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1. Introduction

Since its discovery in 1989, representing a turning-point in
the search for infectious agents associated with post-transfusion
non-A, non-B hepatitis, hepatitis C virus (HCV) has been re-
cognized as a major cause of chronic liver disease and affects
approximately 200 million people worldwide at the present time
[1-3]. Persistent infection with HCV is associated with the
development of chronic hepatitis, hepatic steatosis, cirrhosis,
and hepatocellular carcinoma [3-8]. In general, people with
chronic hepatitis C are relatively asymptomatic and have few, if
any, clinical manifestations prior to the development of cirrhosis.

HCV is a small, enveloped RNA virus belonging to the He-
pacivirus genus of the Flaviviridae family, which also includes
several classical flaviviruses, inciuding dengue virus and yellow
fever virus, as well as pestiviruses, such as bovine viral diarrhea
virus and the unassigned GB viruses [9,10]. This review sum-
marizes our current understanding of genomic organization of
HCV, as well as features of the viral protem characteristics, and
the viral life cycle.

2. Genomic organization

The HCV genome consists of a single-stranded positive-sense
RNA of approximately 9.6 kb, which contains an open reading
frame (ORF) encoding a polyprotein precursor of approximately
3000 residues flanked by untranslated regions (UTRs) at both
ends [11]. The precursor is cleaved into at least 10 different
proteins: the structural proteins Core, E1, E2 and p7, as well as the
non-structural proteins NS2, NS3, NS4A, NS4B, NSSA and
NS5B (Fig. 1).

An important feature of the HCV genome is its high degree of
genetic variability [12,13]. Mutation rates, however, vary in dif-
ferent regions. The E1 and E2 regions are the most variable, while
the 5'UTR and terminal segment of the 3’UTR have the highest
degree of sequence conservation among various isolates. The 5/
UTR, which is ~341 nucleotide (nt) in length, contains an

5'UTR

internal ribosomal entry site (IRES), which is essential for cap-
independent translation of viral RNA, from which four highly
structured domains (domains I-IV) are produced (Fig. 1) [14-19].
These are largely conserved among HCV and related viruses
[15,16]). As with other RNA viruses with IRES-mediated expres-
sion, the HCV 5'NTR is thought to contain determinants for
translation, as well as cis-acting elements for RNA replication. It
has been shown that (i) the sequence upstream of the IRES is
essential for viral RNA replication, (ii) sequences within the IRES
are required for high-level HCV replication, and (iii) the stem—
loop domain IT of the IRES is crucial for replication {20]. A recent
study has revealed that the 5'UTR is capable of binding to a liver-
specific microRNA, miR-122, resulting in enhanced HCV RNA
replication [21]. (Fig. 2).

The 3’UTR varies between 200 and 235 nt in length, including
a short variable region, a poly(U/UC) tract with an average length
of 80 nt, and a virtually invariant 98-nt X-tail region [22—24] The
X region forms three stable stem—loop structures that are highly
conserved among all genotypes and, as a result, the HCV genome
likely ends with a double-strand stem structure. It appears that the
3’X region, as well as the 52 nt upstream of the poly(U/C) tract,
are crucial for RNA replication, while the remainder of the 3'UTR
plays a role in enhancement of replication [25,26].

To date, hepaciviruses are divided into six principal genotypes
of HCV that differ in their nucleotide sequences by 31-34%, and
in their amino acid sequences by ~30%. HCV, like many other
RNA viruses, circulates in infected individuals as a population of
diverse but closely related variants referred to as quasispecies
[12]. HCV heterogeneity is primarily due to a high error rate of the
RNA-dependent RNA polymerase encoded by the NS5B gene.
The existence of different quasispecies of the HCV genome
appears to contribute to viral persistence. It has been shown that
patients with chronic hepatitis C have greater genetic complexity
in terms of the population of quasispecies they possess than
patients with spontaneous clearance [13]. During the course of
chronic infection, random genetic drift steadily induces the
development of quasispecies primarily due to changes in the
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hypervariable region 1, involving the 27 N-terminal 27 residues of
the E2 envelope protein [27-29].

