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Fig.1 Cutting elastic objects with surgical
knife and its modeling
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Interactive Volume Manipulation for
Supporting Preoperative Planning

M. Nakao, S. Yano, T. Matsuyuki, T. Kawamoto and K. Minato
Grad. Sch. of Information Science, Nara Institute of Science and Technology, JAPAN

Abstract. This paper presents a volume manipulation framework by which
surgeons can interactively manipulate soft models like through surgical tools. The
framework robustly simulates common surgical manipulations such as grasping,
holding, cutting and retraction. We simulate cutting based on FEM formulation by
replacing vertices and eliminating elements, without subdividing elements or
adding new vertices. The size of stiffness matrix is constant. We also present real-
time volume shading methods for deformable modeling. Our algorithms achieved
interactive response in volume manipulation. Several surgical approaches and
procedures were rehearsed and used for preoperative discussion.

Keywords. Volume manipulation, Cutting, Deformation and Preoperative rehearsal

1. Introduction

In light of the difficulties surgeons face in choosing optimal surgical scenarios for their
patients, preoperative surgical simulation on volumetrically rendered images from
CT/MRI dataset is now regarded as essential for planning and communication between
medical staffs. Preoperative rehearsal is a known concept and volume planning systems
[1][2] have been proposed. However, most systems were designed for rigid voxel
models or interactive soft tissue operation was limited due to modeling complexity,
volume rendering cost and lack of manipulation interface.

We develop a volume manipulation framework that allows surgeons to .interactively
manipulate soft models like through surgical tools (see Figure 1). The framework
handles both a tetrahedral mesh and CT/MRI volume, and represents volume
deformation and cutting based on finite element formulation. This paper mainly
introduces two methods: soft tissue modeling for simulating cutting with deformation
and a volume visualization algorithm for time-varying deformable models.

For simulating cutting on elastic objects, removal of tetrahedral elements is a simple
approach [3]. Since only removal of elements have problems of yielding visual artifacts
and of decreasing total volume of the models, topological adaptation is required. One
approach for topological update is subdivision of tetrahedral meshes [4][5], which
defines incision using newly created small elements. Splitting mesh on the boundary of
elements [6][7] is another approach. Combined methods [8] have been recently
explored. However, most algorithms for topological change increase their computation
cost in progress of cuiting manipulation. New tetrahedral elements with bad shape
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Figure 1. The basic design of our framework. The elastic behavior of organs is physically simulated and
volumetrically rendered. Interactive performance is achieved on GPU by not updating volume data.

created through topological update exert a bad influence for stability and accuracy of
the simulation. Unlike existing methods, we aim to shape visually valid incision by
relocation and constraints of initial vertices. The vertex count is preserved. This
approach avoids increase of computation cost and enables fast update of physical status
through modifying meshes.

Real-time shading on time-varying, volumetrically rendered objects is also a
challenging issue. Gray-level gradient [9] pre-computationally defines gradient voxels
from 3D texture. However, since reconstructing voxels takes high computational costs,
this approach is not available for interactive volume deformation. Although Correa et al.
presented a volume shading algorithm on deformed objects [10], it does not support
interactive manipulation. Our approach supports interactive, arbitrary manipulation,
and achieves fast volume shading by per-vertex gradient approximation and its
interpolation on GPUs.

2. Finite Element based Modeling of Cutting and Deformation
2.1 Vertex-preserving Cutting

When soft tissue is cut in the real world, two facing surfaces (called cut surfaces) are
created, and the tissue connectivity is broken. The cut surfaces and tiny space between
them are physical phenomena with geometrical change that should be simulated. Our
interest is what a variety of valid cut surfaces can be configured through only the
-relocation of vertices, without subdividing the tetrahedral elements nor creating new
vertices. This makes it possible to prevent the number of vertices from increasing in
cutting procedure, therefore preventing increase in calculation time.

Figure 2 briefly illustrates known methods and our approach using 2D outline of the
process. In our approach (d), when a blade path is given, the vertices of the intersected
elements are projected onto the path. The two parallel lines (surfaces in the 3D virtual
space) composed by relocated vertices are used to shape the cut surfaces. Also, some
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Figure 2. Threc modeling methods for soft tissue cutting. Our approach, a vertex preserving cuiting method
creates cut surfaces using existing vertices and constraints to preserve 3D shape and feature of initial meshes.

vertices are constrained to preserve 3D shape and sharp feature of initial meshes. After
the vertices have been relocated, removing elements that intersect the blade path makes
it possible to model the tiny space between cut surfaces and simulate the physical
behavior of the incision. In the finite element modeling, the stiffness matrix must be
updated through relocation of vertices and the elimination of elements. With methods
that use element decomposition to represent the cutting process such as (b) and (c), the
size of the stiffness matrix increases. However, in our model, the size is constant. We
utilize this feature for solving linear equation in finite element formulation, and enable
fast cutting simulation with deformation.

