
| 医薬品のウイルス安全性確保

遺伝子治療薬及び細胞治療薬のウイルス安全性確保

内田恵理子 国立医薬品食品衛生研究所 遺伝子細胞医薬部 石井(渡部)明子,山口照英 国立医薬品食品衛生研究所 生物薬品部

ゲノムプロジェクトの成果やバイオテクノロ ジー, 発生学, 幹細胞学などの科学・技術の飛 躍的な発展を受けて、遺伝子治療薬や細胞治療 薬 (再生医療) の開発が大きく進んでいる. 遺 伝子治療では、ベクターや遺伝子導入方法、周 辺技術の改良や知識の集積などによって,一部 の先天性遺伝子疾患に関してはめざましい治療 効果が見られるようになってきている. また, ガン細胞で特異的に増殖し, 腫瘍細胞を破壊す る腫瘍溶解性ウイルスなど、これまでの遺伝子 治療用ベクターとは全く発想の異なる技術開発 も行われるようになってきている. さらには, siRNA や miRNA による遺伝子発現制御の発見 を受け、タンパク質発現を目的としない RNA 転写のみを目的とするベクターの開発も進んで いる。

一方,細胞治療(再生医療)の開発研究では、 国内では200を超える臨床研究や治療薬の開発 が進んでおり、国際的にも多様な治療薬の開発 が先進国のみならず、ASEAN 諸国を始め様々 な国で開発研究が進められている。EU では加 盟国独自の規制から欧州医薬品庁での中央審査 に移行する動きが始まっており、規制状況も大 きく変わろうとしている。

本総説では,遺伝子治療薬や細胞治療薬など の先端技術医薬品の開発動向を含め,このよう な先端医薬品のウイルス安全性確保の問題点や その解決のための技術開発について概説する.

2. 遺伝子治療薬の開発とウイルス安全性

1990年に世界で最初のアデノシンデアミナー ゼ欠損症 (ADA-SCID) の遺伝子治療が開始さ れ、患者の細胞を遺伝子改変して治療を行うと いうまったく新しい治療法が世に出された1). それ以降,世界中で非常に多種多様な遺伝子治 療臨床研究が実施されてきている (図1). こ のような遺伝子治療薬の開発動向を受け、欧米 や日本でも遺伝子治療薬の品質・安全性・有効 性を確保するための指針が制定された2-5).こ れらの指針の中で、遺伝子治療薬のウイルス安 全性確保に関しては, in vitro 及び in vivo ウイ ルス迷入試験やヒト由来細胞を用いる場合の各 種ヒトウイルス否定試験、製造(培養)に用い る血清や動物由来因子の安全性試験などについ て言及している. さらに. ベクター製造に用い られるセルバンクシステムに関しては日米 EU 医薬品規制調和国際会議(ICH)で策定された ICH-Q5A ガイドライン「ヒト又は動物細胞株 を用いて製造されるバイオテクノロジー応用医 薬品のウイルス安全性評価」6 に基づいた評価 が求められる. 本稿では、遺伝子治療薬のウイ ルス安全性に関する基本的事項に関しては各ガ イドラインを参考にされるものとして,現在 ICH 等で議論されている遺伝子治療薬のウイル ス安全性に絞って概説することとする.

遺伝子治療臨床研究は、当初は、遺伝子挿入

Viral Safety of Gene therapy and Cell Therapy Products

Eriko UCHIDA, Division of Cellular and Gene Therapy Products

Akiko ISHII-WATABE, Teruhide YAMAGUCHI, Division of Biological Chemistry and Biologicals

National Institute of Health Sciences

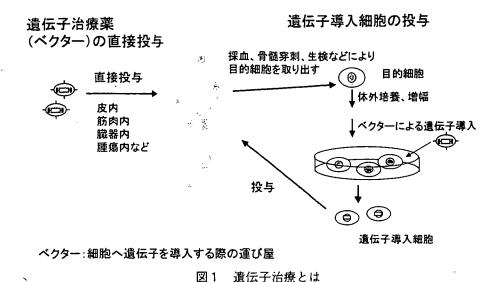


表1 ICH 遺伝子治療専門家会議(GTDG)

2001年5月 ICH SC

「遺伝子治療用医薬品など急速に進展している領域においては、特にその種の製品の規制に重大な影響を及ぼす可能性のある新しい科学的知見に関連する情報について、ICH 各極間での情報の交換/共有を積極的に継続して行う必要がある」

ICH 内に、遺伝子治療専門家会議(Gene Therapy Discussion Group; GTDG)を新設 Klaus Cichutek (EMEA), Stephanie Simek (FDA), Teruhide Yamaguchi (MHLW), Christine-Lise Julou (EFPIA), Wataru Toriumi (JPMA), Alex Kuta (PhRMA), EFTA, Canada

変異等の安全性に関するさまざまな懸念から, 有効性よりも安全性に重点を置いて実施されて きた. しかし. 実際に多くの遺伝子治療臨床研 究が開始されると、当初危惧された挿入変異や さまざまな安全性に関連する有害事象はほとん ど認められず、力点が有効性に移るようになっ た. 特に、多くのケースで目的とする臨床効果 が得られないのは、用いた遺伝子治療用ベク ターがコードする目的遺伝子からの発現が十分 でなく、発現産物が少ないためと考えられるよ うになり、いかにして目的遺伝子を高発現する ベクターを開発するかが重要なポイントと考え られるようになった.しかし、1999年に米国ペ ンシルベニア大学でのアデノウイルスベクター を用いた遺伝子治療において、遺伝子治療薬の 投与が原因で患者が急死するという初めての事 故が発生し",遺伝子治療薬の品質や遺伝子治 療の安全性確保が再度クローズアップされるこ ととなった.

以上のような背景から、2002年に ICH の中に遺伝子治療薬の品質・安全性・有効性に関する様々な問題を科学的に討議するために遺伝子治療専門家会議(Gene Therapy Discussion Group:GT-DG)が発足した(表1). ICH におけるGT-DG の活動としては、周辺技術を含め急激に進歩する遺伝子治療薬をめぐる科学的な諸問題に柔軟に対処するために、公開ワークショップの開催や ICH ホームページ等を通じて得られた議論の成果を広く公開すると共に、新たな知見が得られた場合に迅速に対応していくというスタンスで活動を行っている. これまでGT-DGで取り上げた話題について表2にあげたが、非常に多岐に渡る科学的課題について議論を行ってきている.

本稿では、特に ICH の GT-DG での議論を中心に、遺伝子治療薬を巡る最近の動向とウイルス安全性について概説するとともに、我々のデータについても紹介する.

表 2 ICH 遺伝子治療専門家会議で取り上げられた トピック

- · Viral Shedding from patients
- · Detection of RCV (RCA or RCR)
- · Reference Materials (Adenovirus type 5)
- · Minimize of the Risk of Germline transmission
- · Insertional mutagenesis
- · Oncolytic virus (Workshop)
- · Long term follow up (FDA Guideline 案)
- · Lentiviral vector (EMEA Guideline 案)

1) 遺伝子治療の光と影

ペンシルベニア大学でのアデノウイルスベク ターを用いた先天性代謝疾患(OTC 欠損症) の遺伝子治療で発生した死亡事故は、その事故 原因について徹底的な解析が行われた結果、ア デノウイルスベクターの動脈内への過剰投与に よる異常免疫反応が原因と結論された8)。この 教訓から、アデノウイルス参照品を用いて治療 に用いるアデノウイルスベクターの特性・品質 管理を行うことが提案され,FDA および欧米 の産官学で構成されるアデノウイルス参照品作 業委員会 (Adenovirus reference material working group) により2002年にアデノウイルス5型 参照品 (国際標準品) が策定された⁹⁾. この参 照品を用いてアデノウイルスベクター製品の粒 子数や感染力価を測定することにより、異なる 施設/研究で測定されたウイルス粒子数および 力価のデータ同士を科学的に比較することが可 能である.

一方、1999年からフランスのネッカー病院で 実施されたレトロウイルスベクターによるX 連鎖重症複合免疫不全症(X-SCID)に対する 遺伝子治療では、10例中9例で非常に有効な成 績が得られ、遺伝子治療で初の成功例と報告さ れた^{10,11)}. しかし治療から約3年後,遺伝子の 染色体挿入が原因となり、2名の患児にT細 胞白血病様症状が発症するという重篤な副作用 の発現が判明した121. その後1名は白血病で死 亡し、また3例目の発症も報告された、このよ うな重篤な副作用の原因として、癌遺伝子であ る LMO2領域への挿入変異が起きたことが一つ の要因とされているが、イギリスで実施されて いる同様の遺伝子治療では,現在までこのよう な副作用は認められていない. しかし, 現時点 でもフォローアップが続いており、これらの原 因の究明はかなり先にならざるを得ない^{注)}.

