
have been few studies in which the molecular
mobility of water in API hydrates was determined
using NMR. This may be because *H-NMR, even
high' resolution 'H-NMR, cannot separate the
peaks of the water protons from those of the

Table 1. Water Content of API Hydrates
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Figure 2. Free induction decay for quinidine sulfate
and scopolamine hydrobromide hydrates.

protons in other components, which prevents
specific determination of water mobility. Although
the preparation of API hydrate samples using 170-
labeled water allows to specifically determine the
mobility of the water molecules by "O-NMR,
unaffected by the other components, this
approach requires high cost and much labor.
Thus, determination of the molecular mobility of

Number of HzO per

Number of Hz0. per‘ Spin—Spin Relaxation

API Hydrate . Molccule Specified in JP Molecule Determined by KF of H,0O
Cefazolin sodium 5 4.67 Lorentzian
Ceftazidime 5 5.04 Lorentzian
Awmoxicillin 3 2.94 Lorentzian
Avnpicillin 3 2.96 Lorentzian
Berberine Chloride Not specified 2.67 Gaussian
Quinine hydrochloride 2 1.31 Gaussian
Scopolamine hydrobromide 3 2.32 Gaussian
Saccharin sodium 2 1.15 Gaussian
Pipemidic acid 3 29 Gaussian
Sulpyrine 1 0.98 Gaussian.
Quinidine sulfate 2 1.95 Gaussian
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Figure 3. DSC thermograms for four antibiotic
hydrates.

hydration water in API hydrates using NMR
- holds some challenges. \

However, it is possible to determine the mole-
cular mobility of hydration water. in API hydrates
by spin—spin relaxation measurement, if the spin—
spin relaxation time (T3) of the water protons is
significantly different from that of the API protons.
Furthermore, the spin-lattice relaxation time (T')
of the water protons may be a useful indicator of

water mobility, if the ratio of water protons to API

protons is sufficiently large, or if the water protons
- have a correlation time (z.) corresponding to the T
minimum, such that the T; of the water proton is
sensitively reflected in the measured T'; value
without being affected by spin diffusion between
the water and the API protons. Moreover, even if
the ratio of water protons to API protons is not
particularly large, and even if water proton does
not have a 1. corresponding to the Ty minimum, it
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Figure 4. DSC thermograms for API hydrates show-
ing two endothermic peaks.
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Figure 5. DSC thermograms for API hydrates show-
ing a single endothermic peak.

may be possible to compare the molecular mobility

‘of hydration water in API hydrates based on
measured T; values, if both of the T of the API
proton and the ratio of water protons to API
protons are similar for all of the API hydrates
compared. _

The purpose of this study was to examine the
possibility of determining the molecular mobility
of hydration water in API hydrates by NMR
relaxation measurement. Spin-lattice relaxation,
which reflects motions of MHz order, and spin—
spin relaxation, which reflects slower motions,

were measured for the 11 API hydrates listed in
the Japanese Pharmacopeia (JP) using pulsed 'H-
NMR, which allows more simplified measure-
ments than high-resolution 'H-NMR. Further-
more, the ease of evaporation of the hydration
water was determined under nonisothermal and

isothermal conditions using DSC and water vapor .

sorption isotherm analysis, respectively, and the
relationship between the ease of evaporation and
the measured values of T; and Tz was examined.

Cefazolin sédium, ceft
cillin, scopolamine hydfobromide, pipemidic agid,
sulfate hydfates were purchased from
, and berverijpe chloride, quinine Aydro-
chloride, saccharin fodium, sulpyrine
osphate 12 H0
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Figure 6. Water sorption isotherms for four antibiotic hydrates.

NMR Relaxation Times
The free induction decay (FID) of protons in AHI
hydrates was obtained using a pulsed N
spectrometer (25 MHz, JNM-MU25, JEQL 5,
Tokyo, Japan). FID was obtained at 10, 20, 30, and
40°C. The 90° pulses were 2 ps in duration. The
“solid echo,” with an echo delay of 10 ps, was used
in the detection stage of all measurements, in
. order to overcome the effects of the dead-time.'?
Measurement was repeated four times with a
recycling time over five times of the T, value
measured as described below.

