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Previous human studies agree that among numerous SNPs
in the SLCOIBI gene, 521T—C- (174Val»Ala) plays an
important role in the transport capability, reducing hepatic
uptake of pravastatin (Table 5) (103,104]. Because the target
tissue of pravastatin is hepatocytes {186,187), subjects with this
allele may exhibit reduced cholesterol-lowering effect.of pra-

vastatin due to lower pravastatin concentration in the hepa-’

tocytes, despite high plasma levels and AUC of pravastatin.
At least two studies have been conducted to clarify this hypo-
thesis. Tachibana-Iimori ef 4/ (188) conducted a retrospective

study on 66 patients who underwent treatment for hyper--

lipidaemia with HMG-CoA reductase inhibitors. They

found that patients with the 521C allele showed an attenu- -

ated total-cholesterol-lowering effect compared with those
homozygous for the 521T allele. Niemi et al [189) investi-
gated the association between polymorphism in the
SLCO1BI and plasma concentrations of lathosterol and cho-

lesterol up to 12 h after the intake of a single dose of pravas-

tatin 40 mg in 41 healthy Caucasian subjects; and found that
the plasma lathosterol level and lathosterol to cholesterol
level ratio, markers of the rate of cholesterol synthesis in vivo,
were significantly lower among the three heterozygous carri-
ers of the SLCO1B1*17 haplotype as compared with noncar-
riers. Both studies suggest that the 521'T—C polymorphism
modulates the lipid-lowering efficacy of HMG CoA
reductase inhibitors. :

5. Conclusion

The polymorphism of genes encoding drug transporters is a
useful marker to interpret large interindividual differences in
the pharmacokinetics and response (pharmacodynamics) of
clinically important drugs, and a great deal of effort is now
being directed at assessing genotype—phenotype relationships

not only in the dlinical setting, but also at all stages of drug -

development. Numerous drug transporters, except the trans-
porters described here, may also play an important role in the
human body. Gene-knockout animals and expression cell sys-
tems are now available for the characterisation of basic traits

such as substrate specificity, localisation and vectorial move-

ment. Thus, in order to elucidate their in vivo functions more
precisely, it seems -appropriate to integrate the results from
in vitro experiments/animal studies into the human study.
Further refining of this integration will provide more precise
and useful observations, allowing for truly genome-based
scientific pharmacotherapy

6. Expert oplnlon

~ Genetic polymorplnsrns have been ldcnnﬁed in most known

drug transporters. Some of these variants were shown to have
an impact on pharmacokinetic and pharmacodynamic conse-
quences in pharmacotherapy, but unfortunately, functional
confirmation remains to be elucidated for most of these vari-
ants. We are now beginning to elucidate and understand the
consequences of these variants in the human body. So far,

_ except for a few cases (e.g., the SLCOIBI genotype and statins

pharmacokinetics/pharmacodynamics), there are still discrep-
ancies in the results of functional confirmation (i.e., phenotype

.and genotype relationship), thus necessitating some concerns
.for further investigations.

Controversial and confused -observations relating to the
in vivo pharmacokinetic relevance of the polymorphisms of

some drug transporter genes (e.g., ABCBI and ABCG2)

" may have arisen from the nonspecific substrate drugs used

in the various studies. For example, in the ABCBI poly-
morphism, although digoxin and fexofenadine have been .
used as probed drugs for P-gp function, these are also
known to be substrates, at least for polymorphic SLCO1B3

and SLCO1BI, respectively.

Despite considerable effort, it is difficult to ‘find specific
substrates to corresponding specific transporters because the
substrate specificity of most transporters is extremely broad and
shows substantial overlap between different members of the
superfamily. For this perspective, multiple gene analysis of the
network of genes involved in drug metabolism, transport, and
response (e.g., receptors), is preferable. For example, previous .
in vitro experiments reported that at least two transporters, but
ne cytochrome P450s, are involved in the pharmacokinetics of
pitavastatin; OATP1B1 for uptake into hepatocytes and BCRP
for- efflux into the bile and gut lumen (199). A pharmaco-
genomic . human study of pitavastatin conducted with
polymorphisms in SLCO1BI and ABCG2 is of interest. Again,
in order to establish a pharmacokinetic gene network, the inte-
gration of in vitro and animal experiments into the human

 study is essential.
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Abstract Pravastatm is mamly taken up from the
circulation into the liver via organic anion-transporting
polypeptide 1B1  (SLCOIBI" gene product). We
examined the contribution of genetic variants in the
SLCOI1BI gene and other candidate genes to the var-
iability of pravastatin efficacy in 33 hypercholesterol-
emic patients. In the initial phase of pravastatin
treatment (8 weeks), heterozygous carriers of the
SLCO1BI*15 allele had poor low-density lipoprotein
cholesterol (LDL-C) reduction relative to non-carriers
(percent reduction: -14.1 vs —28.9%); however, the
genotype-dependent difference in the cholesterol-low-
ering effect disappeared after 1 year of treatment.
Cholesterol 7a-hydroxylase (CYP7Al) and apolipo-
protein E (APOE) are known to contribute to lipid
metabolism. Homozygous carriers of the CYP741 -
204C allele or heterozygotes for both CYP7A1 -204C
and APOE e4 alleles showed significantly poorer
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LDL-C reduction compared to that in other genotypic
groups after 1 year of treatment (-24.3 vs' ~33.1%).
These results suggest that the SLCOIBI*15 allele is
associated with a slow response to pravastatin therapy,
and the combined genotyping of CYP7AI and APOE
genes is a useful index of the lipid-lowering effect of
pravastatin.

