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RUNX1/EVI1, which blocks myeloid differentiation,
inhibits CCAAT-enhancer binding protein a function
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The RUNX1/EVI1 chimeric transcription factor produced by t(3;21)
causes leukemic transformation in hematopoietic stem cell tumors,
possibly through a differentiation block of malignant myeloid pro-
genitors. A dominant negative effect over wild-type RUNX1 has been
shown to constitute one of the underlying molecular mechanisms.
We introduced RUNX1/EVI1 cDNA into LG-3 cells that differentiate
along the myeloid lineage upon exposure to granulocyte colony
stimulating factor, and confirmed that RUNX1/EVI1 suppressed the
differentiation. To further investigate the molecular mechanisms of
RUNX1/EVIi-mediated differentiation block, we analyzed RUNX1/
EVI1's effect on the functions of CCAAT-enhancer binding proteina
(C/EBPa), a key transcriptional regulator that induces granulocytic
differentiation. RUNX1/EVH was found to associate with C/EBPo. By
using a reporter assay with the CEBPA promoter, we observed a
dominant negative effect of RUNX1/EVI1 over C/EBPo-mediated
transcriptional activation via the carboxyl terminal-binding protein
(CtBP)-binding site in the EVI1 portion. In a gel-shift assay, RUNX1/
EVI1 downregulated the DNA-binding activity of C/EBPo. Therefore,
recruitment of histone deacetylase via CtBP and disruption of DNA
binding could be likely scenarios for the RUNX1/EVi1-induced
dominant repression on C/EBPa. Importantly, coexpression of C/EBPa
restored the differentiation ability of the RUNX1/EVI1-expressing LG-
3 cells. All of these data argue that inhibition of C/EBPo function
may be causatively related to the leukemogenic potential of RUNX1/
EVI. (Cancer Sci 2007; 98: 1752-1757)

The 1(3;21)(q26;q22) translocation is a cytogenetic hallmark
of chronic myelogenous leukemia in blastic crisis, myelo-
dysplastic syndrome in leukemic transformation and de novo
acute myelogenous leukemia (AML).* This translocation-
associated leukemia is of either myeloid or megakaryocytic
origin. In the joining region of t(3;21), the RUNXI gene on
21q22 is fused with the EVII gene on 3q26.® The resultant
RUNXI1/EVII fusion gene is translated in-frame to an aberrant
transcription factor in which the N-terminus of RUNXI,
including its DNA-binding domain Runt, is connected to almost
the entire sequence of EVI1. This chimeric transcription factor
could be behind the leukemogenesis caused by t(3;21).
RUNX1 is a member of the Runt family of transcription factors
that regulates a number of hematopoietic cell-specific genes.
Depending on the Runt domain, RUNX1 binds to a specific
DNA consensus sequence named PEBP2 (ACCRCA) and forms
a heterodimeric active transcription factor complex with the
non-DNA binding B subunit (CBF3-PEBP2f). RUNX1 plays
an essential role in establishing definitive hematopoiesis in the
fetal liver,®” and maturating megakaryocytes in the adult bone
marrow.® However, EVI1 is a zinc-finger protein that displays
versatile functions such as inhibition of transforming growth factor
(TGF)-P signaling,® repression of c-Jun N-terminal kinase (JNK)
activity'® and stimulation of activating protein (AP)-1 activity."
The molecular characterization of RUNX1/EVI1 points to two
major functions: one is a dominant suppressive function over
wild-type RUNX1 and the other is EVI1’s own function. Recent
gene-engineered studies have provided us with significant infor-
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mation on the in vivo functions of RUNX1/EVIl. RUNXI/EVII
knock-in heterozygous mice show defective hematopoiesis in the
fetal liver similar to Runx] knockout mice, but possess dysplastic
hematopoietic progenitors with high self-renewal capacity.!?
Notably, RUNX1/EVII knock-in chimeric mice have been reported
to develop acute megakaryoblastic leukemia."®

CCAAT/enhancer binding protein oo (C/EBPay) is a leucine
zipper transcription factor that regulates the expression of
specific target genes containing C/EBP sites in their promoters,
and thus plays distinct roles in the differentiation process of various
cell types.*19 In the hematopoietic system, such genes include
CEBPA itself *® CEBPEYS' and granulocyte colony-stimulating
factor (G-CSF) receptor.(6131¥ Conditional expression of C/EBPo
is sufficient to trigger terminal granulocytic differentiation®*?¥
and block the monocytic differentiation program.®?? Further,
Cebpa knockout mice show profound defects in their granulo-
cytic differentiation, whereas all other hematopoietic cells are
present in normal numbers,® indicating its critical role in granulo-
poiesis. Several lines of evidence suggest that disturbance of C/
EBPu signaling is one of the major molecular events in myeloid
malignancies. Ten percent of patients with AML that belong to
M1 or M2 (according to the French~American-British [FAB]
classification) and do not have a frequent cytogenetic abnormality,
such as #(8;21)(q22;q22), carry heterozygous CEBPA gene mutations
resulting in production of the truncated protein with a dominant
negative function.’?** RUNXI/ETO, generated by the t(8;21)
translocation in AML (FAB-M2), represses the transcription of
CEBPA mRNA by suppressing C/EBPo’s autoregulatory loop,®
whereas PML/RARO, caused by t(15;17)(q21;q22) in acute
promyelocytic leukemia (FAB-M3), inhibits the function of C/
EBP0.@® Because RUNX1/EVI1 and RUNX1/ETO show high
structural similarity, it could be possible that RUNX1/EVI1
mediates its differentiation block effect on myeloid progenitors
through inhibiting transcription of the CEBPA gene.