The FID signals obtained between 2.6 and 100 ps
‘that showed only Gaussian-type decay were fitted
to Eq. (1) to calculate the Ty of proton. FID signals
obtained for quinidine sulfate and pipemidic acid
hydrates showed a small diversion from Gaussian
behavior (beat signal) in the final stage of
relaxation, suggesting Abragam-type relaxation.’®
However, T, was calculated according to Eq. (1) for
the purpose of comparison among API hydrates.
The FID signals that show both Gaussian and
Lorentzian decay patterns were fitted to Eq. (2)
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representing the summation of the Gaussian and
Lorentzian equations.

1) =1Io ex§ [—({,;) 2]‘ | o
I(t) =Io [P;; exp (— (T:(G))Z) + Ppexp (— T—:(;))}

2

where I(#) and I, are signal intensity at time ¢
and time 0. Ty and Taq,) are Tg for Gaussian
decay and Lorentzian decay, respectively, and
Pg and Py are the proportion of protons that
show Caussian decay and Lorentzian decay,
respectively.

The T, of proton in API hydrates was deter-
mined at 30°C by the inversion recovery method.
T, was calculated according to Eq. (3).

16 =Io (1 — 2exp <— T%)) ®)
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Figure 7. Water sorption isotherms for API hydrates
showing a single endothermic peak in DSC thermo-
gram.

New Castle

Differential Scanning Calorimetry (DSC)

Modulated tempefature DSC experiments were:

performed using a commercial system (2920;
TA Ins ents$®, DE) attached to a refrigerated
cooling accessory. The conditions were as follows:
modulation period of 100 s, a modulation ampli-

tude of 0.5°C, and an underlying heating rate of -

1°C/min. Temperature calibration was performed
using indium. Samples (approximately 10 mg)
were put in a pan without a lid. Nitrogen gas was
flowed at 30 mL/min.

DO 10.1002/jps

Water Sorption Isotherm

Water sorption isotherms were measured grav-
imetrically at 25°C using the fjutomated sorption
analyzer from VTI Corp?’. (FL). Prior to water
sorption and desorption, safiples were dried at
60°C and reduced pressure, until the partial
vapor pressure became less than 0.0. Equili-
brium water content was measured at ascending
partial vapor pressures ranging from 0.10 to 0.95,
then at descending partial vapor pressures
ranging from 0.95 to 0.00 in steps of 0.10 or
0.05. Equilibrium was regarded to have been
achieved once the change in sample weight was
less than 0.001 mg over 10 min. The limit-
duration for measurement at a partial vapor
pressure was 10 h for scopolamine hydrobromide
and 5 h for the others.

RESULTS

NMR Relaxation Times

Figures 1 and 2 show representative examples of
the time courses of spin—spin relaxation observed
for the 11 API hydrates. Of the four antibiotic
hydrates, all exhibited both Gaussian-type decay
and Lorentzian decay, as exemplified by ceftazi-
dime and cefazolin sodium hydrates (Fig. 1). The
other seven API hydrates exhibited only Gaus-
sian-type decay, as exemplified by quinidine
sulfate and scopolamine hydrobromide hydrates
(Fig. 2): : ' ,

In order to calculate the proportion of water
protons to API protons, which is required to obtain
the T, of the water protons by curve-fitting of
decay patterns, the number of water molecules
per API hydrate molecule was measured by the
Karl Fischer method. The results are shown in’
Table 1, in which the values specified in the JP are
also noted for the purpose of comparison. The
measured water contents were consistent with
those specified in the JP for pipemidic -acid,
sulpyrine, and quinidine sulfate hydrates, as well
as all antibiotic hydrates except for cefazolin
sodium hydrate. In contrast, quinine hydrochlor-
ide, scopolamine hydrobromide, and saccharin
sodium hydrates showed smaller water contents
than those specified in the JP. :

The time courses of spin~spin relaxation show-
ing both Gaussian decay and Lorentzian decay
observed for the four antibiotic hydrates were well
fitted to Eq. (2) using the proportion of water
protons calculated from the measured water