Keywords SLCOI1BI - CYP7Al - APOE -
Pravastatin - Cholesterol
Introduction

Coronary heart disease is the léading cause of death

. worldwide. Several risk factors for cardiovascular dis-

case are well known, especially increased low-density
lipoprotein cholesterol (LDL-C) and decreased high-
density lipoprotein cholesterol (HDL-C). Statins are
inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase, a rate-limiting enzyme in
cholesterol - biosynthesis. Lipid-lowering therapy by
statins has the potential to improve outcomes in pa-
tients at risk for cardiovascular disease. Despite these
large effects, interindividual variability in the response
to statins has been observed in clinical situations
(Pazzucconi et al. 1995). Previous studies have dem-
onstrated that the mechanisms responsible for vari-
ability in the statin response are due, at least in part, to
genetic factors. Most studies have focused on the
association between variants (2, €3 and e4) in apoli-
poprotein E (APOE) gene, which is a primary ligand
for the LDL receptor found on the liver, and the re-
sponse to statins (Ojala et al. 1991; Ordovas et al.
1995). In addition, recent studies have demonstrated
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that variants in cholesterol °
(CYP7A1) (Pullinger et "al. 2002), ABCG8 (Kajinami
et al. 2004) and HMG-CoA reductase (HMGCR)
(Chasman et al. 2004) are important determinants of
the lipid response to statin therapy. PR

Pravastatin, a hydrophilic HMG-CoA reductase
inhibitor, is taken up efficiently from the circulation
into the liver by an active transport carrier system, but
is not metabolized by CYP enzymes. Human organic
anion-transporting  polypeptide 1B1 (OATP1B1),
transporter of pravastatin, is expressed on the baso-
lateral membrane in the hepatocytes responsible for
the hepatocellular uptake of pravastatin (Hsiang et al.
~ 1999). The major site of cholesterol synthesis, the liver,
is the main target organ of statins. Recently, Niemi
et al. (2005) have shown that the SLCO1BI*17 aliele
(containing -11187G>A, 388A>G and 521T>C) is
associated with the decreased acute effect of pravast-
atin on cholesterol synthesis; however, the impact of
SLCOI1BI genotypes on the lipid-lowering response to
pravastatin during long-term treatment has not been
well investigated. S

The aim of this study was to descnbe the influence
of SLCOI1BI genotypes on the lipid-lowering response
to pravastatin in Japanese hypercholesterolemic pa-
tients. Furthermore, we evaluated the contribution of
genetic variants in other candidate genes (APOE,
CYP7Al1, ABCG8 and HMGCR) to the variability in
pravastatin efficacy.

‘Materials and methods
Study design

We studied 33 patients (14 males and 19 females; mean
age 623 years; age range 34-83 years) with hypercho-
lesterolemia treated in Tottori University Hospital. All
subjects were initially prescribed pravastatin (mean
dose range 9.4 mg/day) between January 1997 and
October 2004. We used the electronic medical data-
base available in the hospital to obtain precise infor-
mation on patients’ backgrounds, laboratory tests,
prescribed drugs and adverse events. We collected
these data retrospectively for each patient for at least
1 year from the day pravastatin was administered.
Patients: with serious or uncontrolled renal or liver
disease, no drug compliance, other hypolipidemic
treatment or uncontrolled diabetes were excluded.
The average body mass index (BMI), total cholesterol
(TC) and LDL-C values in this study patients
were 23.9 kg/m? (range 17.3-30.9 kg/m 'm?), 259.6 mg/dl

@ Springer
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(range 225.8-315.0 mg/dl) and 167 4 mydl (range
112.0-240.7 mg/dl), respectively. This study was
approved by the Tottori University ‘Ethics Committee,
and informed consent was obtamed from all mdmduals

Genotyplng ‘ -

All subjects were genotyped for variants in the candi-
date genes involved in the pharmacokinetics and
pharmacodynamics of . pravastatin. Details of "the
genotyping and haplotyping of SLCOIBI*1b
(388A>G), *5 (521T>C) and *15 (388A>G and
521T>C) were described previously (Nishizato et al.
2003). The promoter variant (-11187G>A) in the
SLCOIBI gene was determined with PCR-SSCP
analysis. The SLCO1B1 -11187G>A variant was ob-
served as heterozygosity (0.212) in this patient group
suggesting it was tightly linked to the SLCOIBI*15
allele. The genotypes in CYP7Al (-204A>C) (Hub-
acek et al. 2003), APOE (2, €3 and e4) (Hixon and
Vernier.1990) and ABCG8 (55G>C) (Kajinami et al.
2004) were examined by previously described methods
using PCR restriction fragment length polymorphism
analysis. Genetic variants (SNP12 and 29) in the
HMGCR gene were found as functional variants for
variable response to statin therapy in the previous
study (Chasman et al. 2004) as determined with PCR-
SSCP analysis.

Statistical analysis

Comparisons between two groups were performed
using a- Student r-test and between more than two
groups using ANOVA (with Tukey-Kramer muitiple
comparison test). A 5% level of probabxhty was con-
sidered to be s1gmﬁcant

Results and discussion

The mean percent reductions from the baseline in TC
and LDL-C values at 8 weeks post-treatment with
pravastain were significantly smaller in heterozygous
carriers of the SLCO1BI1*15 allele than in homozygous
carriers of the *1a and *1b alleles (Fig. 1a, P<0.05).
Also, the mean percent reduction from the baseline in
TC values at 8 weeks post-treatment was significantly
smaller in SLCO1BI*15 carriers than in non-carriers
(-9.8 vs =20.9%; P<0.05; Fig. 1b). A similar trend was
observed in the LDL-C level (-14.1 vs —28.9%, P<0.05;
Fig. 1b) even though the pravastatin daily dose
(mean+SD; non-carriers:  9.4+2.9 mg, " carriers:
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Fig. 1 a Influence of the SLCOIBI genotypes on percent
reduction from baseline in TC and LDL-C values at 8 weeks
after pravastatin treatment. *P<0.05 when compared between
the two groups using Tukey—Kramer multiple comparison test. b
Influence of the SLCO1BI, CYP7Al and APOE genotypes on

9.3+2.0 mg, ) and BMI (non-carriers: 24.1+3.5 kg/m?,
carriers: 23.5+2.7 kg/m?) were not significantly differ-
ent between the two groups. In contrast, at 1 year post-
treatment, there were no significant differences in the
reduction of TC and LDL-C values between the two
groups (Fig. 1b; Table 1).