In the present study, we investigated whether RUNX1/EVI1
affects the expression and function of C/EBPc.. We first con-
firmed that RUNX1/EVI1 blocked granulocytic differentiation
in LG-3 cells upon granulocyte colony-stimulating factor (G-CSF)
exposure. Physical interaction between RUNX1/EVI1 and C/EBPa,
was detected in the immunoprecipitation assay. RUNX1/EVI1
significantly inhibited transcriptional activation of the CEBPA
promoter induced by C/EBPa itself, depending on one of the
two CtBP-binding sites in EVI1. Further, RUNX1/EVI1 repressed
the DNA-binding activity of C/EBPa. These data indicate that
RUNX1/EVI! inhibits molecular functions of C/EBPa, possibly
through recruiting the co-repressor CtBP/histone deacetylase
complex to the C/EBPo-targeting promoter and suppressing DNA
binding of C/EBPo.. Importantly, the observation that coexpression
of C/EBPa. restored the RUNX1/EVIl-induced differentiation
block in LG-3 cells suggests the influence of RUNX1/EVI1 on
C/EBPa’s biological function.
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Materials and Methods

Plasmid construction. The pcDNA3-C/EBPa and ptk81-luc-C/
EBPo promoters were described previously.!® The FLAG-tag
(DYKDDDDK) was created upstream of the translation initiation
site of wild-type C/EBPc cDNA by the method of polymerase
chain reaction (PCR) amplification. The resultant cDNA was
inserted into the EcoRlI site of pME18S in the sense orientation
to give pME18S-FLAG-C/EBPo. pME18S-RUNXI1/EVI1 was
described previously.?” pME18S-FLAG-RUNXI1/EVII was also
created in the same way. FLAG-RUNXI/EVI1 and FLAG-C/
EBPa cDNA were cloned into the EcoRI sites of the pCXN2 and
pCAGTIPuro expression vectors, respectively. For construction of
RUNXI/EVI1 deletion mutants, new restriction enzyme sites,
Nhel (140), Nhel (536), EcoRV (1821), Pvull (3511), Nhel (3664)
and Nhel (3844) (numbers in parentheses indicate nucleotide
numbers from the start site of translation to the cutting site of the
enzyme), were created in the pME18S-RUNXI1/EVI1 expression
vector by site-directed mutagenesis. Deletion mutants ARunt,
AZF1, AZF2 and AAD were constructed by deleting internal
fragments from mutagenic Nhel (140) to mutagenic Nhel (536),
EcoRV (1102) to mutagenic EcoRV (1821), Eco473 (3227) to
mutagenic Pvull (3511) and mutagenic Nhel (3664) to mutagenic
Nhel (3844), respectively. For construction of the mCtBP mutant,
adenine (2816), cytosine (2818) and thymine (2819) were
substituted with cytosine, thymine and cytosine, respectively, by
site-directed mutagenesis. pME18S-FLAG-ARunt and pME18S-
FLAG-mCtBP were constructed as described above.

Cell culture. LG-3 cells® were cultured in RPMI-1640 medium
supplemented with 10% fetal calf serum (FCS), 10 ng/mL mouse
interleukin (IL)-3 and 50 uM 2-mercaptoethanol. COS-7 and
CV-1 cells were cultured in Dulbecco’s modified Eagle’s medium
supplemented with 10% FCS.

Establishment of stable transfectants and granulocytic different-
iation assay. To establish stable transfectants of FLAG-RUNX1/
EVI1, 1x107 LG-3 cells were electroporated with 20 pg of
pCXN2-FLAG-RUNXI1/EVI1 plasmid at 380V and 975 uF
using a Gene Pulser (Bio-Rad Laboratories, Hercules, CA, USA).
Electroporated cells were selected with 0.8 pg/ml G418 (Sigma-
Aldrich, St Louis, MO, USA) and cloned by limiting dilution.
Surviving clones were screened for expression of RUNX1/EVI1 by
western blot analysis using anti-FLAG M2 antibody (Sigma-
Aldrich). To further obtain double transfectants of RUNX1/EVI1
and C/EBPq, 1 x 107 LG-3 cells stably expressing FLAG-RUNX1/
EVI1 were electroporated with 20 pg of pCAGIPuro-FLAG-C/
EBPa plasmid at 380 V and 975 YF using a Gene Pulser. Electro-
porated cells were selected with 0.75 pg/ml. puromycin (Sigma-
Aldrich) and cloned by limiting dilution. Surviving clones were
screened for concomitant expression of RUNX1/EVI1 and
C/EBPa. by western blot analysis using anti-FLAG M2 antibody.