注) その後4例目の白血病患者が出たとの報告があった。

このようなフランスでの X-SCID 遺伝子治療による重篤な副作用発現は、遺伝子導入効率の非常に高い遺伝子治療用ベクターや導入条件が開発されたためともいえる.表3に示すように、X-SCID や ADA-SCID¹¹、さらには慢性肉芽腫症(CGD)遺伝子治療¹³¹で非常にめざましい治療効果が認められるようになり、無菌室でしか生活出来なかった患児が室外で生活出来るようになり、普通の学校生活が送れるようなってきている。すなわち遺伝子治療で患者が治癒出来る時代に到達したといえる。しかし、上記の

表 3 遺伝子治療の光と影

成功例

- ・X 連鎖重症複合免疫不全症(X-SCID)に対する造血幹細胞遺伝子治療(レトロウイルスベクターで IL-2R コモンγ鎖を導入)により10人中 9 人に著効
- ・アデノシンデアミナーゼ欠損症(ADA-SCID)に有効
- ・慢性肉芽腫症(CGD)の遺伝子治療で極めて有望な結果

重篤な副作用の発現

- ・アデノウイルスベクターの投与による異常免疫反応により死亡(米・ペンシルベニア大)
- ・レトロウイルスベクターによる X-SCID 遺伝子治療で遺伝子の染色体挿入が原因となり 3 名に T 細胞白血病 様症状発症(仏・ネッカー病院)

遺伝子治療はまだ医療として充分に確立しておらず、有効性、安全性を慎重に検討する必要がある

ように安全性面からも遺伝子治療はまだ医療と して充分に確立しておらず,有効性,安全性を 慎重に検討する必要がある.

2) 遺伝子治療用ベクターに含まれる増殖性ウイルス検出

図2は世界で実施された遺伝子治療臨床研究の件数をベクターごとに分類したものである(ワイリー出版のデータ (http://www.wiley.co.uk/wileychi/genmed/clinical/)を改変). 用いられるベクターとしては、アデノウイルスやレトロウイルスが約半数を占めている. これらのウイルスベクターの作製においては、生産細胞内において相同組換えにより増殖能を持ったウイルスが出現する可能性がある. 従って、遺伝子治療用ベクターの製造では増殖性ウイルスの試験

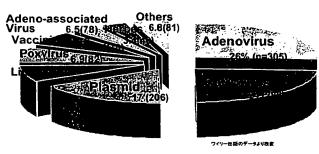


図2 世界の遺伝子治療臨床研究で用いられている ベクターの種類

が必要とされている.

一方,このような治療用ベクターに存在する 増殖性ウイルスの検出では,共存するベクター によって検出しようとする増殖性ウイルスの感 染性試験が妨害されることが知られており,こ の点に充分配慮した試験を行う必要がある.

そこで,大量に存在するレトロウイルスベク ターに混入する微量の増殖性レトロウイルスを 検出するために、FDA のガイドライン¹⁴⁾ では Mus dunni 細胞へ感染を繰り返し(通常 5 回継 代を繰り返す),ついで指標細胞であるPG-4 (S+L-) 細胞へ感染させ, フォーカス形成を指 標として検出する方法が示されている.しかし. この方法は結果が出るまで一ヶ月近くを要する ため, 我々は Mus dunni 細胞に感染後, 培養上 清に産生されてくるレトロウイルスを濃縮して 定量的 RT-PCR 法にて検出する方法(感染性 PCR 法) を開発した(図3). ウイルスの濃縮に は、ポリエチレンイミン磁気ビーズ(PEI ビー ズ)を用いることにより多くのモデルウイルス を吸着・濃縮出来ることを見いだしており15,16). 本法でも PEI ビーズを用いた系を確立した. すなわち、レトロウイルスが含まれる Mus dunni 細胞の上清に PEI ビーズを添加し,PEI ビーズ吸着画分からレトロウイルスゲノムを抽

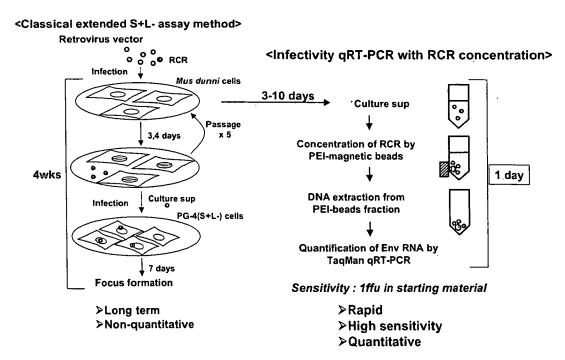


図3 - 感染性 PCR 法と S+L- アッセイ法の比較

出して定量的 RT-PCR でウイルスを定量した.本法を用いることにより,10日以内に 1 pfu /シャーレになるように添加した増殖性レトロウイルスが検出可能であり,通常のフォーカスアッセイより迅速性もあり,感度も100倍高いことが明らかになった(図4)¹⁶.

アデノウイルスベクターの場合,通常,図5に示すように目的遺伝子をアデノウイルスベクターの増幅に関与する E1領域に挿入するため,発現ベクターには E1領域が欠損している.ベクターの製造には E1領域をもつ細胞を用いるが,従来よりアデノウイルスベクター製造用細胞として用いられてきた293細胞では,細胞のもつ E1領域とベクターの配列に一部重複があり,そのため相同組換えにより E1領域を持つれなかった。こうして産生されるでクターに混入する微量の増殖性アデノウイルスを, E1領域

を特異的に検出するプライマー、プローブの セットを用いて PCR 反応により検出しようと すると、ベクター製造用細胞に由来する E1領 域 DNA 断片が PCR 反応のバックグランドに なってしまう. そのため, アデノウイルスが増 幅出来る細胞を用いて細胞変成効果(CPE)を 指標として増殖性ウイルスを検出する系が用い られているが、レトロウイルスの場合と同様、 何代も細胞感染を繰り返し、 増殖性ウイルスを 増幅する必要がある. そこで、我々はウイルス の感染性試験に PCR 法の迅速性 · 高感度性を 組み合わせることにより増殖性アデノウイルス を高感度で検出する感染性 PCR 法を開発した (図6). すなわち、増殖性アデノウイルスを含 む検体を、指向性細胞である HeLa 細胞に感染 させ、細胞内で増幅したウイルスの DNA 断片 を効率よく回収し、この中に含まれる E1領域 DNA を定量的 PCR や nested PCR を用いて検出

<PG4 S+L- assay>

ffu/dish	Day 3	Day 7
100	0/5	1(9)//
10	0/5	4/5%
3	0/5	2/5
1	0/5	1/5
0.3	0/5	0/5
0.1	0/5	0/5
0.01	0/5	0/5

<Infectivity RT-PCR with PEI-beads>

ffu/dis h	Day 3	Day 5	Day 7	Day 10
100	(j):	377	1676	
10	1/	34/2	15/4	
3	1/5	1/2	3/5/2	. 从据记。
1	2/5	2/5	£4/5 Z	3/5
0.3	0/5	0/5	0/5	. 1/5
0.1	0/5	0/5	0/5	0/5
0.01	0/5	0/5	0/5	0/5

Lower number of RCR in Retrovirus vector can be detected in earlier days

図 4 PEI 磁気ビーズを用いた感染性 PCR と S+L- アッセイによる 増殖性レトロウイルス検出の比較

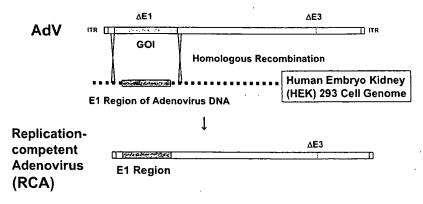


図5 アデノウイルスベクターに混入する増殖性アデノウイルス(RCA)

する方法である. 細胞内のウ イルス DNA 断片の効率的な 回収には我々が開発したガラ スピーズ吸着法を用いた. 感 染性 PCR 法では、産生細胞 由来の E1領域 DNA 断片の混 入は、HeLa細胞に感染させ ることにより殆ど起こらず、 また、細胞へ感染させ増幅し てきたウイルス由来 DNA を 検出するため、感染力価との 相関が明確になるという長所 もある. 本法を用いることに より, アデノウイルスベク ターにスパイクした増殖性ア デノウイルスを従来法である CPE 法に比べて10,000倍以上 高感度に検出できることが明ら かになり、かつ迅速性にも優れ ていることが確認された¹⁷⁾.

一方,ウイルスベクターに 混入する危険性のある増殖性 アデノウイルスおよび増殖性 レトロウイルスに関しては, 産生細胞の選択やベクターデ ザインによって混入リスクが

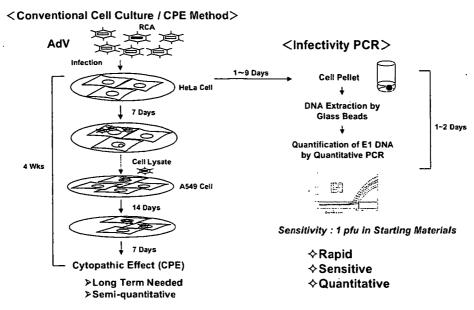
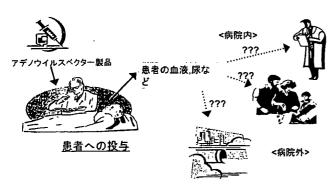


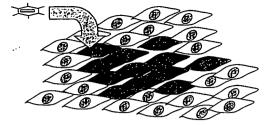
図6 増殖性アデノウイルス検出法:CPE 法と感染性 PCR 法 _

非常に低減化される可能性が高い.最近アデノウイルスベクター製造用に開発された PER.C6 細胞や C139細胞では,ベクターと産生細胞の配列に重複がないため,相同組換えが抑制され,増殖性アデノウイルスの産生が起こらないことが報告されている¹⁸⁻²⁰⁾.ベクターに混入する可能性のある増殖性ウイルスに関しては増殖性ウイルスを産生しないようなベクター製造方法の開発も非常に重要である.