3. Features of the viral proteins
3.1. Core protein

The HCV core protein, which is derived from the N-terminus
of the polyprotein, most likely forms the viral nucleocapsid
given similarities between its position and that of sequences
encoding viral nucleocapsids in other flavivirus genomes. The
amino acid sequence of the core protein is highly conserved
among different HCV strains, compared with other HCV
proteins, HCV core protein has been extensively used in a
number of serologic assays since anti-core antibodies are highly
prevalent among HCV-infected individuals. Although several
core proteins of varying molecular weights have been identified
[30~33], the core protein is released as a 191-residue precursor
of 23 kDa and further processing yields the predominant form
of 21 kDa. The N-terminal domain of the core protein is highly
basic, while its C-terminus is hydrophobic. Several groups have
reported a complex intracellular localization of the core protein
[30,33—42]. The core protein is primarily detected in the
cytoplasm, in association with the endoplasmic reticulum (ER),
lipid droplets, and mitochondria. In some studies, a fraction of
the core protein has also been found in the nucleus.

The ubiquitin—proteasome pathway, a major route by which
selective protein degradation occurs in eukaryotic cells, is
involved in post-translational modification of the core protein
[32,43-45]. An initial report indicated that processing at the
carboxyl-terminal hydrophobic domain of the core protein
produced efficient polyubiquitylation and proteasomal degra-
dation [32]. Recently, ubiquitin ligase EGAP has been identified
as an HCV core-binding protein that enhances ubiquitylation
and degradation of mature, as well as carboxyl-terminus
truncated-core protein, and it has been suggested that EGAP-
dependent degradation of the core protein is common to a

variety of HCV isolates and plays a critical role in the HCV life
cycle [45]. .

The core protein is likely multifunctional and essential for
viral replication, maturation, and pathogenesis. It is involved
not only in formation of the HCV virion, but also has a number
of regulatory functions, including modulation of signaling
pathways, cellular and viral gene expression, cell transforma-
tion, apoptosis, and lipid metabolism [reviewed in 46].

3.2. El and E2 envelope proteins

The E1 and E2 proteins are essential components of the virion
envelope and are necessary for viral entry. These glycosylated
proteins extend from aa 192—383 (E1) and from aa 384746 (E2)
of'the polyprotein, and have molecular weights of 33-35 and 70—
72 kDa, respectively [47]. Along the precursor polyprotein, it has
been suggested that the C-terminal transmembrane domains of E1
and E2 form hairpin structures that pass through the membrane
twice, thereby allowing processing by a signal peptide in the ER
lumen [48]. Upon signal peptidase cleavage, the C-termini are
thought to translocate into the cytoplasm in order to generate the
type I membrane topology of mature El and E2. Mature E1 and
E2 remain noncovalently associated, interacting in part through
their C-terminal transmembrane domains, which also mediates
retention of the E1-E2 complex in the ER. It has recently been
demonstrated that, in addition to this conventional type I
membrane topology, E1 protein also adopts a polytopic topology,
in which the protein twice spans the ER membrane with an
intervening cytoplasmic loop spanning aa 288-360 [49].

3.3. p7 protein

The p7 protein is a small (63 aa) hydrophobic polypeptide that
adopts a double membrane-spanning topology. This protein is
essential for the production of infectious virions in vivo [S0] and
may belong to a small protein family of viroporins, which are
known to enhance membrane permeability. It has been revealed
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that p7 protein forms an ion channel in artificial lipid bilayers,
suggesting it may function as a viroporin [51,52].

3.4. NS2 protein

The NS2 protein is a transmembrane protein of 21-23 kDa,
with 96 highly hydrophobic N-terminal residues, forming either
three or four transmembrane helices that insert into the ER
membrane. The C-terminal part of NS2 presumably resides in
the cytoplasm enabling zinc-stimulated NS2/3 autoprotease
activity together with the N-terminal domain of NS3. Efficient
cleavage at the NS2/3 site requires the 130 C-terminal residues
and first 180 aa of the NS3. Site-directed mutagenesis has
revealed that His-952, Glu-972, and Cys-993 may comprise the
active site for proteolytic activity [53,54]. Deletion of NS2 from
the nonstructural polyprotein has not been observed to abolish
HCV RNA replication in cell cultures, indicating that NS2 is not
essential for viral RNA replication [55,56]. However, the NS2
protein is essential for completion of the viral replication cycle
in vitro and in vivo [57,58]. A recent report regarding the crystal
structure of the C-terminus of NS2 suggests that the cytoplasmic
domain of NS2 forms a dimeric cysteine protease with two
composite active sites, in which His-952 and Glu-972 comprise
the active site of one monomer, and Cys-993 contributes to the
active site of the other [59].