When a tetrahedral element is cut, the vertices v; of the element are projected onto the
blade path. The blade path forms set of surfaces S, (¢ = 0, 1, ...), which are called
sweep surfaces. Then, the update vector Av; is defined as the following equation:

Av; = {n, - (v; - p)n, 1

where n, is the normal vector of the sweep surface S,. p, is an arbitrary point on the S;.
Vertices that are updated outside of sweep surfaces Sy, S; ... generate visual artifact.
Therefore, such vertices are again relocated by projecting them onto the boundary of
given sweep surfaces. In order to preserve the feature of the initial mesh and to update
the vertices fast and definitely, we introduce simple constraints into topology
modification.

After the relocation of the vertices, the tetrahedral elements that are collapsed between
the cut surfaces are deleted. Then, the stiffness matrix must be updated in the finite
element modeling. For all tetrahedra that are deleted or affected by relocation of
vertices, the element stiffness matrix K, is subtracted from stiffness matrix K
concerned with corresponding vertex. Note that K, is pre-computed per tetrahedral
element before cutting manipulation.

2.2 Surface-constraint-based Deformation

Other surgical procedures like grasping, holding and exclusion are also handled in our
framework. When the intersection between the organ model and the virtual manipulator
is detected, the manipulation area is regarded as grasped and forcible displacement is
applied to the controlled vertices as a boundary displacement condition in finite
element formulation. To simulate the surgical forceps and retractors for the rehearsal of
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the surgery in these cases, we constrain the vertices on the constraint surface of the
manipulator by displacing the controlled vertices to new positions.

Next, the controlled vertices are geometrically transformed while satisfying the given
surface constraint. This allows users to grasp the manipulation area and to work with it
interactively, as they would when manipulating actual surgical tools. By translating and
rotating the organ, for example, users can directly simulate the maneuvers of excluding
or holding as they prepare the surgical workspace for planning of the surgery.

3. Volume Rendering with Shading for Deformable Models

Volume manipulation results can be visualized in real time by volume-rendering the
tetrahedral mesh with 3D texture mapping. The process is derived from a method for
rendering volumes based on texture mapping techniques [11]. We render tetrahedral
elements using the cross sections (called proxy geometry). When the vertices are
displaced by model deformation, the proxy geometry is updated based on the deformed
mesh topology. The initial coordinates of vertices are used as texture coordinates.

In order to perform volume shading, an initial CT/MRI intensity volume, a gradient
volume and a tetrahedral mesh are prepared. When displacement is given by mesh
deformation, our framework defines rotation matrix M per vertex using initial vertices
and displaced vertices. We approximate the rotational component around the vertex v;
by selecting its orthonormal basis. Then, the rotation matrix is interpolated on GPUs.
Initial gradient per voxels that are transformed by the interpolated rotation matrix is
used for shading. Since this approach does not need update of volume data, fast volume
shading can be performed.

" initisl mesh 1~ Deformed mesh

{ interpolated by GPUs }l

Volume deformation
with shading

Initial gradient Rotated gradient

Figure 3. A volume shading algorithm for time-varying deformable models.
4. Results and Discussion

We applied CT volume dataset (volume size: 256°) to our volume manipulation
framework on general purpose PC with Intel Core2Duo 2.93GHz, 2048Mbytes
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memory and nVidia GeForce8800 graphic card. Figure 4 and 5 show its applications.
Common surgical manipulation like grasping, holding, cutting and retraction was
simulated. The pre-computed Conjugate Gradient algorithm was employed to solve
linear large equation in cutting finite element models. Table 1 shows the refresh rates
and model parameters. Interactive manipulation was possible for all datasets. Also, our
framework was used for preoperative rehearsal of thoracoscopic surgery based on a
patient's CT volume dataset. The volunteer surgeon pinched a part of the lung tissue for
clipping the bulla as shown in Figure 6. Real surgery videos and volumetrically
rendered images demonstrate similar manipulations and surgical views can be
preoperatively simulated.

Figure 4. Volume manipulation examples: (a) liver volume deformation by grasping manipulation, (b)
kidney rotation and deformation and (c) volume cutting and retraction of incision. The incision can be
interactively modified on the rendered image.

{(a) {b) {c)

Figure 5. (a) (b) Interactive cutting with holding a part of liver volume model. Internal structure can be
observed. (c) Another cut example with different depth and deformation.