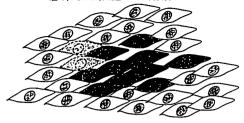
3) 患者からの遺伝子治療用ベクターやウイルスの放出

遺伝子治療薬の臨床適用に当たって、ベクターやベクターに混入する可能性のある増殖性ウイルスの患者からの放出が非常に大きな問題となる(図7). 患者から放出されたベクターや増殖性ウイルスが患者の家族や医療従事者等に伝播するのを防止するために、遺伝子治療薬投与後、患者からのベクターやウイルスの放出

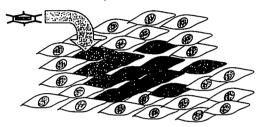



図7 患者からのベクターやウイルスの放出の影響

をモニタリングし、さらに必要に応じて隔離等 の措置を行う場合がある. このために、患者の 血中、喀痰、尿等に含まれるベクターや増殖性 ウイルスを検査する必要がある. 臨床検体中の ベクターや増殖性ウイルスの高感度検出法とし ては PCR 等の核酸増幅検査が用いられること が多いが,この場合,伝達性のないベクターや 増殖性ウイルスの遺伝子断片であっても検出し てしまう可能性が高い. しかし. 血清や体液試 料を用いて細胞での in vitro 感染性 · 伝達性試 験を行う場合は、夾雑タンパク質等による阻害 のために希釈等の操作が必要となり、十分な感 度が得られないことが多い. 従って, 遺伝子治 療用ベクターや増殖性ウイルスの放出につい て、その感染性を指標として検出する高感度な 手法の開発が急がれる. あるいは、PCR等の 手法を用いてゲノムレベルでの検出を行う際 に、ベクターやウイルス断片と、機能を持った 粒子とを区別可能な手法を開発することができ れば、高感度性を持った新たな検出手法となり える.


4) 腫瘍溶解性ウイルスのウイルス安全性

腫瘍溶解性ウイルスの発見は非常に古く,悪性腫瘍患者にウイルス感染が起こったときや生ワクチンを接種された際に,腫瘍の縮小や寛解が認められたことからウイルスを用いた治療法の開発が始まった(図8). 腫瘍溶解性ウイルス療法とは、がん細胞の異常増殖性を利用して


がん遺伝子治療ベクター

感染した細胞のみ溶解

腫瘍溶解性ウイルス(ベクター)

周辺のがん細胞や遠隔転移したがん細胞も溶解

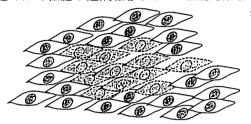


図8 腫瘍溶解性ウイルスと従来型のがん遺伝子治療ベクターの比較

がん細胞の中で特異的に増殖し、細胞を溶解し て死滅させる性質を持つ特殊なウイルスあるい は遺伝子改変されたウイルスを用いてがん細胞 を特異的に溶解させようとする治療法である. 腫瘍溶解性ウイルスの開発は、腫瘍特異的に増 殖する野生型ウイルスや弱毒化ウイルスを用い た研究から、遺伝子改変技術を用いた病原性の 除去や腫瘍指向性をより高めた制限増殖性ウイ ルスを用いるものへと移行しつつある. 腫瘍溶 解性ウイルスの開発はここ数年急速に進展して おり、多くの総説も書かれている21-23)、腫瘍溶 解性ウイルスの選択・設計(野生型・弱毒型・ 遺伝子組換え型), 1)動物やヒトで期待される 効果の評価、2)ウイルス複製の腫瘍選択性、3) 臨床上の安全性, 4)動物試験に用いる適切な動 物モデル、5)腫瘍溶解性ウイルスの体外放出の 検出とそのリスク評価などが大きな問題となっ ている.

現在使用されている腫瘍溶解性ウイルス開発では、腫瘍細胞内で選択的に複製する非組換えウイルスを用いる場合と遺伝子組換え型ウイルスを用いる場合がある.通常の遺伝子治療では、ベクターに混入する増殖性ウイルス(RCV)の検出が品質・安全性の観点から重要であるが、腫瘍溶解性ウイルスは制限増殖能をもつことから、RCV 検出よりも目的ウイルスの変化体をどの様に検出するかが重要な課題である.また、

増殖性を持つために、目的ウイルスやウイルスベクター以外の迷入ウイルスの試験が通常の方法では区別ができない.このために、迷入ウイルス試験では目的ウイルスの中和抗体を用いて試験を行うことなどが行われている.一方、腫瘍溶解性ウイルスの安全性上の大きな問題として、増殖能を持つために、変異を起こした場合により重篤な副作用が出やすく、また患者以外への伝播のリスクも高いことが上げられる.従って、ウイルスの変異を適切に検出する手法の開発が非常に重要である.さらには、このようなウイルスの変異がどの程度の頻度で起こるか、あるいはそのリスクについての評価を十分に行う必要がある.

3. 細胞治療薬(再生医療)等のウイルス安全 性確保について

近年,バイオテクノロジー応用技術の進歩や 再生医学・幹細胞研究の飛躍的な進展により, ヒトまたは動物の細胞や組織を培養,加工し, さまざまな疾患の治療に用いる細胞治療薬の開 発が急速に進んでいる。このように細胞そのも のを治療薬として用いることができれば,ガン, 筋ジストロフィー,再生不良性貧血,心筋梗塞 などの致死的な疾患ばかりでなく,糖尿病等の 慢性疾患に対してもきわめて有効な治療法にな る可能性が高い。細胞治療薬の開発は世界的レ ベルで急速に広がっており,欧米ではすでに複数の製品(細胞組織利用医薬品等)が承認されている.

厚生労働省では、薬事法上の規制を受ける細 胞組織利用医薬品等の安全性および品質の確保 のために必要な基本的要件を明らかにするため に、平成13年に、「細胞組織利用医薬品等の取 扱いおよび使用に関する基本的考え方 |24), お よび「ヒト由来細胞・組織利用医薬品等の品質 および安全性確保に関する指針」(以下「ヒト細 胞指針」と略す)25)の策定を行った.これらの 指針は、ヒト由来の細胞・組織を加工した製品 について、治験前の品質・安全性確認や承認申 請のために製造者が厚生労働省に提出しなけれ ばならない資料の内容について明らかにしたも のである. さらに. 厚生労働省では薬事法上の 規制を受けない細胞治療臨床研究に用いる細胞 の品質や安全性確保のために、平成18年に「ヒ ト幹細胞を用いる臨床研究に関する指針の施行 等についてヒト幹細胞を用いる臨床研究(以下 「ヒト幹細胞臨床研究」)26)を策定した。この「ヒ

ト幹細胞臨床研究」では、品質・安全性確保のための方策については上述した「ヒト細胞指針」を準用するように求めており、薬事法上の規制を受けない臨床研究においても同等の安全性を担保することが大きな特徴である.

本総説では、これらの通知や指針に記載されている、細胞治療に用いる細胞組織利用医薬品等のウイルス安全性の確保について概説するとともに、我々のデータも紹介する.

1) 細胞組織利用医薬品等の開発動向

細胞組織利用医薬品の開発は日米欧の先進国のみならず、ASEAN諸国や他の地域でも活発に行われている。日本で承認された細胞組織利用医薬品はまだ無いが、欧米では既に培養皮膚や培養軟骨などのいくつかの製品が上市されている。複数の製品が確認申請を受け治験に入っており、臨床研究を含めると200を超える細胞治療(再生医療)開発が行われている。表4には、国内での治験や高度先進医療として実施されている事例を挙げた。血管、心筋、角膜、軟骨、骨、培養皮膚と多岐にわたっており、また

表 4 日本で臨床応用が実施された/実施中の再生医療の例 2005年7月現在

分	類	再生組織	適用細胞	疾患名	実施施設	備考
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	大阪市立大学医学部附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	岡山大学医学部附属病院	高度先進医療
角膜·角	角膜上皮	羊膜	難治性眼疾患	結膜上皮内過形成や結膜腫瘍等	金沢大学医学部附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	関西医科大学附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	京都府立医大附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	久留米大学病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	群大医学部附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	国立循環器病センター	高度先進医療
血管	・心臓	血管	末梢血幹細胞	慢性閉塞性動脈硬化症,バージャー病	札幌北楡病院	高度先進医療
骨·輔		軟骨	軟骨	膝関節, 離断性骨軟骨炎, 変形性関節症	東京医科歯科大学医学部附属病院	冶験
皮膚		表皮	皮膚	重症熱傷	東京女子医科大学病院	治験
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	奈良県立医大附属病院	高度先進医療
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	自治医科大学附属病院	高度先進医療
骨·单	飲骨	軟骨	軟骨	外傷性軟骨欠損症,離断性骨軟骨炎等	島根大学医学部附属病院	治験
皮腐		表皮	皮膚	重症熱傷	社会保険中京病院	治験
血管	・心臓	血管	骨髓単核球	閉塞性動脈硬化症,バージャー病	昭和大学病院	高度先進医療
血管	・心臓	血管	骨髄単核球	閉塞性動脈硬化症,バージャー病	信大医学部附属病院	高度先進医療
血管	・心臓	血管	末梢血単核球	慢性閉塞性動脈硬化症,バージャー病	千葉大学附属病院	高度先進医療
血管	·心臓	血管	骨髓単核球	閉塞性動脈硬化症, バージャー病	新潟大学医歯学総合病院	高度先進医療
血管	·心臓	血管	骨髓単核球	閉塞性動脈硬化症, バージャー病等	日本医科大学附属病院	高度先進医療
骨·!	軟骨	軟骨	軟骨	膝関節,肘関節の外傷性軟骨欠損症等	広島大学病院	治験
骨·i	軟骨	軟骨	軟骨	膝関節,肘関節の外傷性軟骨欠損症等	北海道大学病院	治験
骨·i	軟骨	軟骨	軟骨	膝関節,肘関節の外傷性軟骨欠損症等	三菱名古屋病院	治験

樹状細胞や活性化リンパ球を用いた癌治療の開発も実施されている。表4には自家細胞を用いた研究の代表例をあげたが、同種他家細胞を用いた製品の開発も急速に進んでいる(表5)。また、図9にEUでの開発状況をまとめたが、癌免疫療法の臨床研究が最も多く、ついで心血管系治療が多くなっており、我が国の趨勢と異なる点があることが分かる。

このような細胞治療薬の急速な開発状況に対応するために、欧米でも既にいくつかの指針等が作成されている^{3,5,27-29)}. これらの指針等で最も重要視されている安全性上の課題は、ウイルス等の感染症伝播をいかに防止するかである. 細胞治療に用いる細胞は滅菌や高度な精製といった処理ができないため、ウイルス等の感染 因子が混入した場合に患者ばかりでなく患者の家族等へ感染が広がる危険性がある. すなわち個の安全性ばかりでなく公衆衛生の観点からも、製品の安全性を担保することが最も重視されている.