3.5. NS3-44 complex

NS3—-4A is a complex bifunctional molecule essential for viral

polyprotein processing and RNA replication. NS3 is a fairly
hydrophobic protein of 69 kDa with a serine protease encoded by
its N-terminal one-third region that non-covalently binds the
NS4A cofactor, which is a 54-aa polypeptide [reviewed in 60].
The catalytic triad is formed by residues His-1083, Asp-1107 and
Ser-1165 of NS3. The central portion of NS4A is important for
efficient processing of the nonstructural proteins by NS3. It has
been suggested that the N-terminus of NS4A might form a
transmembrane helix that anchors the NS3—4A complex to the
cellular membrane [61]. Crystal structural analyses of the NS3/4A
complex have demonstrated structural similarities between the
NS3 serine protease and trypsin, with two large domains primarily
composed of six-stranded beta barrels separated by a cleft
containing the active site and substrate binding pocket [62—64].
Of note, NS4A forms an integral part of this structure and interacts
with the extreme N-terminal residues of NS3 to form two ad-
ditional anti-parallel beta-strands. The NS3—4A complex has a
shallow substrate-binding pocket, thus requiring extended
interaction sites with the substrate.

The final 442 aa of the C-terminal of NS3 comprise the
helicase-NTPase domain, which is a member of the superfamilily-
2 DexH/D-box helicase, which unwind RNA-RNA substrates ina
3'-to -5’ direction [reviewed in 65]. This is supported by crystal
structure analysis indicating the presence of NTPase domains and
RNA binding within the protein [66]. During RNA replication,
the NS3 helicase is believed to translocate along the nucleic acid
substrate by changing its protein conformation, utilizing the
energy of NTP hydrolysis [67-69]. Its helicase activity is

positively modulated by the NS3 protease domain and NS4A
[70].

3.6. NS4B protein

NS4B is an integral membrane protein of 27 kDa, which is
predicted to contain at least four transmembrane domains and an
N-terminal amphipathic helix that is responsible for membrane
association [71]. NS4B has the ability to induce the formation of
a specialized membrane compartment, a sort of membranous
web where viral RNA replication may take place [72,73].

3.7. NS54 protein

NS5A is a membrane-anchored phosphoprotein that is ob-
served in basally phosphorylated (56 kDa) and hyperpho-
sphorylated (58 kDa) forms. Based on the results of a
comparative sequence analysis following limited proteolysis of
purified protein, NS5A is predicted to contain three domains:
domain 1 (aa 1-213), domain 2 (aa 250-342) and domain 3 (aa
356-447) {74). A recent structural study has demonstrated that
domain 1 immediately follows the membrane-anchoring alpha-
helix and forms a dimeric structure with an unconventional zinc-
coordinating motif [75]. Thus, it may interact with viral and
cellular proteins, as well as membranes and RNA.

While its function has not fully been elucidated, NS5A is
believed to be important in viral replication. A large number of
cell culture-adaptive mutations mapped to the NS5A have been
shown to enhance RNA replication {76—78]. These adaptive
mutations often affect hyperphosphorylation of NS5A, suggest-
ing that the phosphorylation status of NS5A might influence
replication efficiency. NS5A has been reported to interact with
other HCV nonstructural proteins [79-81]. In addition, several
cellular proteins interact with NS5A, resulting in assembly of
the viral replication complex and/or regulation of RNA
replication, as described bellow.