For the induction of granulocytic differentiation, LG-3 cells
were washed once with phosphate-buffered saline and placed
in RPMI-1640 medium supplemented with 10% FCS, 50 uM
2-mercaptoethanol and 2 ng/mL G-CSF instead of IL-3. After
7 days, morphological studies were carried out on cytospin
preparations with Wright—Giemsa and myeloperoxidase stainings.

Western blotting and immunoprecipitation. COS-7 cells were
transfected with full-length RUNX1/EVI1 or its mutant expres-
sion plasmids alone or in combination with the FLAG-tagged
C/EBPa expression plasmid using the DEAE-dextran method
as described previously.® Western blot analyses were carried out
as described previously® using anti-RUNX1 antiserum (Cell
Signaling Technology, Beverly, MA, USA) and anti-FLAG M2
antibody. Immunoprecipitation was carried out using anti-FLAG
M2 antibody conjugated with protein G-Sepharose (Amersham
Pharmacia Biotech, Piscataway, NJ, USA), and immunoprecipitates
were analyzed by sodium dodecylsulfate—polyacrylamide gel
electrophoresis.
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Luciferase assay. CV-1 cells were transfected with 200 ng of
ptk81-luc-C/EBPa reporter plasmid alone or along with 100 ng
of expression plasmids using Lipofectamine2000 (Invitrogen,
Rockville, MD, USA). Luciferase assays were carried out using
a Dual-luciferase Reporter Assay System (Promega, Madison,
WI, USA). The phRL/CMV plasmid (10 ng; Promega) was
cotransfected as an internal control of transfection efficacy and
the data were normalized to Rennilla luciferase activity. All
transfections were carried out at least three times and similar
results were obtained.

Electrophoretic mobility shift assay. Preparation of FLAG-C/
EBPa or FLAG-RUNXI1/EVI1-expressing COS-7 lysates and
binding reactions were carried out as described previously.('®
The G-CSF receptor promoter oligonucleotide had a sequence of
5-GGAAGGTGTTGCAATCCCCAGC-3', in which the C/EBP
binding site is underlined. In competition studies, a 300-fold molar
excess of unlabeled specific or non-specific oligonucleotide was
added with the probe. The non-specific oligonucleotide had a
sequence of 5-GGAAGGTGTTGGATACCCCAGC-3’, in which
the C/EBP binding site was substituted with the GATA binding
site. For supershift experiments, 5 pL of anti-C/EBPa. polyclonal
antibody 14AA (Santa Cruz Biotechnology, Santa Cruz, CA)
was added. Reactions were electrophoresed at 165V on 10%
Tris-borate-EDTA (TBE) gels in 0.25 x TBE at 25°C.

Results

RUNX1/EVI1 suppresses granulocytic differentiation in LG-3 cells
upon G-CSF treatment. RUNX1/EVI1 has been reported to inhibit
granulocytic differentiation in 32D cells upon G-CSF
stimulation.”” We confirmed the same effect of RUNX1/EVII using
another murine I-3-dependent myeloid progenitor cell line,
LG-3, which differentiates into mature granulocyte in response
to G-CSE. By transfecting the FLAG-tagged RUNXI/EVI1
expression plasmid (pCXN2-FLAG-RUNXI/EVI1) into LG-3
cells, we established several stable cell lines overexpressing
RUNXI/EVI1. Western blot analysis with anti-FLAG antibody
verified that clones R/E11 and R/E14 expressed high levels of
the 210-kDa RUNX1/EVII protein (Fig. 1a). Two clones trans-
fected with the empty plasmid were used as mock-transfected
controls (M5 and M20). R/E11 and R/E14 showed more rapid
proliferation than M5 and M20 in the presence of IL-3, although
only to a slight degree (data not shown). However, the RUNX1/
EVIl-overexpressing cells did not become growth factor
independent as IL-3 was required for their continued growth. To
test the effect of overexpressed RUNX1/EVI1 on granulocytic
differentiation, LG-3 cells were induced into terminal granulocytic
differentiation by treatment with G-CSF. As expected, Wright—
Giemsa staining of the mock cells before and after 7 days of
treatment with G-CSF demonstrated dramatic morphological
changes with myeloid blasts seen at day 0 and polymorpho-
nuclear cells appearing at day 7 (data not shown). In contrast,
the RUNX1/EVI1-overexpressing cells hardly differentiated
into mature granulocytes even after 7 days of the treatment.
Differential counts of these cells at day 7 of culture are shown
in Fig. 1b. The RUNX1/EVIl-expressing clones reproducibly
displayed lower percentages of mature granulocyte (percentages
of the stab and segmented forms; 37% in M5 and 50% in M20
versus 10% in R/E11 and 12% in R/E14) and higher percent-
ages of blast (6% in M5 and 10% in M20 versus 43% in R/E11
and 48% in R/E14) than the controls. Myeloperoxidase positivity,
which indicates mature granulocytes, was also significantly
lower in the RUNX1/EVIl-expressing cells compared to the
mock cells. These data demonstrate that RUNX1/EVI1-positive
LG-3 cells arrest at the myeloblast stage even after induction
with G-CSF.