また、不適切な製造による不良品の製造、不適切な製品の取扱いや使用による問題の発生を防止することが目的とされている。これらの問題への対処を定めることにより、高品質で安全性の高い細胞組織利用医薬品等の開発を推進することができると考えられる。

2) 原材料となる細胞・組織の由来とウイルス 安全性

細胞組織利用医薬品では、原材料として用いられる細胞・組織が自己由来であるか非自己であるかを明確にし、細胞・組織の入手方法およ

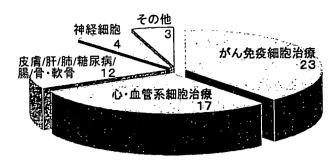


図9 EU における体細胞治療臨床研究申請件数 (2004.8 ~ 2006.10)

びその生物学的特徴について説明し、当該細胞・組織を選択した理由を明らかにすることが必要である。特にウイルス安全性に関しては、原材料となる細胞・組織の適格性について、HBV、HCV、HIV、HTLV、ヒトパルボウイルス B19、さらに必要に応じてサイトメガロウイルスや EB ウイルスについて、血清学的試験や核酸増幅法等の検査を行う必要がある³⁰⁾. さらに、ウイルス等の検査においては、ウインドウ期の存在を念頭において、適切な時期に再検査を行うことが推奨されている.

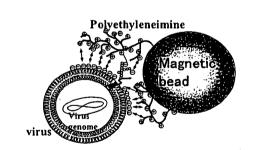
ただし、自己由来の細胞・組織を用いる場合は、感染因子に関して必ずしもドナースクリーニングを行う必要はないとの考え方もある. しかし、自己由来の細胞・組織を用いる場合においても、製造従事者への安全性や製造工程へウイルス陽性原料を持ち込む可能性について十分な配慮が必要であり、必要に応じて上記したウイルス否定試験や迷入ウイルス試験の実施や、培養工程で特定のウイルス増幅が起きないことを確認することが必要となる.

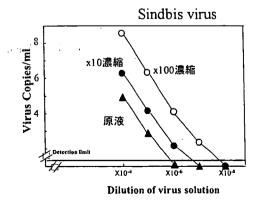
表 5 同種細胞治薬等の開発状況

細 胞	供給源	対 象 疾 患	方 法
培養皮膚(真皮)	割礼組織	難治性潰瘍,重症熱傷	ヒト線維芽細胞を培養
造血幹細胞	臍帯血	白血病治療	臍帯血造血幹細胞の増幅
リンパ球輸注	同種	移植片対宿主病(GVDH)抑制	同種造血幹細胞移植後にドナーリンパ球輸注
神経幹細胞	ヒト胎児脳細胞	セルロイド・リボフスチン症	ヒト胎児脳細胞増殖
神経幹細胞	ヒト胎児脳細胞	脳卒中	ヒト胎児神経幹細胞培養
間葉系幹細胞	ヒト骨髄由来	造血幹細胞移植 GVDH 抑制	ヒト間葉系幹細胞増幅
ヒト造血幹細胞	臍帯血	造血幹細胞移植	臍帯血造血幹細胞増幅

原材料となる細胞・組織について、安全性確保上必要な情報が確認できるように、ドナーに関する記録が整備、保管されていることが必要である。これらの記録の保管は、製造記録とも10年をもに製品の最終有効期限より少なくとも10年発性感染症の情報によっては再検討が必要とといる。また同様の観点から、治療の成の大めに、採取した細胞・組織の一部等のである。とが推りな試料を、適切な期間保存することが推奨されている。

採取した細胞・組織について、細胞の採取収率,生存率や細胞・組織の特性解析と平行して、 微生物汚染がないことを示す検査を行う必要が ある.


3) 細胞培養方法


製造工程で細胞培養を行う場合は、培地の組成、培養条件、培養期間、収率等を具体的に記載することが求められている。使用する原材料は、医薬品又は医薬品原料に匹敵する基準で品質管理されているものを用いる必要がある。血清は、必須でなければ使用しないことが望ましく、使用が避けられない場合には、血清からの

感染因子の混入・伝播の防止策を設ける必要がある。血清を使用する場合には、混入が想定されるウイルスについて否定試験を行ったものを使用する必要があり、さらに可能な限りγ線照射等の処理を実施し、潜在するウイルスの低減化・不活化を行う必要がある。

4) 高感度ウイルス検出法

輸血でのウイルス感染に関しては、数コピー から数十コピーのウイルスで感染が起きる場合 があることが知られており、細胞治療薬のよう にウイルスの不活化・除去工程が実質できない 製品の場合には、可能な限り高感度なウイルス 否定試験の開発が望まれている. 現在最も高感 度なウイルス検出法としては、PCR などの核 酸増幅検査 (NAT) があげられるが、NAT を 用いても、ウイルス感染初期のウインドウ期や 低濃度キャリアーではウイルスゲノムの検出が 不可能な場合があることが知られている. 従っ て、ウイルス濃縮法等を利用することによるウ イルス検出の高感度化ができれば、細胞治療薬 のウイルス安全性に大きく貢献することが期待 出来る. 我々は、新規ウイルス濃縮法としてポ リエチレンイミン磁気ビーズ (PEI 磁気ビーズ) を用いた手法を開発し¹⁵⁾(図10), PEI 磁気ビー

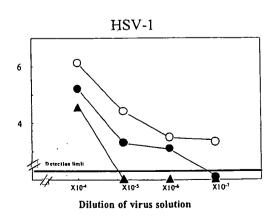


図 10 PEI 磁気ビーズを用いたウイルス濃縮

表 6 PEI 磁気ビーズによるウイルスの濃縮結果

ウイルス	宿主	ウイルスゲノム	脂質膜	サイズ (nm)	PEI- 磁気ビーズ濃縮
モデルウイルス			-	-	
サイトメガロウイルス	サル	DNA	+	180-200	+
ヘルペスウイルスI型	ヒト	DNA	+	150-200	+
水疱性口内炎ウイルス	ウシ	RNA	+	70-150	+
同種指向性マウス白血病ウイルス	マウス	RNA	+	80-110	+
Sindbis ウイルス	ヒト	RNA	+	60-70	+
アデノウイルス 5 型(Ad-5)	ヒト	DNA	_	70-90	+
SV-40ウイルス (SV-40)	サル	DNA	_	40-50	+
ブタパルボウイルス(PPV)	ブタ	DNA	_	18-24	+*
ポリオウイルス Sabin 1 型	ヒト	RNA	-	25-30	+**
ヒト感染性ウイルス					
ヒト免疫不全ウイルス(HIV)	ヒト	RNA	+	80-100	+
B 型肝炎ウイルス(HBV)	ヒト	DNA	+	40-45	+
C 型肝炎ウイルス(HCV)	ヒト	RNA	+	40-50	+
A 型肝炎ウイルス(HAV)	ヒト	RNA	_	25-30	+*

*:条件により濃縮されない場合もある

**:PEI 磁気ビーズのみでは濃縮されないが、IgM 抗体や抗体と補体の添加により濃縮可能

ズを用いることにより、C型肝炎ウイルスやB型肝炎ウイルスをはじめとして多くのウイルスが濃縮可能であることを報告している(表 6).

4. 遺伝子治療薬や細胞治療薬のウイルス安全 性確保を目指した将来的な課題

遺伝子治療薬や細胞治療薬などの先端技術医薬品のウイルス等の安全性確保に関しては、多くの検討すべき課題が残されている。また、これらの先端技術医薬品の開発はその周辺技術を含めて急速に進展しており、さらに腫瘍溶解性ウイルスベクターのようにこれまり、この概念によりな事品についており、このの開発も続いており、このの関系を開発をできるだけ早く国民に届けることになる。このためにも、高感度・高精度のウイルス安全性検出技術等の基盤技術の開発を進めると共に、適切なリスク評価に基づいた行政施策の立案に資する研究が望まれている。

铭 態

本研究の一部は,厚生労働科学研究費,政策創薬総合研究事業,文部科学省研究費の支援を受けて行われた.

参考文献

- Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF: T lymphocytedirected gene therapy for ADA-SCID: initial trial results after 4 years. Science 270: 475-480, 1995
- 2)厚生省薬務局長通知:遺伝子治療用医薬品の品質及び安全性の確保に関する指針.薬発第1062号,医薬発第329004号,薬食発第1228004号,平成7年11月15日(平成14年3月29日,平成16年12月28日一部改正)
- FDA/CBER: Guidance for industry: Guidance for human somatic cell therapy and gene therapy.