3.8..NS5B protein

NS5B is a 68-kDa protein with a conserved sequence motif
characteristic of viral RNA-dependent RNA polymerase (RdRp),
including a hallmark GDD motif that produces catalytic activity.
NS5B is a tail-anchored protein and its C-terminal 21-aa region
forms an alpha-helical transmembrane domain, which is
dispensable for polymerase activity in vitro but is responsible
for post-translational targeting to the cytoplasmic side of the ER
[82,83]. Analysis of the crystal structure of NS5B has revealed
that the HCV RdRp resembles a right hand and contains fingers,
palm, and thumb subdomains, similar to other template-
dependent polymerases [84-86]. Unlike the more open structures
of other template-dependent DNA polymerases, such as the
Klenow Fragment and the human immunodeficiency virus 1
reverse transcriptase, the HCV RdRp has a fully encircled active
site through extensive interactions between the fingers and thumb
subdomains, resulting in a protein that predominantly exists in a
“closed” conformation. HCV RdRp also has an unusual hairpin
loop that protrudes into the active site and helps position the 3'-
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end of the RNA template for proper initiation of RNA synthesis
and inhibits extension from a primed template [87].

4. HCYV life cycle
4.1. Attachment and entry

Attachment of the virus to a cell followed by viral entry is the
first step in the virus life cycle. In order to enter the host cell, the
virus must first bind to a receptor on the cell surface. The specific
interaction between a host cell receptor and viral attachment
proteins on the surface of the virion determines tissue tropism and
host range.

Low levels of HCV replication in cultured cells hindered study
ofthe HCV life cycle. In order to overcome this, alternative models
have been developed to study viral attachment and entry using
recombinant HCV envelope proteins, including virus-like particles
produced by baculovirus [88,89], vesicular stomatitis virus and
retrovirus pseudotypes (HCVpp)[90-93], as well as infectious
particles derived from a JFH-1 isolate (HCVcc) {94-96].

By using soluble E2 as a probe to identify cell-surface proteins
potentially involved in HCV entry, CD81 was first identified as a
putative HCV receptor [97]. CD81, a widely expressed 25-kDa
cell surface protein, belongs to a family of tetraspanins and is
involved in a number of activities, including cell adhesion, mo-
tility, metastasis, cell activation and signal transduction [98].
CD81 has a small and large extracellular loop, which mediate
binding to recombinant E2 [97,99]. Studies with HCVpp and
HCVcc confirm the involvement of CD81 in HCV entry. HCVpp
shows a restricted tropism for human hepatic cell lines expressing
CD81 [92,93,100-102]. Although necessary, CD81 expression
alone is not sufficient for cell entry of HCVpp. Of note, HepG2,
which does not express CD81 on its cell surface, is resistant to
HCVpp infection, but over-expression of CD81 renders the
HepG2 permissive to HCVpp infection [102—105]. Significant
infection of CD81-negative cell lines with HCVpp has not been
reported. However, as mentioned, not all CD81-positive cell lines
can be infected [93,101,103]. Expression of CD81 in host cells is
also required for infectivity of HCVce. Recombinant CD81 and
antibodies to CD81 have been observed to neutralize infection
[94-96]. Thus, CD81 may function as a post-attachment entry co-
receptor and may play a role after binding of the virion to another
receptor. ,

The human scavenger receptor class B type I (SR—-BI) has
been identified as another putative receptor for HCV [106]. SR—
BI is an 82-kDa glycoprotein with two C- and N-terminal
cytoplasmic domains separated by a large extracellular domain
involved in cellular lipometabolism. SR—BI is expressed in a
wide variety of mammalian tissues and cell types [100,107,108],
with particularly high levels of expression in the liver and
steroidogenic tissue [107,109,110]. SR~BI recognition by
soluble E2 requires the HVR1 of E2 [103,111]. A role of SR-
BI in HCV cell entry has been confirmed using HCVpp in
receptor competition assays using polyclonal anti-SR—BI serum,
which has been observed to specifically inhibit HCVpp entry
efficiently in a dose-dependent manner [103]. Recent reports
have demonstrated that serum factors, especially high-density

lipoprotein (HDL), a ligand to SR—BI, enhance the infectivity of
HCVpp [105,112-115]. These results suggest that SR-BI
modulates HCV entry.