JOURNAL OF PHARMACEUTICAL SCIENCES, VOL. 9999, NO. 9999, 2007
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Figure 8. Water sorption isotherms for API hydrates showing two endothermic peaks

in DSC thermogram.

content, as shown by the regression curve in
Figure 1. Therefore, all of the water protons in the
molecule are considered to show Lorentzian
decay, and the Gaussian decay is attributed to
the drug protons. The T of the Lorentzian decay
was calculated according to Eq. (2), and the results
will be discussed below. For cefazolin sodium
hydrate, better curve-fitting was obtained by
regression analysis using a slightly larger value
for the proportion of water protons than that
calculated from the measured water content. This
suggests that a small number of the drug protons
exhibit Lorentzian decay; however, it is possible
that the water content of the sample used for NMR
measurement was different from that of the
sample used for Karl Fischer measurements.
The seven API hydrates other than the anti-
biotic hydrates did not exhibit Lorentzian decay,
indicating that all water protons and drug protons
in the molecule showed Gaussian decay. The T’ of
the water protons was calculated according to
Eq. (1), assuming that the T of the drug protonsis

JOURNAL OF PHARMACEUTICAL SCIENCES, VOL. 9999, NO. 9999, 2007

similar to that of the water protons. The results
will be discussed below.

DSC Thermograms

Figures 3-5 show DSC thermograms measured

for the 11 API hydrates. The four antibiotic
hydrates, which exhibited Lorentzian decay upon
spin—spin relaxation, showed a single endother-
mic peak due to water evaporation, as shown in
Figure 3. In contrast,; the API hydrates that did
not exhibit Lorentzian decay showed two
endothermic peaks (Fig. 4), or one peak (Fig. 5).
The temperature at which an endothermic peak
due to water evaporation is observed may be .
considered to represent the ease of evaporation of
hydration water under nonisothermal conditions.
The onset temperature was determined as a
parameter for approximate comparison of ease of
.evaporation among the API hydrates, along with
ease of evaporation under isothermal conditions as

DO 10.1002/jps
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determined by water vapor sorption analysis.
Onset temperature is known to depend on various
factors, such as the heating rate, the shapes of the
pan and lid, the surface area of the sample, and

the flow rate of nitrogen gas. In this study,

_controllable factors such as the heating rate and
the flow rate of nitrogen gas were kept constant,
and a pan without a lid was used. The onset
temperatures obtained will be discussed below.

Water Vapor Sorption Isotherm

Figures 6-8 show water sorption isotherms
observed for the four antibiotic hydrates, the
other three API hydrates that exhibited a single
endothermic peak due to water evaporation, and
the four API hydrates that exhibited two peaks
due to water evaporation, respectively. The y-axis
represents the number of water molecules per-API
hydrate molecule, calculated from the water
content measured by the Karl Fischer method,
assuming that all water molecules present in the
sample were evaporated during the drying process
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105 | 4175
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4 3
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Figure 10. Temperature dependence of T; for cefta-
zidime (circle) and pipemidic acid (triangle) hydrates.
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(60°C, reduced pressure) prior to the sorption and
desorption processes. )

The water sorption isotherms (Fig. 6) observed
for the four antibiotic hydrates, which exhibited
Lorentzian decay upon spin-spin relaxation,
indicate that during the desorption: process, the
water content decreased with decreasing humid-
ity in the range 90-0% RH, with a significant slope
in the water content versus humidity plot.

Among the three API hydrates that did not
exhibit Lorentzian decay and showed a single
endothermic peak due to water evaporation,
pipemidic acid and sulpyrine hydrates gave water
desorption isotherms in which the water content
was constant over a wide humidity range, as
shown in Figure 7. Quinidine sulfate also showed
a flat line in the water content versus humidity
plot, though it was observed only at high
humidities.

The water desorption isotherms observed for
the other four API hydrates (except berberine
chloride), which did not exhibit Lorentzian decay
and showed two endothermic peaks due to water
evaporation, indicated that the water content
remained approximately constant at two levels
(Fig. 8).

DISCUSSION

'The molecular mobility of hydration water in API

. hydrates was found to vary over a wide range;

some, such as ceftazidime hydrate, contain
hydration water that shows Lorentzian decay
upon spin-spin relaxation, while others contain
hydration water that shows Gaussian decay.