1998.3

- EMEA: Note for guidance on the quality, preclinical and clinical aspects of gene transfer medicinal products. CPMP/BWP/3088/99, 2001.4
- 5) FDA: Guidance for reviewers: Instructions and template for chemistry, manufacturing, and control (CMC) reviewers of human somatic cell therapy investigational new drug applications (IND). 2003.8
- 6) 厚生省医薬安全局審査管理課長通知:ヒト又は 動物細胞株を用いて製造されるバイオテクノロ ジー応用医薬品のウイルス安全性評価. 医薬審 第329号,平成12年2月22日
- Marshall E: Gene therapy death prompts review of adenovirus vector. Science 286: 2244-2245, 1999
- 8) Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML: Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80: 148-158, 2003
- Hutchins B: Development of a reference material for characterizing adenovirus vectors. BioProcessing Journal 1: 25-28, 2002
- 10) Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M: Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346: 1185-1193, 2002
- 11) Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A: Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669-672, 2000
- 12) Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I,

- Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415-419, 2003
- 13) Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H, Naundorf S, Brinkmann A, Deichmann A, Fischer M, Ball C, Pilz I, Dunbar C, Du Y, Jenkins NA, Copeland NG, Luthi U, Hassan M, Thrasher AJ, Hoelzer D, von Kalle C, Seger R, Grez M: Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12: 401-409, 2006
- 14) FDA/CBER: Guidance for industry: Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. 2000.10
- 15) Satoh K, Iwata A, Murata M, Hikata M, Hayakawa T, Yamaguchi T: Virus concentration using polyethyleneimine-conjugated magnetic beads for improving the sensitivity of nucleic acid amplification tests. J Virol Methods 114: 11-19, 2003
- 16) Uchida E, Sato K, Iwata A, Ishii-Watabe A, Mizuguchi H, Hikata M, Murata M, Yamaguchi T, Hayakawa T: An improved method for detection of replication-competent retrovirus in retrovirus vector products. Biologicals 32: 139-146, 2004
- 17) Ishii-Watabe A, Uchida E, Iwata A, Nagata R, Satoh K, Fan K, Murata M, Mizuguchi H, Kawasaki N, Kawanishi T, Yamaguchi T, Hayakawa T: Detection of replication-competent adenoviruses spiked into recombinant adenovirus vector products by infectivity PCR. Mol Ther 8: 1009-1016, 2003
- 18) Farson D, Tao L, Ko D, Li Q, Brignetti D, Segawa K, Mittelstaedt D, Harding T, Yu DC, Li Y: Development of novel E1-complementary cells for adenoviral production free of replication-competent adenovirus. Mol Ther 14: 305-311, 2006
- 19) Murakami P, Pungor E, Files J, Do L, van Rijnsoever R, Vogels R, Bout A, McCaman M: A single short

- stretch of homology between adenoviral vector and packaging cell line can give rise to cytopathic effect-inducing, helper-dependent E1-positive particles. Hum Gene Ther 13: 909-920, 2002
- 20) Fallaux FJ, Bout A, van der Velde I, van den Wollenberg DJ, Hehir KM, Keegan J, Auger C, Cramer SJ, van Ormondt H, van der Eb AJ, Valerio D, Hoeben RC: New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9: 1909-1917, 1998
- 21) Aghi M, Martuza RL: Oncolytic viral therapies the clinical experience. Oncogene 24: 7802-7816, 2005
- 22) Lin E, Nemunaitis J: Oncolytic viral therapies.

 Cancer Gene Ther 11: 643-664, 2004
- 23) Ries SJ, Brandts CH: Oncolytic viruses for the treatment of cancer: current strategies and clinical trials. Drug Discov Today 9: 759-768, 2004
- 24) 厚生労働省医薬局長通知:細胞・組織利用医薬 品等の取扱い及び使用に関する基本的考え方.

- 医薬発第266号, 平成13年3月28日
- 25) 厚生労働省医薬局長通知:ヒト由来細胞・組織 加工医薬品等の品質及び安全性の確保に関する 指針. 医薬発 第1314号, 平成12年12月26日
- 26) 厚生労働省医薬局長通知: ヒト幹細胞を用いる 臨床研究に関する指針の施行等について ヒト 幹細胞を用いる臨床研究. 健発第0703003号, 平成18年7月3日
- EMEA: Point to consider on xenogenic cell therapy medicinal products. 2003.12.17
- 28) EMEA: Point-to-consider on the manufacture and quality control of human somatic cell therapy medicinal products. CPMP/BWP/41450/98, 2001.5.31
- 29) FDA/CBER: Suitability determination for donors of human cellular and tissue-based products. 97N-484S, 1999.9.30
- 30) 厚生労働省医薬局長通知:生物由来製品及び特定生物由来製品の指定並びに生物由来原料基準の制定等について. 医薬発第052001号, 平成15年5月20日

. (:).

Journal of Virological Methods

Journal of Virological Methods 143 (2007) 95-103

www.elsevier.com/locate/jviromet

Optimization of the virus concentration method using polyethyleneimine-conjugated magnetic beads and its application to the detection of human hepatitis A, B and C viruses

Eriko Uchida^a, Mieko Kogi^{a,b}, Tadashi Oshizawa^a, Birei Furuta^a, Koei Satoh^c, Akiko Iwata^c, Mitsuhiro Murata^d, Mikio Hikata^d, Teruhide Yamaguchi^{a,e,*}

^a Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan b Kanazawa Institute of Technology, Nonoichi, Ishikawa, Japan

^c The Institute of the Saitama Red Cross Center, Kumagaya, Saitama, Japan

^d JSR Corporation, Tsukuba Research Laboratories, Tsukuba, Ibaraki, Japan
^c Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan

Received 25 September 2006; received in revised form 22 February 2007; accepted 26 February 2007 Available online 12 April 2007

Abstract

To enhance the sensitivity of virus detection by polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR), a novel virus concentration method using polyethyleneimine (PEI)-conjugated magnetic beads was developed in our previous study. However, several viruses could not be concentrated by this method. In this paper, the conditions of virus concentration were optimized to concentrate a wide range of viruses more efficiently. The PEI beads adsorbed viruses more efficiently than other cationic polymers, and the optimum virus concentration was obtained under weak acidic conditions. Mass spectrometric analysis revealed that several serum proteins, such as complement type 3, complement type 4 and immunoglobulin M (IgM), were co-adsorbed by the PEI beads, suggesting that the beads may adsorb viruses not only by direct adsorption, but also via immune complex formation. This hypothesis was confirmed by the result that poliovirus, which PEI beads could not adsorb directly, could be concentrated by the beads via immune complex formation. On the other hand, hepatitis A (HAV) and hepatitis C (HCV) viruses were adsorbed directly by PEI beads almost completely. Like poliovirus, hepatitis B virus (HBV) was concentrated efficiently by the addition of anti-HBV IgM. In conclusion, virus concentration using PEI beads is a useful method to concentrate a wide range of viruses and can be used to enhance the sensitivity of detection of HAV, HBV and HCV.

Keywords: Polyethyleneimine; Virus concentration; Immune complex; HAV; HBV; HCV

1. Introduction

Many useful biological/biotechnological medicinal products are produced from biological materials and by cell culture techniques. Recent progress in gene therapy and cell therapy products has provided new hope for the treatment of grave genetic diseases and lethal disorders. These innovative medicinal products, however, involve some risk in terms of the spread of transmissible agents and virus-mediated infectious diseases. To ensure the viral safety of biological/biotechnological products,

Polymerase chain reaction (PCR) is a highly sensitive method for the detection of virus genomes (Saiki et al., 1988). Several nucleic acid amplification test (NAT) methods other than PCR have also been developed (Alter et al., 1995; Kamisango et al., 1999; Kern et al., 1996; Notomi et al., 2000; Sarrazin et al., 2000). These tests are reported to be able to detect only some copies of virus genomes. Therefore, in many countries, NAT methods have been employed to detect specific viruses in the virus screening of blood-derived products (Willkommen et al.,

it is important to confirm that the starting materials, intermediate products and final products are free from virus contamination. This is especially important for cell therapy products, since it is difficult to inactivate and/or remove contaminated viruses from these products.

^{*} Corresponding author. Tel.: +81 3 3700 9064; fax: +81 3 3700 9084. E-mail address: yamaguch@nihs.go.jp (T. Yamaguchi).

1999). NAT methods are also thought to be useful in testing biotechnology products derived from cell lines and cell therapy products. However, since all NAT methods used for the detection of viruses have a detection limit, it is impossible to deny virus contamination completely. In order to reduce the virus risk of both biological/biotechnological products and cell therapy products, it is essential to develop more sensitive methods of virus detection. One way to improve the sensitivity of virus detection is to concentrate the target viruses before NAT testing.

Recently, a novel viral concentration method using polyethyleneimine (PEI)-conjugated magnetic beads was developed (Satoh et al., 2003). It was shown that PEI beads efficiently adsorbed many model viruses, such as simian virus 40 (SV-40), herpes simplex 1 virus (HSV-1), Sindbis virus and vesicular stomatitis virus (VSV), and that the method improved the sensitivity of NAT for the detection of virus genomes about 10 to 100 times. It has also been reported that PEI beads efficiently adsorb amphotropic murine leukemia virus, and that the virus concentration method provided sensitive detection of replication-competent retrovirus in retrovirus vector products (Uchida et al., 2004). However, several small non-enveloped viruses such as poliovirus could not be concentrated or were only partially concentrated by PEI beads (Satoh et al., 2003). In addition, the mechanism of virus adsorption by PEI beads remains to be elucidated.