Several human cell lines co-expressing CD81 and SR—Bl are
non-permissive for HCVpp infection [100,102,103], suggesting
that another cell surface molecule(s) may be required for HCV
entry. C-type (calcium-dependent) lectins, such as L-SIGN, DC-
SIGN, and the asialoglycoprotein receptor, have also been
investigated as potential HCV receptors based on their affinity
for recombinant HCV envelope proteins [116-119]. However,
L-SIGN and DC-SIGN are not expressed on hepatocytes and
therefore cannot be receptors for HCV entry. A possible role of
L-SIGN and DC-SIGN involves the capture and transfer of HCV
to hepatocytes [120,1211]. The LDL receptor is another candidate
receptor based on the finding that HCV particles associate with
lipoproteins in serum and their infectivity correlates with lipo-
protein association. The LDL receptor has been shown to
mediate HCV internalization by binding to virion-associated
LDL patticles [122]. However, a role for the LDL receptor in
virus entry has not been confirmed using HCVpp [93], likely
since the binding is mediated by lipoproteins rather than viral
components.

Recently, a tight junction component claudin-1 has been
identified as a co-receptor of HCV [123]. Claudin-1 appears to
be critical for HCV entry into hepatic cells and is thought to act
during the late stages of viral entry.

4.2. Translation

As opposed to cellular capped mRNA molecules which are
translated via a cap-dependent scanning mechanism, the naturally
uncapped RNA molecules of viruses such as flaviviruses and
picornaviruses are translated via a cap-independent IRES-
mediated process, in which viral protein expression is regulated
by direct recruitment of each ribosome to the start site of
translation [18,19]. The first 40 nt of the 5’UTR, which include a
single stem—loop (domain I), are not essential for translation. Of
note, the 5/ border of the IRES was mapped between nt 38 and 46
[17,124,125]. Other domains in the S'UTR are more complex:
domain II consisting of a stem with several internal loops, domain
I1I consisting of a pseudoknot connected to a four-helix junction,
as well as stem-loop IIId and domain IV, a small hairpin
containing the AUG start codon at nt 342. It has been suggested
that the first 12 to 40 nt downstream of the start codon are also
important for IRES activity [126—128].

Structural analysis of the HCV IRES indicates that all of the
RNA elements adopt tertiary structures capable of binding to the
translation initiation complex with high affinity [129]. IRES-
mediated translation of HCV RNA is initiated by direct binding
of a vacant 408 ribosomal subunit to the IRES. The 40S subunit
appears to interact with the viral RNA at multiple sites including
stems, loops, pseudoknots, as well as the start codon. This
binary complex then binds to eukaryotic initiation factor (eIF) 3,
as well as the ternary complex eIF-2: Met—tRNA;: GTP to form
a 48S-like complex dependent upon both the basal domain III
and the start codon. Subsequent formation of the 80S complex,
which is the rate-limiting step, is dependent upon GTP
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hydrolysis and attachment of the 60S subunit, after which the
first peptide bond is formed [130}].

In addition to the requirements described above, additional
factors modulate IRES activity. Cellular factors such as the La
autoantigen [131-133], heterogeneous ribonucleoprotein L
[134], poly-C binding protein {135], and pyrimidine tract-binding
protein (PTB)[136], have also been shown to bind to the IRES
element and modulate HCV translation. HCV translation is also
regulated through various interactions with viral proteins and the
IRES.

We have found that HCV core protein expression inhibits
HCV translation, possibly through binding to domain IIId,
particularly a GGG triplet within the hairpin loop structure of the
domain [137-139]. We therefore propose a model in which
competitive binding of the core protein for the IRES and 40S
subunit regulates HCV translation. Although there is an in-
creasing body of evidence to suggest involvement of the core
protein in translational regulation, there is conflicting data re-
garding the mechanism by which this occurs. In contrast to studies
describing modulation of initiation of HCV translation by ex-
pression of the core protein [137,139-141], another study suggest
that the core protein sequence, and not the core protein itself,
modulates HCV IRES function through a long-range RNA-RNA
interaction [142].