Table 1. Refresh rates for overall simulation and rendering.

Volume size Vertices | FPS (frame per sec)
Liver 2563 567 38
Kidney 2563 424 45
Breast 2563 613 20
Lung 2563 344 50
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Figure 6. Lung deformation. (a) surgical videos and (b) volume deformation by virtual tools.

5. Conclusion

This paper introduced our volume manipulation framework and presented techniques
on vertex-preserving cutting and GPU-based volume shading. We are currently
developing an adaptive surgical procedure template and pen-based interface for
supporting easy and quick patient-specific preoperative planning.
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Simulating Lung Tumor Motion for Dynamic
Tumor-tracking Irradiation

Megumi Nakao, Ayako Kawashima, Masaki Kokubo and Kotaro Minato

Abstract— This study proposes methods for the support of
radiotherapy planning for dynamic tumor-tracking irradiation
for lung tumors. It aims to simulate the deformation of the lung
caused by respiration and to visualize the result as DRRs
(Digitally Reconstructed Radiographs) in real time. Qur lung-
deformation model treats the lung as an elastic object and
analyzes the deformation based on linear FEM (the Finite
Element Method). The simulation models the lung using CT
volume data and generates a model with boundary conditions
with freely adjustable regions, displacements, and phases. The
doctor planning the radiotherapy can reproduce the movement
of the lung tumor by freely adjusting the regions, displacements,
and phases of the boundary conditions while comparing the
position of the lung tumor in an X-ray photograph. For high-
speed display we propose a method for rapid-generation DRRs
by slice-based volume rendering. The result of several functional
evaluations and trials of simulation established that the proposed
method can describe the movement of the lung tumor with
adequate precision. The developed system is expected to be useful
for radiotherapy planning for real-time tumor-pursuing
irradiation.

1. INTRODUCTION

Radiotherapy is regarded as popular, efficient, less-invasive
treatment for cancer. The main challenges in radiotherapy
are to preserve as many normal cells as possible by irradiating
at only limited volumes around the tumor, and to reduce
harmful side effects by administering the minimum effective
dose. In the case of a lung cancer, however, the perpetual
movement of the tumor as the lungs respire makes it difficult
to irradiate around the tumor[1][2]. This necessitates the
continuous recalculation of the irradiation field to capture the
position of the tumor as it moves.

Our aim was to establish continuous, dynamic tumor-
tracking irradiation without any additional loads to patients.
Fig. 1 shows the radiation therapy system being developed at
the Foundation for Biomedical Research and Innovation. This
system is capable of swinging the irradiation head according
to the gimbals mechanism. If the movement of the lung tumor
is accurately predictable or estimated, continuous tumor-
tracking irradiation while pursuing the lung tumor can be

performed. This approach shortens radiation time as well as.

avoids radiation of normal cells.
Success in continuous tumor-tracking irradiation requires
accurate estimation of 3D position and shape of the lung
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tumor during irradiation. Time-series X-ray radiographs can
be acquired during treatment. However, as the images do not
always give clear information around tumor due to the
characteristic of X-ray imaging, radiologists generally use CT
volume data for the radiotherapy planning. Moreover, in order
to reconstruct time-varying 3D position and shape of the
tumor, only 2D image data and its processing are not
sufficient.

This study proposes a method to support radiotherapy
planning for dynamic tumor-tracking irradiation for lung
tumors. Our method simulates the deformation of a lung
caused by respiration and displays the result at high-speed as
DRRs (Digitally Reconstructed Radiographs). The lung-
deformation simulation treats the lung as an elastic object and
analyzes the deformation of the organ by FEM (the finite
element method).

II. DYNAMIC TUMOR-TRACKING IRRADIATION

Fig. 2 shows the outline of the proposed dynamic tumor-
tracking irradiation. Two types of data can be obtained before
the treatment begins: CT volume data taken at a respiratory
standstill and continuous time series X-ray photographs. The
next step is to simulate the lung deformation by FEM using
CT volume data. This analysis uses lung-shaped tetrahedral
grids and treats the lung as an clastic object. The simulation
target is lung deformation and movement of tumor caused by
respiration. The simulation results are displayed as DRR for
an assessment of their accuracy in comparison with the
continuous time series X-ray photographs. If the accuracy
cannot be verified, the surgeon can change the simulation
parameters and retry a simulation to re-create the movement
of the lung tumor along with respiration. ’

Fig. 1 new radiation therapy system allowing swing of
theirradiation head in real time.
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Fig. 2 A basic flow of dynamic tumor-tracking irradiation. 3D
position of the tumor is estimated by finite element lung model.
The simulation results are visualized as DRRs and evaluated with
X-ray photographs. :

III. DISPLACEMENT ESTIMATION OF LUNG TUMOR

Respiration involves two major processes: inspiration and
expiration. During inspiration, the inspiratory muscles
contract, the diaphragm descends, and the rib cage rises. As
the volume of the thoracic cavity increases, air flows into the
lungs. During expiration, the inspiratory muscles relax, the
diaphragm rises, and the rib cage descends. As the volume of
thoracic cavity decreases, the lungs deflate, releasing an
outflow of air. As a first step to lung deformation analysis, we
regarded the lung as an elastic object and simulate its dynamic
behavior using FEM.