Hydration Water Showing Lorehtzian Decay

All of the water molecules present in the four
antibiotic hydrates were found to exhibit Lor-
entzian decay, because the proportion of Lorent-
zian decay was consistent with the proportion of
water protons calculated from the water content
measured by the Karl Fischer method (Fig. 1). The
finding that the water molecules in the antibiotic
hydrates showed Lorentzian decay rather than
Gaussian decay suggests that water molecules are
held in voids in the crystal, rather than being
firmly trapped in the crystal lattice. These water
molecules may evaporate through channels
formed in the interior of the crystal.’* Hydration
water that requires more energy to be released
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may exhibit a higher onset temperature of the
endothermic peak due to water evaporation in
DSC. -

The T values determined based on Lorentzian
decay is related with z. by Eq. (4), such that a
smaller value of T, represents a larger z. (lower
mobility).

1 YRAUJ+1) ( 51 27, )
= 3
T 5r6 . Tt 1+ wir? + 1+ 4wgr3
4

where y, wo, I, , and h are the gyromagnetic ratio,
resonance frequency, spin quantum number, spin
distance, and the Plank’s constant divided by 2x.

As shown in Figure 9, T; increased as the onset
temperature (Fig. 3) decreased, indicating that
hydration water which evaporates at lower
temperatures has greater molecular mobility as
determined by Ts. This correlation between To
and the ease of evaporation under nonisothermal
conditions may be explained by assuming that
hydration water with a greater Ty (higher
mobility) can escape through channels at a lower
temperature.

In order to gain further insight into the
correlation between ease of evaporation and the
molecular mobility of the hydration water,
the ease of evaporation under isothermal condi-
tions was evaluated by water sorption isotherm
measurement. Each of the four antibiotic hydrates
exhibited a desorption isotherm showing
decreases in water content associated with
decreases in humidity (Fig. 6). As discussed
below, the crystal form of ampicillin hydrate
appeared to be altered during the drying process
prior to the measurement of water sorption
isotherms. Therefore, the isotherm obtained for

ampicillin could not be compared with the NMR
and DSC data. However, such detrimental effect
of predrying was not observed for the other three
antibiotic hydrates. The negative water content
observed after the desorption process for ceftazi-
dime may be due to chemical degradation
occurred under high-humidity conditions or
incomplete evaporation of hydration water during
predrying. Compared to amoxicillin hydrate,
cefazolin sodium hydrate, which has a larger T2
value, exhibited a greater slope in its water
content versus humidity plot. Furthermore, cefa-
zolin sodium exhibited rapid dehydration when
humidity was decreased below 20% RH, whereas
amoxicillin did not exhibit rapid dehydration until
humidity ‘was decreased below 10% RH. These
findings suggest that the ease of evaporation of
hydration water under isothermal conditions is
correlated with molecular mobility as determined
by T., which supports the conclusion obtained
based on DSC measurement. For ampicillin, the
slope of the water content versus humidity plot
was greater than that of amoxicillin hydrate
despite its lower molecular mobility as deter-
mined by T and higher onset temperature. This
suggests that the drying conditions prior to the
sorption and desorption processes were inade-
quate, which may result in destruction of the
crystalline structure. Thus, the isotherm obtained
for ampicillin could not be compared with the
NMR and DSC data.

As exemplified by ceftazidime hydrate (Fig. 10),
T, increased significantly with increasing tem-
perature, indicating that T reflects the increases
in molecular mobility associated with increases in
temperature. Thus, molecular mobility can be
considered to correlate with T'. As shown in
Figure 11, antibiotic hydrates with smaller Ty

cefazolin sodium

ceftazdime

amoxicillin

amplcillin

0 100 200

o temperature dependence of T2

600 ©8
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Figure 11. Correlation between T and temperature dependence of T for four anti-

biotic hydrates.
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values showed a smaller change in Ty with

temperature change. This finding suggests that .