In addition to thel0 known viral proteins (Fig. 1), the core-
coding region of HCV has also been observed to express low
levels of a 16—17 kDa protein [143—145]. This protein, which has
been named the F protein, is thought to be produced by a+1
translational frameshift by ribosomes initiating translation at the
start codon during synthesis of the HCV polyprotein, which shifts
the reading frame between codons 9 and 11 of the polyprotein.

4.3. Polyprotein processing

The main translation product of the HCV genome is a large
precursor polyprotein that is subsequently processed by cellular
and viral proteases into mature structural and nonstructural
proteins (Fig. 1). As deduced from the hydrophobicity profile and
dependence on microsomal membranes, junctions at core/E1, E1/
E2, E2/p7, p7/NS2 are processed by host signal peptidases.
Secondary structure analysis of the core protein has revealed that
all major alpha helices are located in the C-terminal half of the
protein. A predicted alpha helix encoded by aa 174-191 is
extremely hydrophobic and resembles typical signal peptide
sequences. Further post-translational cleavage close to the C
terminus of the core protein takes place, removing the E1 signal
sequence by a signal peptide peptidase [146—149]. This peptidase
has been identified as a presenilin-type aspartic protease [150] and
shown to exhibit protease activity within cellular membranes,
resulting in cleavage of peptide bonds in the plane of lipid
bilayers.

As described above, HCV nonstructural proteins are processed
by two viral proteases: cleavage between NS2 and NS3 is a rapid
intramolecular reaction mediated by a NS2-3 protease spanning
NS2 and the N-terminal domain of NS3, whereas the remaining
four junctions are processed by a serine protease located within
the 180 N-terminal residues of the NS3 protein. The NS3-NS5B

region is presumably processed by sequential cleavage: NS3/
4A —NS5A/5B—NS4A/4B —NS4B/5A [151-154]. Proces-
sing at the NS3/4A site is intramolecular, whereas cleavage at
the other sites occurs intermolecularly.

4.4. RNA replication

As with other positive-strand RNA viruses, HCV replication is
assumed to start with synthesis of a complementary negative-
strand RNA using the genome as a template, after which genomic
positive-strand RNA is produced from a negative-strand RNA
template, both steps of which are catalyzed by the NS5B RdRp.
The positive-strand RNA progeny are transcribed at a level 5- to
10-fold that of negative-strand RNA. Recombinant NS5B protein
demonstrates RdRp activity in vitro, however, appears to lack
strict template specificity and fidelity, which are essential for viral
RNA synthesis. Thus, other viral and/or host factors are believed
to be responsible for RNA replication and formation of the
replication complex (RC), together with NS5B, which is required
for catalyzing HCV RNA synthesis during replication. Several
research groups have demonstrated HCV RC-mediated replica-
tion in vitro in crude membrane fractions of cells harboring
subgenomic replicons [155~158]. Studies of cell-free replication
systems, which provide a useful source of viral RCs have revealed
that RNA synthesis can be initiated in the absence of additional
negative-strand template RNA, suggesting that pre-initiated
template RNA co-purifies with viral RCs [156—159].

Co-precipitation and immunostaining studies have revealed
that newly synthesized HCV RNA exists as distinct specks of
material, while all of the viral nonstructural proteins coexist [ 160].
These distinct structures may be equivalent to a membranous
web, as described above. Expression of all structural and non-
structural proteins in the context of the entire HCV polyprotein
has been observed to induce similar membrane changes [72]. It is
of interest that morphologically similar structures, termed sponge-
like inclusions [16 1], have been identified by electron microscopy
within the hepatocytes of HCV-infected chimpanzees. Thus,
HCV RC may exist in the context of a membranous web in
infected cells. Because all nonstructural proteins of HCV are
associated with the ER membrane in cells harboring subgenomic
replicon RNA molecules {162,163}, and since the membrane web
is frequently observed in close proximity with the ER membrane,
it is likely that the membranous web in HCV-infected cells is
derived from the ER membrane.