In the present study, the viral concentration method using PEI beads was optimized in order to allow the efficient concentration of several viruses. It was demonstrated that poliovirus can be concentrated by PEI beads via the formation of immune complexes. In addition, it was shown that the virus concentration method using PEI beads is applicable to human infectious viruses such as the hepatitis A(HAV), hepatitis B (HBV) and hepatitis C (HCV) viruses, which are important viruses to test for in order to ensure the viral safety of biological products and cell therapy products.

2. Materials and methods

2.1. Viruses

SV-40 virus, HSV-1 (stain F), porcine parvovirus (PPV; strain 90HS) and poliovirus (strain Sabin 1) were obtained and amplified as described previously (Satoh et al., 2003). Briefly, the supernatants of Vero cells infected with HSV-1 or poliovirus were used as virus samples. CV-1 cells were infected with SV-40 virus, and 5 days after infection, the supernatant was saved as the SV-40 sample. The supernatant of ESK cells infected with PPV was used as the PPV sample. In order to remove cell debris from the collected virus suspension, each virus suspension was centrifuged at 3000 rpm for 10 min. After removing cell debris, the resulting stock viruses (SV40: 4×10^7 copies/ml; PPV: 1×10^6 copies/ml; HSV-1: 1×10^8 copies/ml; poliovirus: 2×10^7 copies/ml) were aliquoted and stored at -80 °C until use. Human adenovirus type 5 reference material (ATCC VR-1516; 5.8×10^{11} particles/ml) was obtained from the American type culture collection (ATCC) and used without amplification. HAV was obtained from ATCC (strain HM175/18f), infected into FRhK-4 cells, and the supernatant of the cell was saved 9–11 days later as the HAV sample (1×10^8 PFU/ml). The first Japanese national standard for HBV DNA (Genotype C; potency: 4.4×10^5 IU/ml) and the first Japanese national standard for HCV RNA (Mizusawa et al., 2005); genotype HCV-1b; potency: 100,000 IU/ml) were directly used as the HBV sample and HCV sample, respectively.

2.2. Preparation of PEI beads

PEI beads were prepared by coupling PEI (MW 70,000; Wako Pure Chemical Industries, Ltd., Tokyo, Japan) with magnetic beads (IMMUTEX-MAGTM; mean diameter: 0.8 µm; JSR Inc., Tokyo, Japan) by the 1-ethylene-3-(3-dimethylaminopropyl) carbodiimide coupling method, as described previously (Satoh et al., 2003). The final concentration of the PEI beads was 50 mg/ml. Different molecular weights of PEI beads were prepared as described above but including the coupling of PEI with a molecular weight (MW) of 1800 or PEI (MW 10,000) to magnetic beads, instead of PEI (MW 70,000). Polyarylamine (PAA)-conjugated magnetic beads and poly-L-lysine (PLL)-conjugated magnetic beads were prepared in the same way as PEI beads, using PAA (MW 150,000) or PLL (MW > 300,000) instead of PEI, respectively.

2.3. Virus concentration using PEI beads

The essential adsorption procedure for each virus was as follows. Virus samples were diluted with virus dilution medium (Dulbecco's modified Eagle's medium (DMEM) or DMEM supplemented with 2% fetal calf serum (FCS)). The exact concentration of the virus suspension used for each experiment is described in the corresponding figure legends. Next, 1 ml of each virus suspension was incubated with 100 µl of PEI beads for 10 min at room temperature. The complexes of virus and PEI beads were trapped by a magnetic field (Magnetic TrapperTM; Toyobo Co., Tokyo, Japan) for 5 min and separated from the supernatant fraction. The virus DNA or RNA was extracted from virus-bead complex or from untreated virus suspensions (100 µl) with an SMI-TEST EX R&D Kit (Medical & Biological Laboratories Co., Nagano, Japan) following the manufacturer's instructions. Extracted DNA or RNA was dissolved in 50 µl of TE buffer (10 mM Tris-HCl (pH 7.4)/0.1 mM EDTA), and 10 μ l of the solution was used for real-time PCR or RT-PCR reaction.

2.4. Effect of pH on virus concentration by PEI beads

Good's buffers with pH 4–9 (1 M MES, pH 4.0; 1 M MES, pH 5.0; 1 M MES, pH 6.0; 1 M HEPES, pH 7.0; 1 M HEPES, pH 8.0; 1 M Tricine, pH 9.0) were prepared and added to the virus dilution medium at a final concentration of 20 mM. Virus samples were then diluted with the virus dilution media at different pH values, and concentrated with PEI beads as described. The exact concentration of the virus suspension used for each experiment is described in the corresponding figure legends.

2.5. Real-time PCR and RT-PCR

Real-time PCR and reverse transcription PCR (RT-PCR) were carried out in a 50-µl reaction mixture containing 10 µl of extracted DNA or RNA, 0.5 µM of each primer set with a fluorescence probe, 25 µl of PCR master mix and, in the case of RT-PCR, a reverse transcriptase mix prepared according to the kit manual. The following real-time PCR and RT-PCR master mix kits were used: a QuantiTect Probe PCR kit (Qiagen, Hilden, Germany) for HSV-1, SV-40, adenovirus and PPV; a Quanti-Tect Probe RT-PCR kit (Qiagen) for poliovirus, HAV and HCV; and a Platinum Quantitative PCR SuperMix-UDG with ROX (Invitrogen, Carlsbad, CA, USA) for HBV. The 5'-primers, 3'primers and fluorescence probes used for the real-time PCR and RT-PCR detection of viruses are shown in Table 1. The realtime PCR and RT-PCR were performed on an ABI PRISM 7000 Sequence-Detection System (Applied Biosystems, Foster City, CA, USA).

2.6. SDS-PAGE analysis of serum proteins adsorbed on PEI beads

The virus suspension (HSV-1) diluted with DMEM supplemented with 5% FCS was incubated with PEI beads for 10 min. The fraction of serum proteins adsorbed on the beads and the untreated virus suspension were then boiled with sodium dodecly sulfate (SDS) sample buffer and applied to SDS-

polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE was carried out on a slab gel (T=7.5%) with a BE-120 system from Biocraft (Tokyo, Japan). Protein bands were visualized by Coomassie Brilliant Blue staining.

2.7. In-gel digestion

Protein bands of interest were excised from the SDS-PAGE gel, destained three times in 50% acetonitrile and 25 mM ammonium bicarbonate for 10 min each time, and dehydrated in acetonitrile. The gel pieces were dried in a vacuum centrifugal concentrator and incubated with 10 mM dithiothreitol (DTT) in 25 mM ammonium bicarbonate at 56 °C for 60 min. After cooling to room temperature, the DTT solution was replaced with roughly the same volume of 55 mM iodoacetamide in 25 mM ammonium bicarbonate. After incubation for 45 min at room temperature in the dark, the gel pieces were washed in 25 mM ammonium bicarbonate for 5 min and dehydrated by the addition of 50% acetonitrile and 25 mM ammonium bicarbonate for 5 min. After this procedure was repeated twice, the gel pieces were dried in a centrifugal concentrator. The gel pieces were allowed to swell in 2 µl of a digestion buffer containing 25 mM ammonium bicarbonate, 0.1% octyl glucoside, and 25 ng/µl trypsin (sequence grade; Promega, Madison, WI, USA) in ice for 5 min, and then 15 µl of a digestion buffer without trypsin was added. After 30 min, the supernatant was discarded, and the gel pieces were incu-

Table 1
Primer and probe sets used for the real-time PCR and RT-PCR

Virus	Primer and probe set		
HSV-1	Forward primer: 5'-GCGTCATGGTACTGGCAAG-3' Reverse primer: 5'-TTGACTCTACGGAGCTGGCC-3' Probe: 5'-FAM-TGGAGCTGATGCCGTAGTCGG-TAMRA-3'		
SV-40	Forward primer: 5'-GACATTCCTAGGCTCACCTCACA-3' Reverse primer: 5'-ACCTTGCCAAACTGTCCCTTAAA-3' Probe: 5'-FAM-CTTGAAAGAAGCAACCCAAAGA-TAMRA-3'		
PPV	Forward primer: AACAACTACGCAGCAACTCCAATA-3' Reverse primer: ACGGCTCCAAGGCTAAAGC-3' Probe: 5'-FAM-AGGAGGACCTGGATTT-MGB-3'		
Adenovirus* ¹	Forward primer: TCCGGTCCTTCTAACACACCTC-3' Reverse primer: ACGGCAACTGGTTTAATGGG-3' Probe: 5'-FAM-TGAGATACACCCGGTGGTCCCGC-TAMRA-3'		
Poliovirus	Forward primer: 5'-CCCGAGAAATGGGACGACTA-3' Reverse primer: 5'-TGGAGCTGTTCCGTAGGTGTAA-3' Probe: 5'- FAM-ACATGGCAAACCTCATCAAATCCATCAATC-MGB-3'		
HAV* ²	Forward primer: 5'-GGTAGGCTACGGGTGAAAC-3' Reverse primer: 5'-AACAACTCACCAATATCCGC-3' Probe: 5'-FAM-CTTAGGCTAATACTTCTATGAAGAGATGC-TAMRA-3'		
HBV*3	Forward primer: 5'-GGACCCCTGCTCGTGTTACA-3' Reverse primer: 5'-GAGAGAAGTCCACCMCGAGTCTAGA-3' Probe: 5'-FAM-TGTTGACAARAATCCTCACCATACCRCAGA-TAMRA-3'		
HCV*4	Forward primer: 5'-TGCGGAACCGGTGAGTACA-3' Reverse primer: 5'-CTTAAGGTTTAGGATTCGTGCTCAT-3' probe: 5'-FAM-CACCCTATCAGGCAGTACCACAAGGCC-TAMRA-3'		