We use CT volume data to describe the 3D shape of the
lung. For estimating displacement of the lung tumor, we
model the lung as an elastic object and simulate its
dynamic behavior using FEM. Fig. 3 shows the developed
lung model with boundary conditions. The tetrahedral
mesh was created from patient CT dataset. We categorized
all vertices V = (v, v2, ..., v ) into four groups V,, V,, V,
and V, like in Fig. 4, and defined boundary conditions on
the vertices to solve FEM formulation.

\'——»{:

The trachea vertices are set to remain in a fixed position,
that is, unaffected by the respiratory movement. The vertices
on the diaphragm and rib cage are updated based on the
formula (1) and (2) respectively. The movement of rib cage
back vertices are constrained for one direction. The vertices

Rib cage vertices: ¥,
Diaphragm vertices: ¥,
Trachea vertices: ¥, )
Rib cage(back) vertices: ¥,

L 4

IV. TEXTURE-BASED DRR GENERATION

We also developed a method (named Texture-based DRR)
to create DRRs in real time. We extended the texture-based
volume rendering [3] and visualize FEM simulation results as
deformable DRRs. Texture-based DRR can be generated by
perspective projection of sections with CT textures (proxy
geometries) which are defined from tetrahedral mesh. When
the vertices of the mesh are displaced by model deformation,
the proxy geometries are updated, and the initial grid
coordinates are used to map the 3D texture. The voxel values
in each tetrahedral element are correctly mapped on the newly
created proxy polygons, thereby visualizing the deformed
image volumetrically as DRRs.

V. EXPERIMENTS AND RESULTS

The 3D shape of the lung was obtained from CT and its
elasticity was empirically set by Young’s modulus 0.01 MPa
and Poisson’s ratio of 0.25. The region around the tumor was
modeled by setting Young’s modulus at 1.0 MPa. The
boundary condition of the diaphragm was set as a phase of 0.6
seconds. One respiratory cycle is set at 3.6 seconds, to keep
the same cycle with continuous time series X-ray photographs.

Fig. 3 A lung tetrahedral grid constructed from patient CT dataset.
(a) polygonal representation and (b) boundary condition set to the
vertices.

ribcage | |
boundary

trachera
boundary

rib cage {back)
boundary

around the rib cage do not move downward toward the couch g?::‘;:?ym\
Av, =a, sin27f (¢ +w, ), M x5
Avj =a,sin2zaf (t +w d)n ) ) Fig. 4 Boundary condition scheme on the FE lung model for
J estimating 3D movement of tumor.
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Fig. 5 DRR of simulation results. The movement of tumor is
estimated through the FE lung model.

Each boundary condition was set by properly referring to X-
ray photographs. Fig. 5 shows the simulated movement of the
lung tumor on time-series DRRs.

We analyzed simulation results of 3D tumor movement.
The graph in Fig. 6 shows tumor position error between time-
series X-ray radiographs and simulated tumor position on
DRRs. We confirmed the deformation was simulated with
very high accuracy in this clinical case (Error within 2 mm)
The irradiation field with our tumor tracking irradiation
assumes 48% of the volume in the conventional methods
without tumor tracking.

Lastly, Fig. 7 demonstrates superimposed deformed DRRs
on X-ray radiographs. As the tumor position can be correctly
identified with the CT volume data, this visualization will also
be useful for recognizing tumor position and shape.

VI. CONCLUSION

Radiotherapy has become an efficient noninvasive therapy
in recent years. In the therapy for lung tumors, however, the
mechanism behind the movement of the tumor as the lungs
respire has yet to be solved. If the radiotherapy accurately
pursues the lung tumor, the technique is certain to advance far
from its present state. This research focused on the re-created
movement of a lung tumor in one clinical case. This research
model is expected to be useful for improving, inspecting, and
ultimately realizing the technique of real-time tumor-pursuing
irradiation. .
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Fig. 6 Displacement of the lung tumor (a) in X-ray photographs
and (b) in DRRs generated from FE lung simulation results.