On the other hand, there is accumulating evidence to support
an association between HCV RNA replication and detergent-
insoluble membrane domains or lipid rafts, which are micro-
domains rich in cholesterol and sphingolipids. Membrane
flotation analysis and replication assays have shown that viral
RNA and proteins exist within detergent-resistant, lipid-raft
membranes, and that RNA replication occurs even after treat-
ment with detergent [155,164]. Inhibitors of de novo sphingo-
lipid synthesis have been shown to inhibit HCV replication,
presumably by disrupting the association of viral nonstructural
proteins with lipid rafts {165,166]. It is now accepted that HCV
nonstructural proteins synthesized at the ER localize to lipid raft
membranes when they are actively engaged in RNA replication.
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. Membrane separation analysis has demonstrated that HCV
nonstructural proteins exist both in the ER and the Golgi
apparatus, but that viral RNA replication primarily occurs in the
Golgi fraction [155]. Further studies to elucidate the cellular
processes involved in HCV RC formation and replication of the
HCV genome in infected cells are needed.

Studies of RNA replicons have demonstrated the greatest
viral RNA levels during the growth phase of the cells, after
which a significant drop is observed as the cells reach con-
fluence, suggesting that HCV replication and/or translation is
tightly linked to host cell metabolism [163]. Huh-7 cells, in
which adapted replicons are cured by treatment with IFN, yield
cell populations that are more permissive for the replicon tested.
Thus, it is likely that some interplay between the cellular envi-
ronment and specific adaptive mutations of viral RNA contri-
butes to efficient RNA replication of HCV.

Several cellular proteins capable of interacting with NS5A,
such as vesicle-associated membrane protein-associated protein
(VAP) subtypes A and B (VAP-A and -B){73,167], FKBPS§
[168], FBL2 {169,170], growth factor receptor-bound protein 2
adaptor protein [171], SRCAP [172], and karyopherin b3 [173],
as well as Raf-1 kinase [174], have been identified. VAP-A and
—B and SNARE-like proteins are known to localize within the
ER and Golgi apparatus and are essential for HCV replication
by binding with both NS5A and NS5B. VAP-A interacts with
VAP-B through its transmembrane domain. Thus, VAP-A and
-B are thought to be involved in the formation of functional
HCV RCs. FKBPS8, a member of the FK506-binding protein
family, and Hsp90 form a complex with NS5A, further contri-
buting to viral RNA replication. Statins that decrease the
production of mevalonate by inhibiting 3-hydroxy-3-methyl-
glutaryl CoA reductase have been shown to inhibit HCV RNA
replication [170,175], which can be reversed by adding
geranylgeraniol, suggesting that viral replication requires gera-
nylgeranylated proteins. A geranylgeranylated protein, FBL2,
which contains an F-box motif and is therefore likely involved
in protein degradation, has been identified as a NS5A-binding
protein.

Host factors that interact with NS5B and might participate in
HCV replication include cyclophilin B [176], p68 [177], nucleolin
[178,179], and hnRNP Al [180]. Cyclophilin B, a cellular
peptidyl-prolyl cis-trans isomerase, interacts with the C-terminal
region of NS5B to directly stimulate its RNA binding activity, and
thereby contributes to efficient replication of HCV RNA.
Redistribution of p68, an RNA helicase, from the nucleus to the
cytoplasm occurs through its binding to NS5B, and the p68-NS5B
interaction may further serve to mediate HCV replication. Nuc-
leolin, a representative nulceolar marker, interacts with NS5B
through two independent regions of NS5B and may be essential
for HCV replication. hnRNP Al, a heterogeneous nuclear
ribonucleoprotein, also interacts with septin 6, as well as the 5'-
UTR and 3’-UTR of HCV RNA, and contains the cis-acting
elements required for replication. Thus, hnRNP A1 and septin 6
play important roles in HCV replication through RN A-protein and
protein-protein interactions. Other cellular components that bind
to HCV RNA, such as PTB, may also be involved in viral
replication. PTB has been observed to modulate HCV IRES

activity by binding to several sites within the viral genome
[22,181-184]. Recent studies have shown that PTB also forms
part of the HCV RC and participates in viral RNA synthesis [185].