RUNX1/EVI1 associates with C/EBPa, in vivo. To clarify the mole-
cular effect of RUNX1/EVI1 on C/EBPa, we first tested whether
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Fig. 1. RUNX1/EVI1 represses granulocyte colony-stimulating factor (G-
CSF)-induced granulocytic differentiation in LG-3 cells. (a) Western biot
analysis using anti-FLAG M2 antibody for RUNX/EVI1 proteins from
whole cell lysates of RUNX1/EVi1-expressing LG-3 clones, R/E11 and R/
E14, as well as mock clones, M5 and M20. (b) Granulocytic differential
counts of the mock and RUNX1/EVIi-expressing clones after 7 days
of treatment with 2 ng/mL of G-CSF are shown. Percentages of
myeloperoxidase-positive cells in each clone are shown below the
graph. This experiment was carried out four times independently and
similar results were obtained. Representative data are shown.

RUNX1/EVI1 and C/EBPa physically interact in vivo. Mock or
FLAG-tagged C/EBPo. expression plasmid (pME18S-FLAG-C/
EBPo) was cotransfected with RUNX1/EVI1 expression plasmid
(pPME18S-RUNX1/EVI1) in COS-7 cells, and immunoprecipit-
ation was carried out using an antibody against FLAG. Expression
of RUNX1/EVI1 (Fig. 2, upper panel) and C/EBPo. (middle panel)
was confirmed by western blot analysis with anti-RUNX1 and
anti-FLAG antibodies, respectively. RUNX1/EVI1 was immuno-
precipitated with anti-FLAG antibody only when FLAG-tagged
C/EBPa was co-expressed (lower panel). This indicates that
RUNXI1/EVI1 binds to C/EBPq. in vivo. To determine the C/

RUNX1/EVIi1 ARunt

EBPa-binding region in RUNX1/EVI1, we then transfected a
set of RUNX1/EVI1 plasmids expressing its deletion mutants
ARunt, AZF1, AZF2 and AAD. ARunt is a mutant lacking the
Runt domain of RUNX]1, whereas AZF1, AZF2 and AAD are
mutants lacking the first and second zinc finger, and the acidic
domains of EVI1, respectively. The plasmid designated pME18S-
mCtBP, which produces the RUNX1/EVI1 point mutant harboring
normal N-terminal (PFDLT) but substituted C-terminal (PLDLS
to PLASS) CtBP-binding motifs in the EVI1 portion, was also
included in this study. This amino acid mutation has been
reported to eliminate EVI1’s binding to CtBP®® All of these
mutants were shown to be expressed at a comparable level by
western blot analysis (Fig. 2, upper panel). Surprisingly, all of
these mutants were again immunoprecipitated with anti-FLAG
antibody in the presence of FLAG-tagged C/EBPa (lower
panel). These data suggest that RUNX1/EVI1 associates with
C/EBPo. via regions other than the DNA-binding domain in
RUNXI1 and the functional domains in EVI1, and that destruction
of the critical CtBP-binding motif does not modify C/EBPa-
binding activity of RUNX1/EVI1.

RUNX1/EVI1 inhibits C/EBPa-mediated transcriptional activity.
Because a physical association between RUNX1/EVII and C/
EBPo was demonstrated, we sought the effect of RUNX1/EVI1
on C/EBPa-dependent transcription. C/EBPa has been shown
to stimulate transcription of the reporter gene containing the
human CEBPA promoter and so far is the only factor known to
activate the promoter in synergy with the ubiquitous upstream
stimulatory factor. We thus investigated whether RUNX1/EVI1
alters C/EBPa-mediated transcriptional activity by transient
transfection assay with a luciferase construct driven by a 562-bp
fragment of the human CEBPA promoter, ptk81-luc-CEBPA.®
To confirm that C/EBPo. autoregulates its own promoter, we
transfected the CEBPA reporter along with mock or C/EBPa
expression plasmid into African green monkey kidney cell line
CV-1, in which C/EBPa is shown to activate its own promoter,®
and evaluated luciferase activities. Consistent with a previous
report, cotransfection of the C/EBPa. expression plasmid resulted
in a 1.5-fold increase in luciferase activity compared with that
obtained with the mock plasmid (Fig. 3). RUNX1/EVI1 alone
had no effect on the CEBPA promoter. Importantly, coexpression of
RUNX1/EVI1 almost completely abolished the C/EBPo-dependent
activation of the promoter. These data suggest that RUNX1/
EVI1 interferes with the autoregulatory loop of C/EBPa.

To identify the critical portion of the RUNX1/EVI1 protein
that contributes to the repression of C/EBPo. transcriptional
activity, we analyzed the functions of the RUNX1/EVI1 mutants

C/EBPu!— +I-— +i+l_,+l_

205 kD= .