Each primer set was prepared according to the original papers described below (*1 to *4) or designed using Primer Express software (Applied Biosystems). *1 Adenovirus (Ishii-Watabe et al., 2003), *2 HAV (Jothikumar et al., 2005), *3 HBV (Pas et al., 2000), *4 HCV (Martell et al., 1999).

bated overnight at 37 °C. To extract tryptic fragments, the gel pieces were shaken in 50% acetonitrile and 5% trifluoroacetic acid (TFA) for 30 min. After this procedure was repeated twice, the extraction solutions were pooled, dried in a centrifugal evaporator, and dissolved in 20 μ l of 0.1% TFA. The samples were then absorbed onto reverse-phase ZipTipC18 (Millipore, Bedford, MA, USA). The resin was washed with 0.1% TFA and the peptides were eluted with 3 μ l of 75% acetonitrile/0.1% TFA. The eluate was analyzed by mass spectrometry (MS) as described below.

2.8. MS and database searching

The peptide mixture (0.5 μ l volume) elution was deposited onto a matrix assisted laser desorption/ionization (MALDI) target plate, and this was closely followed by the deposition of 0.5 μ l of a saturated solution of α -cyano-4-hydroxycinnamic acid in 50% acetonitrile containing 0.1% TFA. MS and tandem MS (MS/MS) analysis of the peptide mixtures was performed using a 4700 Proteomics Analyzer (Applied Biosystems, Framingham, MA, USA). Peptide mass fingerprinting and MS/MS ion searches were performed for protein identification by a Mascot search based on the MSDB protein database.

2.9. Preparation of anti-mouse IgG-rabbit IgM antibody

Anti-mouse immunogloblulin G (IgG) rabbit antiserum was obtained from rabbits immunized with highly purified mouse IgG (11 mg/ml; Jackson ImmunoResearch, West Grove, PA, USA) at 11 days after immunization, when IgM titer was increased. The antiserum (3 ml) was then diluted with an equal volume of phosphate buffered saline (PBS) (-), and applied to a mouse-IgG agarose affinity column (Invitrogen). After washing with 10 ml of PBS (-), the bound fraction was eluted with 0.1 M glycine-HCl (pH 3.0) and neutralized with 1 M Tris-HCl (pH 8.0). A PEI-sepharose-6MB column was prepared by coupling PEI to CNBr-activated sepharose-6MB (GE Healthcare Bioscience, Piscataway, NJ, USA). Anti-mouse IgG rabbit antiserum purified with a mouse IgG-agarose column was applied to a PEI-sepharose-6MB column and washed with PBS (-), and the bound fraction was eluted with 1.4 M NaCl/50 mM HEPES (pH 7.6). The eluted fraction was concentrated and used as anti-mouse IgG rabbit IgM antibody (final concentration, 4 μg/ml).

2.10. Poliovirus concentration via immune complexes

When poliovirus suspension was concentrated by PEI beads via immune complex formation, anti-poliovirus 1 mouse monoclonal antibody (IgG1: 5 µl; Chemicon International, Temecula, CA, USA) and purified anti-mouse IgG rabbit IgM antibody (20 µl), or anti-poliovirus 1 mouse monoclonal antibody and human complement C1 (5 µl; Merck Biosciences/Calbiochem, Darmstadt, Germany) and C4 (3 µl; Calbiochem) were added to the virus suspension before incubation with PEI beads.

2.11. Preparation of anti-HBV IgM antibody

Anti-hepatitis B surface antigen (HBsAg) IgM antibody was prepared as follows. Rabbits were immunized with a mixture of the adw and adr subtypes of recombinant HBsAg (Advanced ImmunoChemical, Long Beach, CA, USA). Anti-HBsAg rabbit antiserum was obtained at 10 days after immunization, when IgM titer was increased. The antiserum (3 ml) was diluted with an equal volume of PBS (-), applied to a PEI-sepharose-6MB column, washed with 20 ml PBS (-), and eluted with 1.4 M NaCl/100 mM HEPES (pH 7.0). PEI-sepharose-6MB-bound fractions were pooled, desalted with a PD-10 column equilibrated with 1.2 M NaCl/50 mM HEPES buffer (pH 7.4), and purified with an ImmunoPure IgM purification kit (Pierce Biotechnology, Rockford, IL, USA). IgM fractions were concentrated and used as anti-HBsAg IgM antibody.

3. Results

3.1. Optimization of the virus concentration method using PEI beads

In order to optimize the virus concentration method using PEI beads, the relationship between the MW of PEI coupled with magnetic beads and the efficiency of the virus concentration was examined. When PEIs with average molecular masses of 1800, 10,000 and 70,000 Da were compared, the PEI of MW 70,000 Da efficiently concentrated HSV-1, while magnetic beads with the PEI of MWs 1800 and 10,000 Da could not adsorb HSV-1 (Fig. 1). Therefore, the PEI beads with MW 70,000 Da were used in the following experiments.

Next, the virus adsorption ability of PEI was compared to that of other cationic polymers. As shown in Fig. 2, PEI beads exhibited a markedly higher virus adsorption ability than PAA-or PLL-conjugated magnetic beads for all model viruses tested.

The effect of pH on the efficiency of virus concentration was then examined. HSV-1 and SV-40 virus suspensions at different

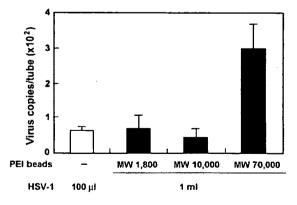


Fig. 1. Comparison of virus concentrations by magnetic beads coupled with PEIs of three different molecular weights. HSV-1 suspension (1×10^3 copies/ml, 1 ml/tube) was incubated with PEI beads whose PEI had a molecular weight of 1800, 10,000 or 70,000 Da. Viral genome DNA was extracted from the PEI bead fraction and from untreated HSV-1 suspension ($100 \,\mu$ I). Virus copy numbers were determined by real-time PCR. Data are expressed as the mean \pm S.D. (n = 3).

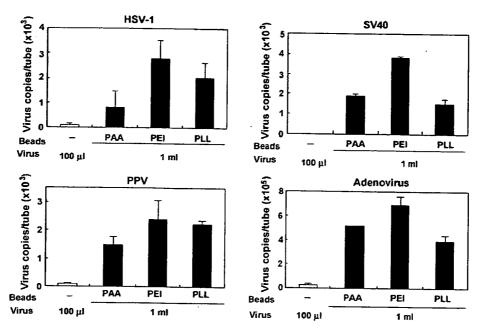


Fig. 2. Comparison of virus concentration by magnetic beads coupled with three different cationic polymers. HSV-1 (5×10^3 copies/ml), SV-40 (5×10^3 copies/ml), PPV (5×10^3 copies/ml) and adenovirus suspensions (1×10^6 copies/ml) (1 ml each) were incubated with PAA-, PEI- or PLL-conjugated magnetic beads. Viral genome DNA was extracted from each magnetic bead fraction and from untreated virus suspensions ($100 \, \mu l$ each). Virus copy numbers were determined by real-time PCR. Data are expressed as the mean \pm S.D. (n = 3).

pH levels (pH 5-9) were concentrated by PEI beads following the standard method. A pH levels of 6 was found to be optimal for the concentration of these viruses (Fig. 3).

3.2. Analysis of serum proteins adsorbed on PEI beads

To improve the virus concentration method using PEI beads, the serum components co-adsorbed by the beads during virus concentration were analyzed. When a virus suspension containing 5% FCS was concentrated by PEI beads and analyzed by SDS-PAGE, several proteins were specifically adsorbed by the beads (Fig. 4). Using MS and MS/MS analyses of these protein bands, complement type 3, complement type 4 and IgM heavy chain were identified as serum components concentrated

by PEI beads. Since complement components and IgM were adsorbed by the beads, it is hypothesized that PEI beads may adsorb viruses not only by direct adsorption, but also via the formation of immune complexes that involve IgM antibody and/or complements.

3.3. Concentration of poliovirus by PEI beads via immune complexes

To confirm this hypothesis, concentrations of poliovirus, which PEI beads could not adsorb directly, via the formation of immune complexes were examined. Instead of anti-poliovirus IgM antibody, anti-poliovirus mouse monoclonal antibody (IgG) was used in combination with anti-mouse IgG rabbit IgM anti-

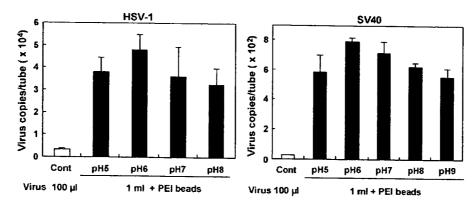


Fig. 3. Effect of pH on the efficiency of virus concentration by PEI beads. HSV-1 (5×10^4 copies/ml) and SV-40 (1×10^3 copies/ml) suspensions diluted with virus dilution medium at different pH levels (HSV-1: pH 5, 6, 7 and 8; SV-40: pH 5, 6, 7, 8 and 9) (1 ml each) were incubated with PEI beads. Viral genome DNA was then extracted from PEI bead fraction and from untreated virus suspensions ($100 \,\mu l$ each). Virus copy numbers were determined by real-time PCR. Data are expressed as the mean \pm S.D. (n = 3).