In an in vitro experiment, Iwai et al. (2004) dem-
onstrated that the transport activity of SLCOI1BI*15
allele is significantly decreased compared with that of
the SLCOIBI*1a or *1b allele using cDNA-trans-
fected HEK293 cells. Previously, we found
SLCO1BI*15 allele was associated with higher plasma

_concentration of pravastatin, and the non-renal clear-
ance of pravastatin in subjects with SLCO1BI*1b/*15
and *15/*15 was reduced to 55 and 14% of *1b/*1b
subjects, respectively (Nishizato et al. 2003). Thus, it is
suggested that the SLCOIB1*15 allele leads to an in-
crease in plasma pravastatin concentrations but a
reduction in the hepatocellular uptake of pravastatin,
resulting in a decreased effect of pravastatin. However,
interestingly, the genotype-dependent difference in

_this lowering effect disappeared after long-term

199

time course of percent reduction from baseline in TC and LDL-
C value after pravastatin treatment. *P<0.05 when compared
between the two genotypes was analyzed with Student’s r-test.
Each value is the mean+SD

treatment. Although its mechanism remains to be
elucidated, one possible reason is that all of our pa-
tients with the SLCOI1BI*15 allele were heterozygotes
for functionally active *1a or *1b alleles (Iwai et al.
2004). Thus, the lipid-lowering profiles in homozygotes
for the *15 allele are of interest.

Multidrug resistance-associated protein 2 (MRPY
ABCC2) on the bile canalicular membrane is mainly
involved in the biliary excretion of pravastatin
(Matsushima et al. 2005). With regard to liver con-
centration of pravastatin, genetic polymorphisms of
MRP2 might affect response to pravastatin. However,
MRP?2 variants have been observed at low frequency in
Japanese (Itoda et al. 2002), and functional significance
of these variants is not established. Therefore, associ-
ation of MRP2 genotypes should be analyzed by fur-
ther studies.

We also examined the influence of the CYP7Al
promoter (-204A/C) and APOE (e2, €3 and e4) variants
on the clinical outcome of pravastatin therapy. As
shown in Fig. 1b and Table 1, the reduction from the
baseline in LDL-C value at 1 year post-treatment was

@ Springer
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Table 1 Association of SLCO1BI, CYP7AI and APOE genotypes with lipid changes -

Gene " .:-Genotype - Lipid concentrations (mg/dl) .
: <.~ N .. Baseline N 8weeks = N . 1year
Total cholesterol ST . o
SLCO1BI*15 Non-carriers . 26 - 26091244 26 . 205.8+222 20 . . 201.9+185
o Carriers ' 7 . 2548x106 7 227.9+19.6 6 204.0+16.5
s P value ' NS . © <005 NS
CYP7A1-APOE = '~ AJA-63/63, AIA-é/e4 AIC-63/e3 - 19 712619239 © 19 210.3+27.9 14 1989+12.7
. . CIC-€3/e3, AIC-c3/e4 .14 256.4+20.1 |, 14 - 210.7+16.0 12 206.0+22.3
P value -N§ . NS . : NS
LDL cholesterol : i . :
SLCOIBI*15 ~ : Non-carriers : 2 .1707£274 . 22 - 12404207 17 11514239
" Carriers - - 7 157.0£293 7 132.0+327 6  1105+109
. P value NS NS - NS
CYP7A1-APOE AJA-€3/e3, AIA-e3/e4 AIC-3/83 19 168.6+34.4 19 124.0+29.9 12 106.3£20.6
‘ CIC-€3/e3, A/C-€3/c4 12 165.7+£16.3 12 128.7+125 10 123.8+12.5
<0.05

P value

NS : ©+ ' NS

Values are mean+SD

Statistical significance Betwecn t.he two genotypes was analyzed w1th Student’s t-test

NS No sxgmﬁcant dlfference

sxgmﬁcantly decreased in carriers of A/A-e3/e3 A/A- .

€3/e4 or A/C-e3/e3 in CYP7Al and APOE genes com-
pared with C/C-e3/e3 or A/C-€3/e4 carriers. There was
no significant effect of genotypes (A/A-e3/e3, A/A-€3/
€4 or A/C-63le3 vs CIC-3/e3 or A/C-e3/ed) in the
CYP7Al1 and APOE genes on pravastatin dose
(10.0+£29 vs 88+29mg) and BMI (23.8+3.6 vs
24.5+3.0 kg/m?). Only one patient was a heterozygous

carrier of SNP12 in the HMGCR gene. However, no

remarkable difference in the lipid-lowering effects was
- observed in this patient. Also, SNP29 in HMGCR and
55G>C in ABCGS8 were not detected.

In contrast to SLCOI1BI gene, part of the interpa-
tient variability in the efficacy of pravastatin after long-
term treatment may be attributable to genetic varia-
tion, and combined genotyping of CYP7A1 and APOE
genes is useful for describing the lowering effects. Since
the basal cholesterol synthesis rate is a key determi-
nant for statin response, loss of CYP7A1l activity,
which is involved in bile acid synthesis from cholesterol
in the liver, may result in a poor response to statin
treatment (Pullinger et al. 2002). A previous study has
shown that the nucleotide sequence around position -
204 negatively regulates CYP7A1l promoter activity
(Cooper et al. 1997). Among the known variants, the
CYP7A1 -204A>C variant is expected to decrease
promoter activity (Kajinami et al. 2005). Apolipopro-
tein E is known as one of the major determinants in
lipoprotein metabolism. Previous studies (Ojala et al.
1991; Ordovas et al. 1995) demonstrated that the 4
allele in primary hypercholesterolemia is associated
with lower response to statin, when compared to €2 and
€3 alleles, because the binding activity of €4 allele to

a Springer

_receptor is relatively higher than that of other alleles.