Western : cRUNX1

45 kD
Western : aC/EBPa

205 kD

IP : oFLAG
Western : aRUNX1
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Fig.2. RUNX1/EVI1 binds to CCAAT/enhancer
binding protein o (EBPa) in vivo. COS-7 cells
were transfected with 5ug pME18S-RUNX1/
EVI1, pME18S-ARunt, pME185-AZF1, PME185-AZF2,
pME185-mCtBP or pME18S-AAD with or without
5ug PpMEI8S-FLAG-UEBPa and cultured in
Dulbecco’s modified Eagle’s medium contain-
ing 10% fetal calf serum for 48h before
harvesting. Western blot analyses were carried
out with anti-RUNX1 antiserum to detect
RUNX1/EVIT or its mutant proteins (upper
panel) or with anti-FLAG M2 antibody to detect
C/EBPa (middle panel) expressed in COS-7 cells.
RUNX1/EVI1 or its mutant proteins immuno-
precipitated with anti-FLAG M2 antibody were
detected using anti-RUNX1 antiserum (lower
panel). Arrows indicate immunoprecipitated
RUNX1/EVI1 and its mutant proteins. )
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Fig. 3. RUNX1/EVI1 represses CCAAT/enhancer Cv-1

binding protein o (C’EBPa)-mediated transcriptional §

activity. CV-1 cells were transfected with 200 ng =20
ptk81-luc-CVEBPo.  reporter plasmid alone or ] 16
along with 50 ng indicated expression plasmid -3
(CUEBPa, pME185-C/EBPa;; RUNX1/EVIH, pME18S- g 12
RUNX1/EVI1; ARunt, pME18S-ARunt; mCtBP, "—é 08
PME185-mCtBP) and cultured in Dulbecco’s -
modified Eagle’s medium containing 10% fetal = 04
calff serum for 48 h before harvesting. Bars show é 0

relative luciferase activities to the level when a
control plasmid pME18S was cotransfected and
present average results of duplicate experiments.

Supershift >
band

Shift band —§»-

+S.C. +N.C. +Ab
> 25 50 99
99 —m—P 74 49 1)

C/EBPa{ug) 0 0.1
RUNX1/EVI1 (ug) O
Mock (rg) 10

Fig. 4. RUNX1/EVI1 reduces the DNA-binding affinity of CCAAT/
enhancer binding protein o (UEBPq). Electrophoretic mobility shift
assay was carried out using a [*P]-labeled probe and lysates from COS-
7 cells transfected with pME18S, pME18S-FLAG-CUEBPo. or pME185-
FLAG-RUNX1/EVI1. A 300-fold molar excess of cold specific competitor
(SC) or non-specific competitor (NC) was added to the reaction. Anti-C¢/
EBPa antiserum (14 AA) was also added to the reaction.

ARunt and mCtBP. The ARunt mutant suppressed the basal
CEBPA promoter activity, and still suppressed it when C/EBPo
was co-expressed. Notably, the mCtBP mutant lost the ability to
repress C/EBPo-mediated transcription, whereas it did not affect
the promoter activity in the absence of C/EBPa. Therefore, we
speculate that CtBP binding followed by histone deacetylase
recruitment is required for RUNX1/EVI1 to suppress the mole-
cular function of C/EBPa.

RUNX1/EVI1 decreases the DNA-binding affinity of C/EBPo. Because
'RUNXI1/EVI1 associated with C/EBPo and disturbed its trans-
criptional activity, we analyzed whether RUNX1/EVI1 influenced
the DNA binding of C/EBPa. For this purpose, cell lysates
prepared from COS-7 cells expressing C/EBPo were at first
subjected to electrophoretic mobility shift assay (EMSA) using
a radioactive C/EBP-site oligonucleotide derived from the G-CSF
receptor promoter (—57 to —38 bp).16!? The expression of C/EBPu
was demonstrated by western blot analysis with anti-FLAG
antibody (data not shown). In EMSA, C/EBPa. generated a
specific DNA-protein complex that was not seen in the mock
lysate and was supershifted with anti-C/EBPa antibody (Fig. 4).
This band represented the specific binding of C/EBPu to the probe
as the binding was reduced by the addition of the unlabeled
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Fig.5. Co-expression of CCAAT/enhancer binding protein o ((/EBPo)
restores granulocytic differentiation in LG-3 cells expressing RUNX1/
EVI1. (a) Expression of RUNXVEVI1 and (VEBPu proteins in the mock
(M15), RUNX1/EVI1-expressing (R/E11) or both RUNX1/EVI1- and ¢/
EBPo-expressing (R/E11-C7 and R/E11-C8) clones. (b) Granulocytic
differential counts of these LG-3 clones after 7 days of treatment with
2 ng/mL granulocyte colony-stimulating factor (G-CSF) are shown. This
experiment was carried out four times independently and similar
results were obtained. Representative data are shown.

wild-type C/EBP site oligonucleotide but not the oligonucleotide
mutated in the C/EBP site. We then carried out the EMSA assay
in the same manner with the lysates expressing RUNX1/EVI1
added. The presence of RUNX1/EVI! decreased the intensity of
the specific band derived from the DNA-C/EBPa complex in a
dose-dependent manner. Thus, we conclude that RUNX1/EVI1
interferes with DNA binding of C/EBPa.