4.5. Viral assembly

Little is known about the assembly of HCV or its virion
structure since efficient production of authentic HCV particles
has only recently been achieved. As with related viruses, the
mature HCV virion likely consists of a nucleocapsid and outer
envelope composed of a lipid membrane and envelope proteins.
Various forms of HCV have been reported to circulate in the sera
of infected hosts, including (i) free mature virions, (ii) virions
bound to low-density lipoproteins and very-low-density lipo-
proteins, (iii) virions bound to immunoglobulins, as well as (iv)
non-enveloped nucleocapsids, which exhibit different physico-
chemical and antigenic properties [186-189].

Several expression systems have been used to investigate
HCV capsid assembly using lysate from mammalian cells,
insects, yeast, bacteria, and reticulocytes, as well as purified
recombinant protein [88,89,190—195}. The results suggest that
the immunogenic nucleocapsid-like particles of HCV are variable
in size ranging from 30 to 80 nm in diameter. The N-terminal half
of the core protein is important for nucleocapsid assembly
[190,194,195]. HCV capsid formation occurs in the presence or
absence of ER-derived membrane, which supports cleavage of the
signal peptide at the C-terminus [195].

Nucleocapsid assembly generally involves oligomerization of
the capsid protein and encapsidation of genomic RNA. This
process is thought to occur upon interaction of the core protein
with viral RNA, and the core-RNA interaction may be critical for
switching from RNA replication to packaging. In fact, HCV core
protein can bind to positive-strand HCV RNA through stem—loop
domains I, III and nt 24-41 [138]. Two-hybrid systems have
identified a potential homotypic interaction domain within the N-
terminal region of the core protein (aa 1-115 or —122), with
particular emphasis on the region encompassing aa 82-102
[196,197]. Using purified HCV core protein, a C-terminally
truncated core protein (aa 1-124) and structured RNA have been
implicated in nucleocapsid formation to produce homogenous
spherical HCV particles. When core protein containing the C
terminus up to aa 174 is similarly examined, a heterogenous array
of iregularly shaped particles is observed, suggesting that the C-
terminus of the core protein influences self-assembly. Further-
more, Pro substitution within the C-terminal region has been
observed to abolish core protein self-interaction [198]. Circular
dichroism spectroscopy has further shown that a Trp-rich region
spanning aa 76—113 is largely solvent-exposed and unlikely to
play a role in multimerization. Recently, our group has
demonstrated that self-oligomerization of the core protein is
promoted by aa 72 to 91 of the core protein [49].

Once a HCV nucleocapsid is formed in the cytoplasm, it
acquires an envelope as it buds through an intraceltular mem-
brane. Interactions between the core and E1/E2 proteins are
thought to determine viral morphology. Expression of HCV
structural proteins using recombinant virus vectors has succeeded
in generating virus-like particles with similar ultrastructural
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properties to HCV virions. Packaging of these HCV-like particles
into intracellular vesicles as a result of budding from the ER has
been noted [88,199,200]. Mapping studies to determine the nature
of interaction between core and El proteins have demonstrated
the importance of C-terminal regions in this interaction [201,202].
Since corresponding sequences are not well conserved among
various HCV isolates, interactions between core and E1 proteins
might depend more on hydrophobicity than specific sequences. In
contrast, it has been shown that the interaction between self-
oligomerized HCV core protein and the El glycoprotein is
mediated through a cytoplasmic loop of the polytopic form of the
El protein [49].

It is believed that HCV particles are released from the cell
through the secretory pathway. HCV structural proteins have
been observed both in the ER and Golgi apparatus [203]. In
addition, complex N-linked glycans, which transit through the
Golgi apparatus, have been detected on the surface of HCV
particles isolated from patient sera [204].

5. Perspectives

Since the discovery of HCV, which is a major cause of liver
disease worldwide, significant progress has been made
regarding the molecular biology of this virus. However, details
regarding early and late stages of the HCV life cycle, including
cell entry, genome packaging, assembly and release, remain
unclear. In addition, the role of some viral proteins and their
importance to replication remains unclear, as well as the role of
certain host factors in regulation of the HCV life cycle.
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