These results suggest that decreased cholesterol 7al-
pha-hydroxylase activity and increased binding affinity
of apolipoprotein E to LDL receptor enhance the
intracellular cholesterol content in hepatocytes,
resulting in lower HMG-CoA reductase activity, which
may also lead to tolerance to statin treatment (Kaji-
nami et al. 2005).- ‘ A
In conclusion, our results suggest that the
SLCOI1BI1*1S allele is associated with a slow response
to pravastatin. Instead of SLCOIBI*15, combined
genotyping of CYP7A1 -204A>C and APOE ¢4 vari-
ants may be useful for describing the long-term clinical
outcomes of pravastatin. Further study is necessary to
confirm the influence of genetic variants in these can-
didate genes on the lipid-lowering efficacy of pravast-
atin as well as other statins in a large sample size.
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Effects of organic anion transporting
polypeptide 1B1 haplotype on
pharmacokinetics of pravastatin, Valsartan
fjand temocapnl

Objzctwe: Recent reports have shown that genetic polymorphisms in organic anion transporting polypeptide
(OATP) 1B1 have an effect on the pharmacokinetics of drugs. However, the impact of OATP1B1+1b alleles,
the frequency of which is high in all ethnicities, on the pharmacokinetics of substrate drugs is not known after
complete scparation of subjects with OATPIBIx1a and *1b. Furthermore, the corrclation between the
clearances of OATP1B1 substrate drugs in individuals has not been characterized. We investigated the effect
of genetic polymorphism of OATP1B1, particularly the *15 allele, on the pharmacokinetics of 3 anionic
- drugs, pravastatin, valsartan, and temocapril, in Japanesec subjects.
Methods: Twenty-three healthy Japanese volunteers were earolled in a 3-period crossover study. In each
period, after a single oral administration of pravastatin, valsartan, or temocapril, plasma and urine were
collected for up to 24 hours.
Results: The area under the plasma concentration-time curve (AUC) of pravastatin in * 14/ 15 carriers (47.4 +
19.9 ng - h/mL) was 65% of that in *la/«14 carriers (73.2 + 23.5 ng - h/mL) (P = .049). Carriers of *1b/+15
(38.2 £ 15.9 ng - h/mL) exhibited a 45% lower AUC than *la/*15 cartiers (69.2 + 23.4 ng - h/mL) (P =
.024). In the case of valsartan we observed a similar trend as with pravastatin, although the difference was not
statistically significant (9.01 * 3.33 ug - h/mL for = 14/+ 1¥ carriers versus 12.3 = 4.6 pg - h/mL for *la/+la
carriers [P=.171] and 6.31 * 3.64 pug - h/mL for * 14+ 15 carriers versus 9.40 + 4.34 pg - h/mL for «Ia/ 15
carriers [ P = .213]). The AUC of temocapril also showed a similar trend (12.4 £ 4.1 ng, - h/mL for *16/41b
carriers versus 18.5 * 7.7 ng - h/mL for *la/+1a carriers [P = .061] and 16.4 £ 5.0 ng - h/mL for x14/+15
carriers versus 19.0 + 4.1 ng - h/mL for *1a/+15 carriers | P = .425]), whereas that of temocaprilat (active form
of temocapril) was not significantly affected by the haplotype of OATP1B1. Interestingly, the AUC of valsartan
and temocapril in each subject was significantly correlated with that of pravastatin (R = 0.630 and 0.602, P <
.01). The renal clearance remained unchanged for each haplotype for all drugs.
Conclusion: The major clearance mechanism of pravastatin, valsartan, and temocapril appears to be similar,
and OATPIBI*1b is one of the determinant factors governing the interindividual variability in the pharma-
cokinetics of pravastatin and, possibly, valsartan and temocapril. (Clin Pharmacol Ther 2006;79:427-39.)

Kazuya Maeda, MS, Ichiro Ieiri, PhD, Kuninobu Yasuda, MD, Akiharu Fujino, PhD,
Hiroaki Fujiwara, PhD, Kenji Otsubo, PhD, Masaru Hirano, MS,

Takao Watanabe, MS, Yoshiaki Kitamura, MS, Hiroyuki Kusuhara, PhD, and

Yuichi Sugiyama, PhD Tokvo, Yonago, and Tsukuba, Japan

From the Department of Molecular Pbarmacokinetics, Graduate Available online April 11, 2006.
School of Pharmaceutical Sciences, The University of Tokyo, and Reprint requests: Yuichi Sugiyama. PhD, Depariment of Molecular
Fuji Biomedix, Tokyo: Department of Hospital Pharmacy, Faculty Pharmacokinetics. Graduate Schoo! of Pharmaceutical Sciences, The
of Medicine, Tottori University, Yonago; and Kannondai Clinic, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan.

- ~Yakusen-kai Medical. Tsukuba. E-mail: sugiyama@mol f.u-tukyo.ac. jp

.This work was supported by a grant in aid for the Advanced and 0009-9236/$32.00

- Innovauonal Research Program in Life Sciences from the Ministry Copyright © 2006 by the American Society for Clinical Pharmacology
L of Education. Culture, Sports, Science and Technology. Japan. and and Therapeutics.
lapan Research Foundation for Clinical Pharmacology. doi:10.1016/j.c1pt.2006.01.01 1

“Received for pubhcauon Ang 22, 2005; accepted Jan 12, 2006.

427

202.



428 -;‘-f‘l'{u’da et al

The administration of the same dose of a drug some-
times results in large interindividual differences in
~ pharmacokinetics and subsequent pharmacologi¢ and
toxicologic effects. The .pharmacokinetics of certain
drugs are dominated by absorption, disposition, metab-
olism, and elimination, and many molecules, such as
metabolic enzymes and. transporters, have been re-
ported to be involved in each process. Recently, poly-

morphisms in each molecule have been identified, and
many in vitro and clinical studies have demonstrated -
that some of them are associated with a change in the -

expression and function of miolecules and the pharma-
cokinetics of drugs. Although there is much informa-
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resuli was supported by in vitro analysns showing that
the intrinsic maximum velocity normalized by the ex-
pression level for OAT?IBI#IS variant was drastically
reduced compared - with .OATPIBI*1a’® Subse-
quently, 2 clinical studies showed that the Vall74Ala °
mutation also increased the AUC of pravastatin ml

white subjects.'’'? Very recently, Niemi et al'>!*
ported that the pharmacokinetics of fexofenadine and

. repaglinide was also affected by the Vall74Ala muta-

tion regarding metabolic enzymes such as cytochrome' .

