free radicals, but in rebreater diving wherein high partial pressure oxygen is
inhaled, there are concerns that free radical generation may increase in accordance
with the increased oxygen intake. However, as for physical exercise and lipid
hyperoxidation, it is reported that exercise load up to 50% of maximum oxygen intake
does not affect the lipid hyperoxidation.

Furthermore, as in the rebreather diving in this study, in diving activities wherein
stress load was relatively low, radical generation might have not been so significant.
Nonetheless, even taking this in consideration, many issues remain to be solved
regarding the result that shows the no change of free radicals while ROM level was
expected to rise during rebreather diving. One possibility is that although there
may have been generation of free radicals during rebreather diving activities, the
scavenger system in the divers’ body was mobilized and that the BAP level was higher
after diving. However, the reason why the scavenger system that overcomes radical
generation was mobilized to higher the BAP generation cannot be explained from this
study. There could be some specific features in rebreather diving that are
different from physical exercise activities in atmospheric pressure environment,
and it would be interesting to investigate if this is so. Also, the fact that samples
who participated in this study were under a slight oxidative stress condition before
diving, this could have complicated the interpretation of the result of this study,
but it is thought that slight oxidative stress condition is due to the age factor
of samples

In this study, the fluctuating situation of the scavenger system during rebreather
diving activities was not grasped, but it was cdnfirmed that antioxidant potential
show significant increase before and/or after a single rebreather diving activity.
It is considered that one of the reasons for that is that the samples of this study
were all well experienced divers. According to studies related to antioxidant
potential, people who exercise frequently have higher level of antioxidant enzyme
and other antioxidant substances in tissue. The antioxidant potential that was
measured in this study showed a high value before the experiment in many subjects.
It is considered that this is because the samples had already acquired sufficient
antioxidant potential in their daily exercise activities that includes diving.
In this study, ROM and BAP test was used to evaluate the oxidative stress or
antioxidant potential of the samples. Conventionally, measurement of free radical
was time consuming and also caused consumption of much expense, and the ROM test
method itself was quite difficult, but the ROM and BAP test that was developed
recently can measure free radicals or antioxidant potential in a very easy-to-—use
method, and the test can be done in a very short time with accurate evaluation of
oxidative stress or antioxidant potential in human body. There are evidences that
the results of d-ROMs test correlate with the results of ESR, and the ROM test is
utilized in many studies as being a reliable testing method.

As a conclusion, in rebreather diving, there is a time frame when the serum BAP
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increase, and rise of oxidative stress due to high pressurized oxygen inhalation
was not found. As one topic to follow, an investigation needs to be conducted on
what influences the oxidative damage in cases when diving is conducted repeatedly,
and how divers acquire the antioxidant features. Moreover, although evaluation of
oxidative stress, inspiration oxygen pressure or exercise changes are difficult
because of multiple factors that affect the relation among these parameters, it is

thought that appropriate analysis is possible when accurate control is conducted.

ROM test: Test for oxidative stress level

Principle

The method is based upon metals transition capacity to catalize, once these metals
are freed from their chelate protein transport forms and the deposit where they are
normally found in plasma and cells, reactions from the formations of free radicals
according to Fenton’s reaction as in the following formula, or in radical

propagation:
H,0, + Fe #* + Fe 3 O OHe + OH

The radicals which are produced, the quantity of which is directly proportional to
the quantity of peroxide present in plasma, are chemically trapped by phenolic
derivate molecules, and through the reaction, these peroxides are transformed into
ions. The ion transformation colors the peroxides, and the color can be measured
with photometers. Practically, a small amount of serum is diluted in an acid buffer
solution (pH 4.8). The iron ions that were bonded to the serum proteins become
available to catalyze in vitro the breakdown of blood hydroperoxides to alkoxyl and

peroxyl radicals.