Coexpression of C/EBPa restores the granulocytic differentiation
suppressed by RUNX1/EVI1 in LG-3 cells. Because it is conceivable
that RUNX1/EVI1 blocks granulocytic differentiation at least
partly by repressing the functions of endogenous C/EBPa in
LG-3 cells, we studied whether coexpression of C/EBPo. was
sufficient to induce granulocytic differentiation in RUNX1/
EVIl-expressing cells. To this end, we transfected the C/EBPo
expression plasmid pCAGIPuro-C/EBPo into R/E11 and success-
fully obtained several clones stably expressing both RUNX1/EVI1
and C/EBPo. The expression of RUNX1/EVI1 and C/EBPo in
the representative clones R/E11-C7 and R/E11-C8 is shown in-
Fig. 5a. M15, R/E11 and the two R/Ell-derived clones were
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treated with G-CSF and the degree of granulocytic differentiation
was compared among them (Fig. 5b). Notably, R/E11-C7 and R/
E11-C8 morphologically restored granulocytic differentiation
suppressed by RUNX1/EVI1. The percentages of mature granulo-
cytes were 44% in R/E11-C7 and 31% in R/E11-C8 versus 24%
in R/E11. We speculated that restoration of C/EBPx function
partly overcomes the block in differentiation mediated by
RUNXI/EVI1 and progresses the granulocytic differentiation.

Discussion

We demonstrated in this study that RUNX1/EVI1 disturbs
the C/EBPo-mediated transcriptional activity of the CEBPA
promoter containing the C/EBP site. Because we could not
identify the PEBP2 site in the promoter used in the assay and
expression of RUNX1/EVI1 alone had no effect on it, RUNX1/
EVI1 is thought to inhibit autoregulation of C/EBPa. We
observed the association between RUNXI1/EVI1 and C/EBPu
in vivo. However, analysis with a set of RUNX1/EVI1 mutants
failed to identify the C/EBPa-binding region, because none of
the mutants tested lost their ability to bind to C/EBPo. This
indicates that regions outside of the functional domains deleted
in this study, the Runt domain in RUNX1 and the zinc finger
and acidic domains in EVI1, are required for interaction with C/
EBPa, or that RUNXI1/EVI1 associates with C/EBPa through
multiple binding sites including the functional domains. It is
interesting to remember that RUNX1/ETO generated by t(8;21)
in AML (FAB-M2) also associates with C/EBPa and inhibits its
transcriptional activity.'® The association between RUNX1/ETO
and C/EBPo. occurs at the DNA-binding domains of both
proteins, namely the Runt domain in RUNX1/ETO and the basic-
region leucine zipper domain in C/EBPa. Despite the structural
similarity between RUNX1/EVI1 and RUNXI/ETO, deletion
of the Runt domain did not abolish the C/EBPo. binding of
RUNXI1/EVI1, suggesting that the domain is the sole binding
domain in RUNX1/EVI1.

Based on the observation of a physical association between
these molecules, we propose two possible underpinning mecha-
nisms in the suppressive effect of RUNX1/EVI1 on C/EBPa
function. One is recruitment of histone deacetylase via CiBP
bound to the EVI1 portion and the other is interference of C/
EBPo’s DNA-binding activity. Considering that introduction of
the point mutation in the C-terminal CtBP-binding motif in the
EVI1 portion of RUNX1/EVI1 significantly repressed RUNX1/
EVI1’s negative effect on C/EBPo-induced transcription, binding
with the co-repressor CtBP and subsequent recruitment of histone
deacetylase could play a critical role in the suppression of C/
EBPa function. There are two putative CtBP-binding motifs,
PFDLT (amino acid 553-557) and PLDLS (584-588) located
between the two zinc finger domains of EVIL. Of the two motifs,
the C-terminal PLDLS motif has been shown to be responsible
for the interaction between EVI1 and C{BP.?® Collectively with the
previous report, the indirect association with histone deacetylase
via the C-terminal CtBP-binding motif could be required for
RUNXI1/EVI1 to disturb the molecular function of C/EBPa.
Notably, the ARunt mutant that retained both the C/EBPa- and
CtBP-binding abilities appeared to be able to repress C/EBPx
function. However, RUNX1/EVI1 inhibits the DNA-binding
activity of C/EBP« in a dose-dependent manner. Thus, dissoci-
ation of C/EBPo from DNA also contributes to the suppressive
function of RUNX1/EVI1 on C/EBPo. However, if C/EBPa
leaves the DNA, recruitment of histone deacetylase by RUNX1/
EVI1 should not be effective to suppress C/EBPo function.
Therefore, the former mechanism is not compatible with the latter.