P450 (CYP) and phase I conjugation enzymes, the
clinical significance of the genetic polymorphlsms in
transporters is not well understood. °

Organic anion transporting polypeptide (OATP) lBl

(formerly known as OATP-C or OATP2) is exclusively

expressed in the liver and located on the basolateral
membrane.'* Some .reports have indicated that
OATPIBI can transport a wide variety of compounds
including clinically important drugs such as 3-hydroxy-
3-methylglutaryl-coenzyme A reductase inhibitors,'
which suggests that OATP1B1 may be responsible for
the hepatic uptake of various kinds of anionic drugs,
which efficiently accumulate in liver. Hepatic clearance
consists of intrinsic clearances of hepatic uptake, sinu-
soidal efflux, metabolism, and biliary excretion. From
the viewpoint of pharmacokinetics, a change in the
uptake process will directly affect the overall hepatic
clearance, regardless of the absolute values of each
intrinsic clearance.® Therefore genetic polymorphlsms
in OATP1B1 may have an effect on the hepatlc clear-
ance of OATP1B1 substrates.

Several genetic polymorphisms in OATPIB] have
been reported, and in vitro studies have shown that
some of them reduce the transport capability of several
substrates in OATP1B1 variant-expressing cells.”
Among these, previous studies have focused on 2 mu-
tations, Asn130Asp and Vall74Ala, because they are
frequently observed in all ethnic groups investigated
previously and their allele frequencies show some eth-
nic differences,”'® which may cause an ethnic differ-
ence in the pharmacokinetics of OATP1B1 substrates.
Interestingly, Nishizato et al'® demonstrated that
Vall74Ala was tightly linked with Asn130Asp and
formed a haplotype referred to as OATPIBI*15 in
Japanese subjects. In addition, after oral administration
of pravastatin, healthy Japanese volunteers with the #75
~ allele showed an‘ifiéreasg in the area under the plasma
concentration-time curve (AUC) of p'riw’;astatig. This

i

tion. These results suggest that the Vall74Ala mutation
in OATP1B1 reduces the transport function. On the
other hand, Mwinyi et al'? showed that the AUC of
pravastatin in subjects with */a/*1b (Asn130Asp) or
*1b/+1b alleles tended to be lower than that in */a

- homozygotes. However, they did not completely sepa-
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rate the subjects with the *1b allele from those with the
*]q allele, and so we cannot du'ect]y compare the effect
of the */b allele with that of the */a allele. The allele.
frequency of OATP1B1*1b was reported to be high and
showed some ethnic differences (eg, 0.30 in white
Americans [n = 49),° 0.74 in black Americans [n =
441, and 0.63 in Japanese subjects [n =.120]'%, im-
plying that this might cause the ethmc differences in the
pharmacokinetics: of drugs. Therefore we were partic-
ularly interested in the effect of the Asn130Asp variant
of OATP1B1 on the pharmacokinetics of 3 drugs, prav-

. astatin, valsartan, and temocapril, and we classified the

subjects into 4 groups, *la/x1a, *1b/*1b, *la/*15, and
*1b/+15 carriers, to directly investigate the difference
in the pharmacokinetics of the subjects with the */a
and *1b alleles (*la/*1a versus *1b/*1b and *la/*15
versus *]b/x15).

Valsartan is a novel angiotensin II receptor antago-
nist, and temocapnl is an angiotensin-converting en-
zyme inhibitor. Drugs in these categories are widely
used for the treatment of hypertension. Valsartan is
mainly eliminated via the liver. Valsartan itself is phar-
macologically active and is thought to be excreted into
the bile in unchanged form without extensive metabo-
lism.'* Because of i its hydrophilicity and carboxyl moi-
€ty, some organic anion transporters may be involved
in the hepatic clearance of valsartan. Temocapril is an
esterified prodrug and is rapidly converted to the active
metabolite temocaprilat by carboxy! esterase.'® Temo-
caprilat is mainly excreted into the bile, whereas the
active metabolites of other angiotensin-converting en-
zyme inhibitors such as enalaprilat are mainly excreted
into the urine because temocaprilat, but not enalaprilat,
can interact with’ muludrug resistance associated pro-
tein 2 (MRP2), which is an efflux transporter located on
the apical membrane.'? Sasaki et al'® demonstrated that
transcellular vectorial transport of temocaprilat was
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observed in OATP1B1/MRP2 double-transfected cells,
suggesting that temocaprilat is -a substrate: of
OATPIBL. C s

“John's:wort-and other drugs svére not'permitted from 2
days béfore admission to:the clinic until.the'end of the

Therefore the purpose of this study was to clan'fy' ihe :

importance of the OATPIBI haplotype, especially the
=]b allele, in the pharmacokinetics of the OATP1B1
substrates- pravastatin, valsartan, and temocaprilat, as
well as to determine whether the clearances of
OATPIB1 substrate drugs in each subject are well
correlated with one another in healthy Japanese volun-
teers. :

METHODS -
. Subjects. Twenty-three healthy male Japanese vol-
_unteers participated in this clinical study. They were
recruited from a population of 100 male Japanese vol-
unteers whose OATP1B1 haplotype was prescreened
after written informed consent was obtained. The geno-
typing method of OATP1B1 has been described previ-
ously.'” The haplotypes of OATP1B1 in the 23 partic-
ipants were *la/*la (n = 5), *]a/*15 (n = 6), *1b/*1b
(n = 7), and *Ib/*15 (n = 5). The participants were
aged between 20 and 35 years. Each participant had a
body weight of between 50 and 80 kg and a body mass
index of between 17.6 and 26.4 kg/m”. Within 1 month
before this clinical study was started, a medical history
was obtained from the participants, who then under-
went a physical examination, electrocardiography, rou-
tine blood testing, and. urinalysis. They were also
screened for narcotic drugs and psychotropic sub-
stances. This allowed us to confirm that all of the
subjects were able to participate in this study.
~ Study design. This study protocol was approved by
the Ethics Review Boards at both the Graduate School
of Pharmaceutical Sciences, The University of Tokyo,
Tokyo, and Kannondai Clinic, Tsukuba, Japan. All
participants provided written informed consent. All
subjects took part in the 3-period crossover trial and
received pravastatin, valsartan, and temocapril in a
random sequence. There was a washout period of 1
week between each administration. In each period sub-
jects came to the clinic on the day before drug admin-
istration. After an overnight fast, each subject received
10 mg pravastatin sodium (Mevalotin tablet; Sankyo,
Tokyo, Japan), 2 mg temocapril hydrochloride (Acecol
tablet; Sankyo), or 40 mg valsartan (Diovan tablet;
‘Novirtis, Basel, Switzerland). Venous blood samples
“(7'mL each) were collected in tubes containing heparin
“béfoie’and at 0.25, 0.5, 0.75, 1, 2,4, 6, 8, 12, and 24
Hiours after drug’ administration. Urine samples were
bllécted: for 24 hours. Plasma was separated by cen-
tion; Plasma and urine samples were stored at
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" Alcohol grapefruit: juice,; St

study periods, ‘and sinoking:-was; prohibited during the

study periods. During ‘the.study-periods;standardized
meals-were served to-all subjects at scheduled times.
For the safety of subjects, after the end of each period,

-all subjects underwent a physical examination and rou-
tine blood testing and urinalysis were:carried out.:::.