The reactions of ROMs test is as follows:;

1A) R-00H + Fe * [0 R-0% + Fe* + OH

1B) R-0* + A-NH, O R-0- + [A-NH,*]"

2A) R-O0H + Fe®* O R-00% + Fe* + H'

2B) R-00* + A-NH, O R-00- + [A-NH,*]*

wherein;

R-00H is a generic hydroperoxide

R-0* is the alkoxyl radical of a generic hydroperoxide
R-00*% s the hydroperoxyl radical of a generic hydroperoxide
A-NH, is N, N-diethyl-paraphenylendiamine, i. e. the chromogenic substrate of
d-ROMs test

[A-NH,%]+ is the coloured radical cation of the chromogenic substrate

The chromogen (N, N, -diethylparaphenylen—diamine) is oxidized by hydroperoxyl and
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alkoxyl radicals, then change to colored cation detectable at 505 nm. The
concentration of colored complex reflects (correspond, related) to the
hydroperoxides levels of the tested biological sample. The results were expressed
as CARR U., where 1 CARR U. corresponds to 0.08 mg/100 ml H,0,. The normal range
has been determined as 250-300 CARR. U.

BAP test: Test for biological antioxidant potential

Prinbiple _

Based on the ability of a colored solution, containing a source of ferric (Fe *')
ions bound to a chromogenic substrate (i.e. a thiocyanate derivative), to decolor
when Fe®' ions are reduced to ferrous ions (Fe #* ), as it occurs by adding a blood
plasma sample. For the test, plasma sample already has been dissolved in a colored
solution obtained by mixing a source of ferric ions (i.e. ferric chloride, FeCl;).
Practically, a small amount of blood plasma (10uL) to be tested is dissolved in a
colored solution, which has been previously obtained by mixing a source of ferric
ions (i. e. ferric chloride, FeCl,) with a special chromogenic substrate (i. e. a
thiocyanate derivative)

After five minutes incubation at 37°C, the solution will decolor, reflecting the
ability of plasma to reduce ferric ions to ferrous ions, according to these

reactions:

1. FeCl, + AT (uncolored) 0 FeCl, - AT (colored)

2. FeCl; — AT (colored) + BP(e-) O FeCl, + AT (uncolored) + BP

wherein:

FeCl; is ferric chloride

AT (uncolored) is a thiocyanate derivative (uncolored);

FeCl, - AT (colored) is the colored complex of ferric chloride with thethiocyanate
derivative

BP (e-) is a molecule of blood plasma barrier with
reducing/electrongiving/antioxidant activity against ferric ionsBP is the oxidized
_ form of BP (e—)FeCl, is the ferrous chloride obtained by the reducing activity of
BP (e-)

By photometrically assessing the intensity of decoloration, the amount of reduced
ferric ions can be adequately evaluated, which shows antioxidant potential of tested
sample.

The value more the 2,200 umol/l, is estimated to physiological adequate.
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Changes in plasma—-free amino acids by hyperbaric oxygen exposure.

AABGSIERE - BWAESAMSE, 2008, Vol.43 No.1 . B¥fs
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Abstract

We previously reported that hyperbaric oxygen (HBO) increased serum reactive oxygen
metabolites (ROM) by approximately 7% (The Japanese Journal of Hyperbaric and
Undersea Medicine 2007; 42: 85-9). Under hyperbaric conditions, radicals are
produced in vivo, and anti-oxidation systems are activated because of the oxidative
effect of HBO. Therefore, the amino acids of enzymes associated with redox
(reduction/oxidation) reaction should be subjected to increase by HBO. However,
little or no study has been conducted on the change of amino acids under HBO therapy.
Ten healthy volunteers (6 male, 4 female) were exposed to HBO equivalent to U.S.
Navy Treatment Table 6 for 5 hours. Serum free amino acids were measured before and
after the exposure. Of 20 amino acids analyzed, only valine increased after the HBO
exposure (p<0.05). The other amino acids, unexpectedly including the ones
contributing to the glutathione (y-glutamylcysteinylglycine; GSH) metabolism, such
as cysteine and methionine, did not show any meaningful changes. We speculate that
the involvement of valine in vulnerable mitochondria sites may be a possible

mechanism for its increase with HBO.
F—U—F:B{tA LR, FBER. NV~

Keywords: oxidative stress, antioxidative function, valine
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