lower values of T reflect a smaller scale of
molecular motion, with lower activation energies.
Spin—lattice relaxation time (Ty) is known to
reflect molecular mobility, similarly to T, but
increases with decreasing Ty (with decreasing
. molecular mobility) in the slow motional regime.
The T, values of water protons in the presence of
drug protons cannot be determined due to spin
diffusion, but an approximate determination of
T, for water protons is possible if the proportion
of water protons is large. For example, in
Nao HPO,-12H;0 and NapHPO,-2H;0, water
protons are predominant (24/25 and 4/5,
respectively). NagHPO, - 12H,0 exhibits slower
spin-spin relaxation (larger T) (Fig. 12), and
faster spin—lattice relaxation (smaller T'y) (Fig. 13)
compared to NaHPO,-2H,0, which indicates that
both T'; and T, reflect the molecular mobility of
hydration water. For the antibiotic hydrates
examined, however, correlations between T and
T, were not observed, as shown in Figure 14. This
finding indicates that for API hydrates containing
a significant amount of drug protons, such as
antibiotic hydrates, the molecular mobility of the
hydration water is not reflected in T,.

Hydration Water Showing Gaussian Decay

As mentioned previously, all of the API hydrates
other than the four antibiotic hydrates exhibited
only Gaussian decay (Fig. 2). The value of T did
not vary significantly among the API hydrates, as
shown in Figure 15. Furthermore, the onset
temperatures of the single endothermic peaks
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Figure 12. Free induction decay for Na,HPO4
12H,0 and 2H,0.
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Figure 13. Spin-lattice relaxation for NayHPO,
12H20 and 2H20

due to water evaporation for quinidine sulfate,
pipemidic acid, and sulpyrine hydrates (Fig. 5), as
well as each of the two peaks due to water
evaporation observed for quinine hydrochloride,
scopolamine hydrobromide, saccharin sodium,
and berberine chloride hydrates (Fig. 4), were.
not correlated with T,. These findings indicate
that the molecular mobility of hydration water
that shows Gaussian decay is too low to be
reflected in T5. No correlation between T; and
molecular mobility is supported by the finding
that changes in Ty associated with changes in
temperature were much smaller than those
observed for the antibiotic hydrates that exhibited
Lorentzian decay, as exemplified by pipemidic
acid (Fig. 10). Such low molecular mobility may be
attributed to water molecules firmly trapped in
the crystal lattice, rather than water molecules
trapped in voids in the crystal. :

For quinidine sulfate, pipemidic acid, and
sulpyrine hydrates, a single endothermic peak
was observed in DSC (Fig. 5). The water content
versus humidity plots showed a flat line at a
certain number of water molecules. Pipemidic acid
and sulpyrine showed a flat line at three and-one -
water molecule(s) per hydrate, respectively, and
evaporation of these water molecules was
observed only under very low humidity (Fig. 7).
These findings indicate that water molecules are
firmly trapped in the crystal.

For quinine hydrochloride, scopolamine hydro-
bromide, saccharin sodium, and berberine chlor-
ide hydrates, two endothermic peaks were shown
in DSC (Fig. 4). The water content versus
humidity plots for these hydrates (except for
berberine chloride) showed flat lines at two levels
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Figure 14. Correlation between T and T for four antibiotic hydrates.

of water content (Fig. 8), suggesting the presence
of two water populations: molecules that evapo-
rate at high humidity, and others that evaporate
at lower humidity. (below 10% RH). This seems to
be consistent with the observation of twe
endothermic peaks in DSC. The endothermic
peak observed at a high temperature and the flat
line observed at a low humidity may be attribu-
table to hydration water with strong hydrogen—
bonding interactions, while the one observed at a
lower temperature and higher humidity may be
attributable to hydration water with week inter-
actions. The presence of hydration water with
week interactions is also supported by the finding
that the water contents as measured by the Karl

Fischer method were smaller than those specified
in the JP (Tab. 1).

CONCLUSION

It was found that spin—spin relaxation time, T, is
a useful parameter that can indicate the mole-
cular mobility of water of hydration which has
relatively high mobility and shows Lorentzian
decay upon spin-spin relaxation. For these water
molecules, molecular mobility as determined by
T, is correlated with ease of evaporation both
under nonisothermal and isothermal conditions,
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Figure 15. Correlation between onset temperature and T for API hydrates that show

Gaussian decay.
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