‘- Quantification of concentrations.of pravastatin and
its metabolite, RMS-416, in plasma and uriné. :Con-

- centrations of pravastatin-and RMS-416 inplasma and

urine were measured by : liquid.: chromatography—

.tandem mass spectrometry as described in:an-earlier

report.'® One milliliter of plasma was mixed with-100
L internal standard (R-122798, 800.ng/mL; prepared

by Sankyo), 1 mL 10% methanol, and:300 uL:0.5-

mol/L phosphate buffer (pH 4.0). In addition; 0.5 mL
urine  was mixed with 50 pL -internal: standard: (R-
122798), 0.5 mL 10% methanol, and 300 uL 0.5-mol/L.
phosphate buffer (pH 4.0). The mixture was applied to
a Bond Elut C8 cartridge (200 mg/3 mL) (Varian, Palo
Alto, Calif), washed twice with 3 mL 5% methanol
(plasma) or distilled water (urine), and eluted with 2
mL acetonitrile. The eluate was evaporated under ni-
trogen gas at 40°C, mixed with 120 pL acetonitrile, and
ultrasonicated for 3 minutes. Then, 180 pL 10-mmol/L
ammonium acetate was added, and aliquots (20 pL for
plasma and 10 pL for urine) were injected into the
liquid chromatography-tandem mass spectrometry sys-
tem. Separation by HPLC was conducted with an Agi-

" lent 1100 Series system (Agilent Technologies, Palo

Alto, Calif) with an Inertsil ODS-3 column (4.6 X 150
mm, 5 pm; GL Sciences, Tokyo, Japan). The compo-
sition of the mobile phase was acetonitrile/water/am-
monium acetate/formic acid/triethylamine (400:600:
0.77:0.2:0.6 [vol/vol/wt/volivol]). The. flow rate was 1
mL/min. Mass spectra were determined with an API
4000 tandem mass spectrometer (MDS Sciex, Concord,
Ontario, Canada) in the negative. ion—detecting mode
at the atmospheric pressure—chemical ionization interface.
The turbo gas temperature was 600°C. The samples were
ionized by reacting with solvent-reactant ions produced by
the corona discharge (—5.0 pA) in the chemical ioniza-
tion mode. The precursor ions of pravastatin at mass-to-
charge ratio (m/z) 423.2, RMS416 at m/z 4232, and
R-122798 at m/z 409.2 were admitted to the first quadru-
pole (Q1). After the collision-induced fragmentation in the

-second quadrupole (Q2), the product ions of pravastatin at

m/z 321.1, RMS-416 at m/z 321.3, and R-122798 at m/z
321.4 were monitored in the third quadrupole (Q3). The

. peak area ratio of each compound to the comesponding
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internal standard was calculated- with Analyst Software

“(version 1.3.1; Applied Biosystems, Foster City. Calif).
The calibration curves were linear over the standard con-
centration range of 0.1 ng/mL to 100 ng/mL for pravasta-
tin and RMS-416 in plasma, 20 ng/mL to 2000 ng/mL for
pravastatin in urine, and 5 ng/mL to 500 ng/mL for
RMS-416 in urine.

Quantification of valsartan concentration in
plasma and urine. One hundred microliters of plasma
or urine was mixed with 100 pL intemnal standard
(*Hy)-valsartan in 50% methanol, 500 ng/mL; pre-
pared by Novartis Pharma, Basel, Switzerland) and 300
pL 2% trifluoroacetic acid (TFA) aqueous solution.
The mixture was applied to a 96-well Empore Disk
Plate C18 SD (Sumitomo 3M, Tokyo. Japan); washed 3
times with 200 pL 1% TFA aqueous solution, 1% TFA
in 5% methanol. and 1% TFA in 20% methanol; and
eluted twice with 100 wL: methanol. The eluate was
evaporated under nitrogen gas at 40°C, mixed with 100

" uL (for plasma) or 400 pL (for urine) methanol/aceto-
nitrile/0.1% TFA (35:20:45 [vollvoltvol}), and- ultra-
sonicated for 3 minutes. Then, 5-pL aliquots were
injected into the liquid chromatography—tandem mass
spectrometry system. Separation by HPLC was con-
ducted with an Agilent 1100 Series system (Agilent
Technologies) with a Symmetry C18 column (2.1 X 30
mm, 3.5 um: Waters, Milford, Mass). The composition
of the mobile phase was methanol/acetonitrile/0.1%
TFA (35:20:45 {vol/vol/vol]). The flow rate was 0.2
mL/min. Mass spectra were determined with an API
4000 tandem mass spectrometer (Applied Biosystems)
in the positive ion—detecting mode at the electrospray
ionization interface. The turbo gas temperature was
500°C, and the spray voltage was 5500 V. The precur-
sor ions of valsartan at m/z 436.1 and [2H,)-valsartan at
m/z 445.1 were admitted to the first quadrupole (Q1).
After the collision-induced fragmentation in the second
quadrupole (Q2), the product ions of valsartan at m/z
291.1 and [qu]-valsanan at in/z 300.1 were monitored
in the third quadrupole (Q3). The peak area ratio of
each compound o the corresponding internal standard
was calculated with Analyst Software (version 1.3.1;
Applied Biosystems). The calibration curves were lin-
eur over the standard concentration range of 2 ng/mL to
5000 ng/mL for plasma and 20 ng/mL to 5000 ng/mL
for urine.