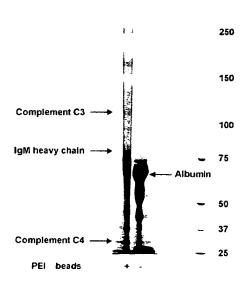


Fig. 4. Serum proteins adsorbed on PEI beads during virus concentration. HSV-1 suspension diluted with DMEM supplemented with 5% FCS was incubated with PEI beads. PEI bead fraction (+) and untreated virus suspension (-) were then boiled with SDS sample buffer and applied to SDS-PAGE. Serum protein bands concentrated by PEI beads were identified by MS/MS analysis, as shown in Fig. 5.

body to induce the formation of immune complexes. Anti-mouse IgG rabbit IgM antibody was prepared from rabbit anti-mouse IgG antiserum and purified by a mouse-IgG affinity column followed by a PEI-sepharose-6MB column. Since the PEI-sepharose-6MB column adsorbed IgM (Fig. 5) but not IgG (data not shown), the PEI-sepharose-6MB adsorbed fraction was used as the anti-mouse IgG rabbit IgM antibody. When poliovirus alone was incubated with the PEI beads, it was not adsorbed, but poliovirus was adsorbed when coincubated with anti-poliovirus IgG antibody, and a further significant improvement in the efficiency of virus concentration was achieved by the addition of anti-mouse IgG rabbit IgM along with the anti-poliovirus IgG (Fig. 6). The addition of the combination of complement C1, complement C4 and anti-poliovirus IgG to the reaction mixture of virus and PEI beads also increased the efficiency of virus con-

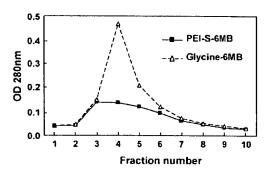


Fig. 5. Adsorption of IgM to a PEI-sepharose column. One ml of human IgM solution (1 mg/ml) was applied to a PEI-sepharose 6MB (PEI-S-6MB) column or to a control column without PEI (Glycine-6 MB) and washed with PBS (-). The eluates were fractionated into ten 1 ml fractions, and the OD280 of each fraction was determined using a spectrophotometer.

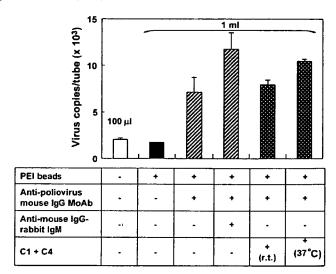


Fig. 6. Concentration of poliovirus by PEI beads via the formation of immune complexes. Poliovirus suspension (2×10^4 copies/ml, 1 ml each) was incubated with PEI beads at room temperature or 37 °C in the absence or presence of anti-poliovirus mouse IgG monoclonal antibody, anti-mouse IgG-rabbit IgM, or a combination of complements C1 and C4. Viral genome RNA was extracted from the PEI bead fraction and from the untreated virus suspension ($100 \,\mu$ l). Virus copy numbers were determined by real-time RT-PCR. Data are expressed as the mean \pm S.D. (n=3).

centration by PEI beads, but only when the complement system was activated by [incubation at] 37 °C (Fig. 6).

3.4. Application of the virus concentration method using PEI beads to human hepatitis viruses

The virus concentration method using PEI beads was applied to human HAV, HBV and HCV. Fig. 7 shows the effect of pH on the virus concentration efficiency. HAV was efficiently adsorbed by the PEI beads (Fig. 7A). The number of viral copies obtained in the PEI bead fraction when using 1 ml of virus suspension was about 10-fold the number extracted from untreated virus suspension (100 µl), suggesting that the concentration of HAV almost reached the predicted level. Neither the presence or absence of serum nor the pH condition affected the efficiency of the HAV concentration. HCV was also efficiently adsorbed by PEI beads, even in the presence of 2% FCS, and the optimum pH was found to be 5 (Fig. 7C). On the other hand, the efficiency of HBV concentration by PEI beads was lower than the efficiencies of HAV and HCV concentrations. The number of viral copies obtained in the PEI bead fraction under the optimum condition of pH 5 without serum was about six-fold the number extracted from untreated virus suspension (Fig. 7B). The presence of FCS significantly reduced the adsorption of HBV by PEI beads.

In order to improve the concentration of HBV obtained by PEI beads, anti-HBV IgM antibody was prepared and the concentration of HBV via immune complex formation was examined. As shown in Fig. 8, the concentration of HBV by PEI beads was improved by the addition of anti-HBV IgM antibody. Under the optimum condition, the number of viral copies obtained in the PEI bead fraction was more than seven-fold the number extracted from the untreated virus suspension even in the

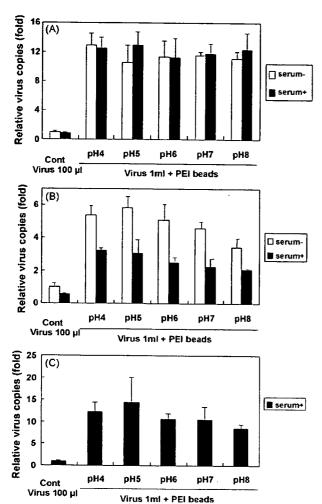


Fig. 7. Effect of pH on the concentration of HAV, HBV and HCV by PEI beads. HAV (A), HBV (B), and HCV (C) were diluted with virus dilution media of different pH levels supplemented with or without 2% FCS. Virus suspensions (HAV: 5×10^4 PFU/ml; HBV: 8.8×10^3 IU/ml; HCV: 1×10^3 IU/ml; 1 ml/tube) with different pH levels were incubated with PEI beads. Viral genome DNA and RNA were then extracted from PEI bead fraction and analyzed by real-time PCR and RT-PCR. Data are expressed as the mean \pm S.D. (n = 3).

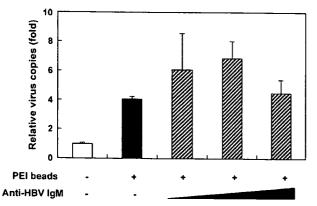


Fig. 8. Effect of anti-HBV IgM antibody for HBV concentration by PEI-beads. HBV suspensions $(8.8 \times 10^3 \text{ IU/ml}; 1 \text{ ml/tube})$ were incubated with PEI beads in the absence or presence of 5, 15 or 50 μ l of anti-HBV IgM antibody. Viral genome DNA was then extracted from the PEI bead fraction and analyzed by real-time PCR. Data are expressed as the mean \pm S.D. (n=3).

presence of serum. Therefore, the virus concentration achieved by PEI beads was shown to be enhanced by the formation of immune complexes.

Table 2 shows a summary of virus concentrations by PEI beads for all of the viruses examined. A wide range of viruses, including small non-enveloped viruses and human hepatitis viruses (HAV, HBV and HCV), were efficiently concentrated by PEI beads under the optimum condition, either directly or by the formation of immune complexes.

4. Discussion

In the present study, the virus concentration method using PEI beads (Satoh et al., 2003) was optimized, and was applied to human hepatitis A, B and C viruses.

First, the effects of various cationic polymers, PEI molecular weights, and pH values were examined in order to determine the optimal conditions for virus concentration. Among PEI beads with three different molecular weights (1800, 10,000 and 70,000 Da), only the PEI whose MW was 70,000 Da was able to adsorb viruses (Fig. 1). With respect to the cationic polymers, PEI magnetic beads showed a higher virus adsorption ability than PAA- or PLL-conjugated magnetic beads (Fig. 2). The optimum pH for the concentration of model viruses by PEI beads was subacidic (Fig. 3). The virus adsorption mechanism of PEI beads remains unclear. However, it is hypothesized that the positively charged field of the PEI molecule may interact tightly with the negative charge of surface lipids or the negatively charged surface proteins on viruses (Satoh et al., 2003). PEI is a polycationic polyamine with the highest cationic charge density among existing polymers (Futami et al., 2005). PEI has a branched backbone containing primary, secondary and tertiary amine groups. In contrast, PAA is a linear polycation having only primary amine groups, and PLL is a linear polycation with primary and secondary amine groups. Therefore, it is suggested that the high-density cationic charge of PEI and its branched structure on the surface of the magnetic beads may be important for efficient virus adsorption. According to the analysis of Owada et al. (1999), the interaction between PEI-coated membranes and human immunodeficiency virus type 1 (HIV-1) or plasma protein may be dependent on the surface area of each particle, and this fundamental principle was consistent with their observation that PEIs with higher MWs bound more intensely to HIV-1. This is also consistent with the data that PEI with a MW of 70,000 Da was able to adsorb viruses more efficiently than PEIs of 1800 Da

In order to improve the efficiency of virus concentration by PEI beads, the serum components co-adsorbed by the beads were analyzed. MS analysis revealed that several proteins, including complement type 3, complement type 4 and IgM, were specifically co-adsorbed by PEI beads during virus concentration (Fig. 4), suggesting that the beads were able to adsorb immune complexes that involved IgM antibody and/or complements. Therefore, it is hypothesized that in addition to direct adsorption, PEI beads may adsorb viruses via the formation of immune complexes. This hypothesis was confirmed by the fact that PEI beads were able to adsorb poliovirus under con-