Fig. 7 Superimposing simulation results on time-series X-ray
radiographs. This overlay representation supports recognition of
tumor's position and shape.
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Abstract. In surgery, many kinds of manipulations are conducted using multiple fingers
and instnumenis, The aim of this study 15 to investigate required haptic rate for mult-finger
manipulation and instromenial manipulation. This paper ineestigated reguived haptic rate
for multi-finger haptic interaction with haptic device and soft tissue deformenion. Resulis of
experiment clarified ihe fact that there ts difference of threshold of baptic rate between the
nmunber of manipulating fingers.

Keyweords. Hapiics, Surgical manipulation, Perception

1. Introduction

Growth of computational power has allowed realistic surgical simulation with physics-
based deformation, visual/gudio effects and haptic feedback. However, 1000Hz of
haptic update rate is still a severe requirement, because endless demand for more
accurate and realistic simulation Increases computational cost. Quality of the
simulation has been decreased for keeping the simulaiion stable.

Psychophyvsical study has investigated requirements of haptic rate, basically
assurning one finger interaction with an object in the case of passive touch [1]. Active
touch is psychophysically different from passive touch [2]. On the other hand, in
surgery, multiple fingers are used for touching organs or manipulating instruments in
the manner of active touch. There arc few studies of active touch with multiple fingers.
So far, there is no answer to even a simple quesiion “is there any difference of required
haptic rate in manipulation using one finger and two fingers”.

The aim of this study is to imvestigate required haptic rate for multi-finger
manipulation in the case of active touch, From the understanding of the haptic rate,
optimal assignment of computational resowrce for surgical simulation becomes
possibie .
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Figure 1. Concept of perceplion based optimization of physics-based interactive simulation with haptic
feedback.

2, Concept

Figure 1 shows a concept of this study. Perception based optimization of physics-based
interactive simulation with haptic feedback. Simulation and other ﬁmcuons are able to
utilize more compumuondl resource instead of haptics.

If haptic rate is high enough, a user perceives continuous force. Howww ifnot, a
user perceives discontinuous force hke vibration on fingertip. This causes unrealistic
© sensation because of insufficient haplic rate. In this study, a threshold of haptic rate

which makes a user feel vibration is investigated. Thus, haptic rate must be examined
while a user moves their fingers or instrument actively.

3. Experiments and Resulfs

- We developed a system which controls haptic rate freely and records user’s

manipulation during a task. Mult- imnered and endoscopic instrument typed haptic
- devices Cybs erForce™ and Xitact THP™ were equipped. A plate object (20cm x 20cm
x 1.3cm in size) object consists of 1334 vertices and 4745 {etrahedron (0.2MPa
Young's modulus and 0.4 Poisson’s ratio). Linear finite element method was
implemented for soft tissue modeling. :

A hypothesis in this cxperiment was “a person is less sensitive to discrete changes
in force feedback, perceived as step changes in force or vibration, when performing
multi-finger manipulation and iustrumental manipulation with an elastic object™. 9
volunteer students participated in the experiment. 750 patterns of update rate e.g.
100Hz, 83Hz, 56Hz, 42Hz, 33Hz, 28Hz, 74Hz. 21Hz, 19Hz, 17Hz, 15Hz, 14Hz, elc.
were prepared.

A subject pushed a plate object with designated fingers and answers if helshe feels
displayed force as continuous force or vibration, until a threshold of haptic rate to feel

ibration is found. For standardizing a manipulation, a subject was told to exert forces
from 0.5N up to 1.0N by pushing manipulation. Pushed area was colored blug when the
exerted force was around 0.5N and colored red around 10N, as shown in Figure 2(left).
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Figure 2. (left) A subject pushes elastic object with one and two fingers
{right} Balance of increase and decrease of haptic update rate with multiple fingers

Average thresholds of haptic update rate in the case of one to five fingers were 2335
8.8, 3.0, 1.3 and 1.2 Hz, respectively. Statistical differences by t-test (p<0.05) were
found in average thresholds between one and two fingers, and also between two and
three fingers. The result supported the above lypothesis.

4. Discussions and Conclusion

In this experiment, only haptic rate for pushing manipulation was investigated. More
update rate would be required in stroking manipulation, because rapid change of force
direction stimulate another receptors. However, this experiment clarified the fact that
there is difference of threshold of haptic rate between the number of manipulation
fingers,

This paper examined required haptic rate for multi-finger haptic interaction. The
result of this study allows assigning excess computational resource to other functions in
surgical simulation. Figure 2(right) shows relationships between achieved update rate
on PC and required rate with the number of contact fingers. The graph shows that the
increase and decrease of the rates with the number of fingers balance.
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