Quantification of temocapril and temocaprilat con-
centrations in plasma and urine. Two hundred micro-
liters of plasma was mixed with 200 pL internal stan-
dard ([*Hs)-temocaprilat, 10 ng/mL; prepared by
Sankyo), 2 mL 0.1% formic acid, and 200 pL metha-
nol. Then, 500 pL urine was mixed with 200 pL
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internal standard ([*H;)-temocaprilat), 500 L 0.5%
formic acid, and 500 pL methanol. The mixture was

applied to a Sep-Pak Vac PS-2 cartridge (200 mg/3 mL)
(Waters), washed with twice with 3 mL distilled water,

_and eluted twice with 3 mL methanol. The eluate was

evaporated under nitrogen gas at 45°C, mixed with 280
pL methanol, and ultrasonicated for 3 minutes. Then,
120 pL 0.2% acetic acid was added, and 10-pL ali-
quots were injected into the liquid chromatography—
tandem mass spectrometry system. Separation by

- HPLC was conducted with an Agilent 1100 Series

system (Agilent Technologies) with a Symmetry C18
column (2.1 X 150 mm, 5 wm; Waters). The compo-
sition of the ‘mobile phase was methanol/water/acetic
acid (700:300:2 [vol/vol/vol]). The flow rate was 0.2
mL/min. Mass spectra were determined with an API
4000 tandem mass spectrometer (Applied Biosystems)
in the positive ion—detecting mode at the electrospray
ionization interface. The turbo gas temperature was
600°C, and the spray voltage was 5500 V. The precur-
sor ions of temocapril at m/z 477.0, temocaprilat at m/z

.448.9, and [*H }-temocaprilat at m/z 454.0 were admit-
ted to the first quadrupole (Q1). After the collision-

induced fragmentation in the second quadrupole (Q2),
the product ions of temocapril at m/z 270.0, temocap-
rilat at m/z 269.8, and [*H,]-temocaprilat at m/z 269.9
were monitored in the third quadrupole (Q3). The peak
area ratio of each compound to the comresponding in-
ternal standard was calculated with Analyst Software
(version 1.3.1; Applicd Biosystems). The calibration
curves were linear over the standard concentration
range of 0.5 ng/mL to 200 ng/mL for temocapril and
temocaprilat in plasma, 1 ng/mL to 80 ng/mL for te-
mocapril in urine, and 5 ng/mL to 400 ng/mL for
temocaprilat in urine. _

Uptake study by use of OATPIBI expression system.
The .OATP1B1-expressing human embryonic kidney -
(HEK) 293 cells and vector-transfected control cells have
been established previously, and the transport study was
carried out as described previously.® Tritium-labeled val-
sartan and unlabeled valsartan were kindly donated by
Novartis Pharma, and carbon 14-labeled temocaprilat and
unlabeled temocaprilat were donated by Sankyo. Uptake
was initiated by the addition of Krebs-Henseleit buffer
containing radiolabeled and unlabeled substrates after
cells had been washed twice and preincubated with
Krebs-Henseleit buffer at 37°C. for 15 minutes. The
Krebs-Henseleit buffer consisted of 118-mmol/L. so-
dium chloride, 23.8-mmol/L sodium bicarbonate, 4.8-
mmol/L potassium chloride, 1.0-mmol/L potassium
phosphate [monobasic], 1.2-mmol/L. magnesium sul-
fate, 12.5-mmol/Ll. N-[2-hydroxyethyl]piperazine-N'-
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[2-ethanesulfonic acid] (HEPES), 5.0-mmol/L glucose,
and 1.5-mmol/L calcium chloride adjusted to pH 7.4.
The uptake was terminated at a designated time by the
addition of ice-cold Krehs-Henseleit buffer after re-
moval of the incubation buffer. Cells were then washed
twice with | mL of ice-cold Krebs-Henscleit buffer,
solubilized in 500 pL of 0.2N sodium hydroxide, and
kept overnight at 4°C. Aliquots (500 pL) were trans-
- ferred o scintillation vials after the addition of 250 pL
of 0.4N hydrochloric acid. The radioactivity associated

.. with the cells and incubation buffer was measured in a

liquid scintillation counter (LS6000SE; Beckman

Coulter, Fullerion, Calif) after the addition of 2 mL of
scintillation fluid (Clear-sol I: Nacalai Tesque, Kyoto,
Japan) to the scintillation vials. The remaining 50 L of
cell lysate was used to determine the protein concen-

. tration by the method of Lowry et al'* with bovine
serum albumin as a standard.

.. Transcellular transport study by use of double-
transfected cells. The transcellular transport study was
performed as reported previously by Sasaki et al.' In
brief, Madin-Darby canine kidney II (MDCKII) cells
were grown on Transwell membrane inserts (6.5-mm
diameter, 0.4-pm pore size; Coming Coster, Boden-
heim, Germany) at confluence for 3 days, and the
expression level of transporters was induced with
S-mmol/L sodium butyrate for 2 days before the trans-
port study. Cells were first washed with Krebs-
Henseleit buffer at 37°C. Subsequently, substrates were
added in Krebs-Henseleit buffer either to the apical
compartments (250 pL) or to the basolateral compart-
ments (1 mL). After a designated period, the aliquot of
the incubation buffer in the opposite compartments
(100 pL from apical compartment or 250 pL from
basal compartment) was collected. The amount of
tritium-labeled estradiol-17B-glucuronide in the sam-
ples was determined by a liquid scintillation counter
(LS6000SE; Beckman Coulter), and the amount of te-
mocapril and RMS-416 in the samples was determined
by liquid chromatography—mass spectrometry as de-
scribed later.