Our data postulate the possibility that RUNX1/EVI1 could
reduce the transcription of C/EBPa’s target genes in vivo. By
using real-time reverse transcription—-PCR assay, we compared
the mRNA levels of its target genes including Cebpa, Cebpe and
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G-CSF receptor between the mock and RUNX1/EVI1-expressing
LG-3 cells. The levels of Cebpa and Cebpe mRNA were unchanged
and that of G-CSF receptor mRNA was rather increased in
the presence of RUNX1/EVI1. Because the amount of Cebpa
mRNA was extremely small in parental and mock-transfected
LG-3 cells, it may have been difficult to detect a decrease in
expression, if present. Notably, higher expression of G-CSF
receptor mMRNA was also observed in the LG-3 cells ectopically
expressing RUNX1/ETO.®Y We used western blot analysis to
evaluate the levels of the C/EBPe and G-CSF receptor proteins,
but found no differences between the mock and RUNX1/EVII-
expressing cells. Helbling er al. have reported that RUNX1/
EVI1 reduces the level of C/EBPa protein but not its mRNA in
U937 cells, and that a putative inhibitor of CEBPA translation
(calreticulin) is upregulated by RUNX1/EVI1.C? Calreticulin is
a ubiquitous protein with calcium storage and chaperone func-
tions and is postulated to be involved in the development of
leukemia.®2®® In an experiment with small interfering RNA for
the calreticulin gene, they concluded that RUNX1/EVI1 inhibits
C/EBPa expression through a post-transcriptional mechanism
of calreticulin. However, the level of calreticulin protein was
unaltered in the RUNX1/EVI1-expressing LG-3 cells compared
to the mock cells (data not shown), suggesting that the post-
transcriptional mechanism of calreticulin may not be activated
by RUNX1/EVII in LG-3 cells. RUNX1/EVII could modify
C/EBPa. expression at either the transcriptional or translational
level in a context-dependent manner.

We demonstrated that exogenous expression of RUNX1/EVI1
in LG-3 cells resulted in the maturation block induced by G-CSF,
as reported in 32D cells.?” Co-expression of C/EBPx in the
RUNX1/EVI1-expressing cells clearly restored their ability to
differentiate along the myeloid lineage. These data support the
concept of RUNX1/EVI1 as an inhibitor of C/EBPo-mediated
transcription required for myeloid differentiation. However,
we could not identify which target genes of C/EBPx are trans-
criptionally repressed by RUNX1/EVI1 in LG-3 cells, because
the levels of the candidate mRNA tested were not decreased as
described above. Other critical target genes may be regulated by
C/EBPa. in LG-3 cells and downregulation of those genes could lead
to the differentiation block in the RUNX1/EVI1-expressing cells.

RUNXI/EVI1 causes various kinds of leukemia, including
de novo or therapy-related AML, myelodysplastic syndrome-
transformed leukemia and blastic crisis of chronic myelogenous
leukemia, through the following mechanisms:*¥ dominant negative
effect over wild-type RUNX1,%3 blockade of TGF-f-mediated
signal,®® inhibition of INK? and stimulation of AP-1 activity.®”
Our study points to another function for RUNXI1/EVII, that is,
suppression of C/EBPa, as the molecular mechanism leading to
the block in maturation seen in myeloid leukemia characterized
by the t(3;21) translocation. From these data, we argue that
transfer of exogenous C/EBPo protein into leukemia cells could
represent a specific therapeutic option for the treatment of this
type of leukemia by recovering their differentiation ability. Further,
considering that recruitment of histone deacetylase seems to be
critical for RUNX1/EVII1 to block the autoregulatory loop and
suppress the molecular function of C/EBP«, administration of
histone deacetylase inhibitor could be another potential modality
to restore the function of C/EBPo and thereby differentiate the
leukemic cells expressing RUNX1/EVI1.
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Myelodysplastic syndrome (MDS) is a group of myeloid
disorders characterized by varying degrees of cytopenia with
morphologic abnormalities in multiple blood cell lineages.
The disease exhibits a broad clinical spectrum, from
moderate anemia requiring occasional transfusion to pro-
gressive leukemia that needs immediate cytoreductive
chemotherapy. In accordance with this variability, the patho-
genesis of the disease is believed to be heterogeneous,
including genetic abnormalities, immune dysregulation, and
toxic environmental factors.

Of the genetic abnormalities, point mutations in key
signaling molecules have been detected in MDS patients,
implying that the dysregulation of signaling pathways plays a
crucial role in the disease [1]. The mutations that cause
constitutive activation of the receptor tyrosine kinase and
RAS/MAPK pathways are key to the pathophysiology of
this disease. These mutations generate constitutive prolifera-
tion signals in the cells, causing dysregulated expansion of
the affected clones and replacement of the normal hemato-
poietic tissues, leading to progression into leukemia.

Point mutations in the TP53 gene constitute one of the
key genetic alterations in MDS. Mutations in TP53 cause
defects in apoptosis and cell cycle arrest, which allow the sur-
vival and expansion of the clones harboring other oncogenic
alterations, thereby leading to the development of cancer or
leukemia. Resistance to apoptosis and defects in cell cycle
arrest have been documented in bone marrow cells from
MDS patients. Thus, the mutation or deletion of TP53 is
thought to promote the development of MDS.

