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Fig. 8. Possible base pairing of the dI adduct with dC.

miscoding specificities and frequencies of the dI
lesion catalyzed by Y-family human DNA pols. The
dI adduct represents a highly miscoding lesion cap-
‘able of generating A —G transitions, indicating that
this "NO-induced lesion plays an important role in
initiating inflammation-driven carcinogenesis.

Materials and Methods

General

Ultrapure dNTPs were from GE Healthcare. EcoRI
restriction endonuclease (100 U/uL) was purchased from
New England BioLabs. Blue Dextran (D5751) was obtained
from Sigma. Human pol o was obtained from CHIMERx

* (Milwaukee, WI). Human pol n was purified as previously
described." Human pol « (pol k AC) was overexpressed in
E. coli and purified as a C-terminally truncated form. The
protein has 10x His tag at the N-terminal position and
contains 559 amino acids from the N-terminus (N. Niimi
and T. Nohmi et al., unpublished results).

Preparation of oligodeoxynucleotides

All oligodeoxynucleotides, Alexa546 (Molecular Probes)-
labeled primers, standard markers, and dI-modified tem-
plate were obtained from Japan Bio Service Co. (Saitama,

Japan). Alexa546 was conjugated at the 5'-terminus of
primers and standard markers. A single dI was located at
the 20th position from the 5'-termini in the modified 38-mer
template (5'CATGCTGATGAATTCCTTCZCTTCTTTC-
CTCTCCCTTT, where Z is dI). The oligomers were puri-
fied by using 20% denaturing PAGE before use.

Primer extension reactions

Primer extension reactions catalyzed by pol a, pol n, or’
pol kAC were conducted at 25 °C for 30 min in a buffer
(10 pL) containing all four dNTPs (100 uM each) using dI-
modified and unmodified 38-mer templates (750 fmol)
primed with an Alexa546-labeled 10-mer (500 fmol, 5’
AGAGGAAAGA) (Fig. 3). The reaction buffer for pol a
contains 40 mM Tris-HCl (pH 8.0), 5 mM MgCl,, 60 mM
KCl, 10 mM dithiothreitol, 250 pg/mL bovine serum
albumin, and 2.5% glycerol. The teaction biiffer:for pol n
and pol kAC contains 40 mM Tris-HCI (pH 8.0), 1 mM
MgCl,, 10 mM dithiothreitol, 250 ug/mL bovine serum
albumin, 60 mM KCIl, and 2.5% glycerol. Reaction was
stopped by addition of 2 L. formamide dye containing
Blue Dextran (100 mig/mL) and ethylenediaminetetraace-
tic acid (50 mM) and incubation at 95 °C for 3 min. The
whole amount of the reaction sample was subjected to -
20% denaturing PAGE (30 x40 % 0.05 cm). The positions of
bands and homogeneities of oligodéoxynucleotides fol-
lowing PAGE were determined by using Molecular
Imager FX Pro and Quantity One software (Bio-Rad).
The linear range to quantitatively detect fluorescence-
labeled oligomers was from 5 to 1500 fmol (Fig. 6).

Quantitation of miscoding specificity

Using dI-modified and unmodified 38-mer oligodeox-
ynucleotide (750 fmol) primed with an Alexa546-labeled
12-mer (500 fmol, 5’ AGAGGAAAGAAG), we conducted
primer extension reactions catalyzed by pol « (200 fmol),
pol 7 (20 fmol), or pol k AC (20 fmol) at 25 °C for 30'minin a
buffer (10 pL) containing all four dNTPs (100 uM each) and
subjected them to 20% denaturing PAGE (30%40x
0.05 cm). Extended reaction products (>26 bases long)
were extracted from the gel. The recovered oligodeoxynu-
cleotides were annealed with an unmodified . 38-mer,
cleaved with EcoRI, and subjected to two-phased PAGE
(20x 65x0.05 cm) containing 7-M urea in the upper phase
and no urea in the middle and bottom phases (each phase
contains 18%, 20%, and 24% polyacrylamide, respectively).
The phase width is approximately 10, 37, and 18 cm from
the upper phase. To quantify base substitutions and
deletions, we compared the mobility of the reaction
products with those of Alexa546-labeled 18-mer standards
containing dC, dA, dG, or dT opposite the lesion and one-
base (A') or two-base (A?) deletions'”® (Fig.3).

Steady-state kinetic studies of nucleotide insertion
and extension ‘

Kinetic parameters associated with nucleotide insertion
opposite the dI lesion and chain éxtension from the 3’
primer terminus were determined at 25 °C, using varying
amounts of single dNTPs. For insertion kinetics, reaction
mixtures containing dNTP (0-250 uM) and either pol a
(20-200 fmol), pol n (2-20 fmol), or pol kAC (1-20 fmol)
were incubated at 25 °C for 2 min in 10 uL of Tris—HCl
buffer (pH 8.0) using a 38-mer template (750 fmol) primed
with an Alexa546-labeled 12-mer (500 fmol; 5'AGAG-
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GAAAGAAG). Reaction mixtures containing a 38-mer
template (750 fmol) primed with an Alexa546-labeled 13-
mer (500 fmol; 5’AGAGGAAAGAAGN, where Nis C, A,
G, or T), with varying amounts of dGTP (0-250 uM) and
either pol a (20-200 fmol), pol 7 (120 fmol), or pol wkAC
(1-20 fmol), were used to measure chain extension. The
reaction samples were subjected to 20% denaturing PAGE
(30%40%0.05 cm). The Michaelis constants (K;,) and
maximum rates of reaction (V) were obtained from
Hanes-Woolf plots. Frequencies of dNTP insertion (Fj,s)
and chain extension (F..) were determined relative to
the dT:dA base pair according to the following equahon
F= (Vmax/Km)[\'Nrunz, palr]/(Vmax/Kw)[curred pair=dT:dA] 423
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