Quantification of temocapril concentration in
Krebs-Henseleit buffer. A 50-pL sample was mixed
vigorously with 250 pL of ethyl acetate. Two hundred
microliters of supernatant was collected, dried up by a
centrifugal concentrator (TOMY, Tokyo, Japan), and
dissolved in 40 pL dimethylsulfoxide. Thirty-
microliter aliquots were injected into the liquid chro-
matography-tandem mass spectrometry system. Sepa-
ration by HPLC was conducted with a Waters Alliance
2695 Separations Module with an L-column octadecyl-
silane (2.1 X 150 mm, 5 pm; Chemicals Evaluation
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and Research Institute, Tokyo, Japan). The composition
of the mobile phase was acetonitrile/0.05% formic acid
(40:60 [vol/vol]). The flow rate was 0.3 mL/min. Mass
spectra were determined with a Micromass ZQ2000
mass spectrometer (Waters) in the positive ion—
detecting mode at the electrospray ionization interface.
The source temperature and desolvation temperature
were 100°C and 350°C, respectively. The capillary,
cone, and extractor voltages were 3200 V, 30V, and 5
V, respectively. The cone gas flow and desolvation gas
flow were 65 L/h and 375 L/h, respectively. The mass
spectrometer was operated in the selected ion monitor-
ing mode by use of a positive ion, m/z 477.30 for
temocapril. The retention time of temocapril was ap-
proximately 3.7 minutes. Standard curves were linear
over the range of 3 to 300 nmol/L. :
Quantification of RMS-416 concentration in Krebs-
Henseleit buffer. A 60-pL sample was mixed vigor-
ously with 60 pL of methanol including internal stan-
dard (0.5 pg/mL R-122798; kindly donated by Sankyo)
and deproteinized by centrifugation for 10 minutes at
15,000 rpm at 4°C. Then, 50 pL of supernatant was
injected into the liquid chromatography—tandem mass
spectrometry system. Separation by HPLC was con-
ducted with a Waters Alliance 2695 Separations Mod-
ule with an Inertsil ODS-3 column (4.6 X 150 mm, 5
pm; GL Sciences). The composition of the mobile
phase was acetonitrile/ammonium acetate, 10 mmol/L
(pH 4) (40:60 [vol/vol]). The flow rate was 0.3 mL/min.
Mass spectra were determined with a Micromass
ZQ2000 mass spectrometer (Waters) in the negative
ion~detecting mode at the electrospray -ionization in-
terface. The source temperature and desolvation tem-
perature were 100°C and 350°C, respectively. The cap-
illary, cone, and extractor voltages were 3200 V, 20 V
and 5 V, respectively. The cone gas flow and desolva-
tion gas flow were 65 L/h and 375 L/h, respectively.
The mass spectrometer was operated in the selected ion
monitoring mode by use of respective positive ions, m/z
423.30 for RMS-416 and m/z 409.30 for R-122798
(internal standard). The retention time of RMS-416 and.
R-122798 was approximately 3.6 minutes and 2.6 min-
utes, respectively. Standard curves were linear over the
range of 5 to 1000 nmol/L. -
Pharmacokinetic and statistical analyses. The AUC
from time 0 to 24 hours (AUC, ,,) was calculated by
the linear trapezoidal rule. Renal clearance (CL,) was

_calculated by division of the cumulative amount of drug

in urine collected for 24 hours by AUC,, ,4. All phar-
macokinetic data are given as mean * SD. Statistical
differences between the data for each haplotype group
were determined by ANOVA, followed by the Fisher
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' Flg l Eﬂ'ec( of organic anion transporting polypeptide (OATP) 1BI haplotype on phamacoki-

" metics of ‘pravastatin. Plasma concentration (conc)-time' profiles of pravastatin after oral adminis-
tration of 10 mg pravastatin in OATP1B1+la/*1a subjects (squares, n = 5) and *Ib/*/b subjects

" (inverted triangles, n = T) (A) and in */a/*15 subjects (triangles, n = 6) and *Ib/*]5 subjects
(diamonds. n = 5) (B). Each point represents mean * SD. C, Box-whisker plot of area under plasma
concentration-time curve (AUC) of pravastatin in each haplotype group. The horizonral line within
each bnx represents the median. The box edges represent the lower (25th) and upper (75th) quartiles.
The whiskers extend from the lower and upper quartiles to the furthest data points still within a
distance of 1.5 interquartile ranges from the lower and upper quartiles. Individual data points were
overlaid on the box-whisker plot. Asterisk, Statistically significant dlfference shown by ANOVA
with Fisher least significant difference test (P << .05).

- least significant difference test. P < .05 was considered
to be statistically significant. :

RESULTS

Effect of OATP1BI haplotype on pharmacokinetics
of pravastatin and its metabolite, RMS-416. After
oral administration of pravastatin, the plasma con-
centration of pravastatin in OATPIBI*Ib/*1b sub-
jects was lower than that in */a/+Ja subjects (Fig 1,
A). Similarly, the plasma concentration in *1b/x15
subjects was lower than that in */a/*15 subjects (Fig
1, B). The mean AUC, ,, of pravastatin in */b/*1b
subjects was significantly lower than that in */a/*]a
subjects (65% of *la/*1a), and the AUC,_,, in *1b/
*]5 subjects was significantly lower than that in
*la/*15 subjects (55% of *la/+15) (Fig 1, C, and
Table I). In addition, CL, was not significantly dif-
ferent among the haplotype groups (Table I). Prava-
statin was converted to RMS-416 by chemical
epimerization. We also calculated the concentration
of the sum of pravastatin and RMS-416 in plasma
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and urine. The AUC,_,, value of the sum of prava-
statin and RMS-416 in *Ib carriers tended to be
lower than that in *Ia carriers, whereas this value in
*15 carriers tended to be higher than that in non-+15
carriers (Table I). The CL, calculated from the sum
of pravastatin and RMS-416 was not markedly dif- -
ferent between each haplotype group.

Effect of OATP1B1 haplotype on pharmacokinetics
of valsartan. After oral administration of valsartan, the
plasma concentration of valsartan in OATPIBI*1b/*1b
subjects was lower than that in *]a/*]a subjects (Fig 2,
A) and the plasma concentration in */b/15 subjects
was lower than that in *la/]5 subjects (Fig 2, B).
Although the difference did not reach statistical signif-
icance, the mean AUC, ,, of valsartan in *1b/1b sub-
jects tended to be lower than that in *]a/*la subjects
(73% of *1a/+1a), and the AUC, ,, in *1b/*15 subjects
was significantly lower than that in *Ja/*15 subjects
(67% of *1a/+15) (Fig 2, C, and Table I), exhibiting a
trend similar to pravastatin. The CL, was almost the
same in each haplotype group (Table I).