The activity of TP53 is controlled by various upstream
molecules. MDM?2 is a TP53-specific E3 ligase that binds to
TP53 and promotes its ubiquitination and subsequent
degradation. Recently, a KRAB-associated transcriptional
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corepressor, TRIM28 (also known as KAPI1), has been
reported to regulate TP53 via protein-protein interaction
with MDM2 [2]. More recently, our group showed that the
proapoptotic function of TP53 is enhanced by the overex-
pression of ETV6/TEL, an ETS family transcriptional
repressor involved in various forms of leukemia [3]. Further-
more, we have used mass spectrometry analysis in an inde-
pendent search for molecules that interact with ETV6 and
have reported TRIM28 to be a possible candidate [4]. Abnor-
malities in TP53 regulatory molecules have been implicated
in the pathogenesis of hematopoietic malignancies. Thus, in
the present study we searched for structural alterations in or
aberrant expression of MDM2, TRIM28, and ETV6 that
might influence the tumor suppressor activity of TP53 and
lead to the generation of MDS.

We collected bone marrow cells according to protocols
approved by the institutional review board at Dokkyo
Medical University after obtaining written informed con-
sent from the patients. RNA was extracted from cells and
analyzed in our laboratory in the same institution. We
conducted reverse transcriptase-polymerase chain reaction
(RT-PCR) direct sequence analysis with primers that cover
most of the regions encoding TP53, MDM2, TRIM28, and
ETV6 proteins. The results are summarized in Table 1. In
the 40 patient samples examined (refractory anemia [RA],
13 patients; RA with ringed sideroblasts, 1 patient; RA with
excess of blasts (RAEB), 18 patients; RAEB in transforma-
tion [RAEB-t], 6 patients; chronic myelomonocytic
leukemia, 2 patients), we identified 4 mutations in TP53
messenger RNA (mRNA) that cause amino acid substitu-
tions (Glyl154Asp, Ile162Ser, Arg280Gly, and Tyr236Cys).
The first 3 mutations have been reported in the literature,
and the fourth mutation, Tyr236Cys, was discovered in our
analysis. All 4 amino acid changes were located within the
DNA -binding region of the TP53 protein. The frequency of
mutations found in our analysis (4/40) is consistent with the
frequencies described in earlier reports [5] and with
updated statistics in a TP33 database (82/646;
http://www.iarc.fr/p53/). Besides these 4 mutations, we have
identified 2 missense single nucleotide polymorphisms
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Table 1.

Mutations and Single Nucleotide Polymorphisms (SNPs) for the
TP53, ETV6, and TRIM28 Genes

Nucleotide Amino Acid
Gene Position Change Frequency, n -
TP53 Missense mutation
T485G 11625 1/40 (2.5%)
A707G Y236C 1/40 (2.5%)
A838G R280G 1/40 (2.5%)
G461A G154D 1740 2.5%)
SNPs
G215C R72pP 20/40 (50.0%)
G818C R273H 6/40 (15.0%)
ETVE SNPs
G171A 2/40 (5.0%)
G258A 2/40 (5.0%)
G632A R211H 1/40 2.5%)
TRIM28 SNPs
G1170A 5/40 (12.5%)
C2148T 6/40 (15%)
C2175T 1/40 (2.5%)
C2262T 1/40 (2.5%)

(SNPs) at nucleotide positions 215 and 818 (the numbers
are relative to A of the ATG start codon).

In contrast to the frequent amino acid changes reported.

to occur in TP53, few structural mutations in MDM2 have
been reported in human hematologic malignancies.
Consistently, we sequenced the coding region of MDM2
mRNA and found neither mutations nor SNPs in our MDS
samples (data not shown). Next, we investigated the
nucleotide sequence for the coding region of ETV6 mRNA.
ETV6 is frequently involved in the generation of human
leukemia by forming fusion proteins with various partners;
however, nucleotide alterations in the ETV6 gene that cause
amino acid changes have never been reported. The results of
our ETV6 mRNA sequencing analysis identified minor
alterations in the nucleotide sequence (2 silent SNPs and 1
missense SNP), each of which was found in fewer than 5% of
the patients. No amino acid mutation was found, indicating
that minor structural changes in the ETV6 protein are
unlikely to have a role in the development of MDS. We also
surveyed mutations in TRIM28 and found only silent SNPs,
indicating that the secondary structure of this molecule is
highly conserved. In summary, we identified mutations in the
TP53 coding sequence at a frequency similar to the reported
frequencies but found no abnormal changes in the amino
acid sequences of MDM2, ETV6, and TRIM28.

The search for structural (amino acid) changes in
MDM2, ETV6, and TRIM28 molecules assumes that such
changes would converge on the down-regulation of the
tumor suppressor activity of TP53. However, TP53 is also
regulated by the expression levels of its regulatory mole-
cules. For instance, high levels of MDM2 expression have
been reported in some forms of hematologic malignancies
and are associated with a poor prognosis. In biochemical
analyses, overexpression of TRIM28 has been shown to
promote TP53 ubiquitination and degradation, leading to a
decrease in TP53-dependent transcription activity and cell
cycle arrest [2]. Similarly, overexpression of ETV6 has

been reported to enhance TPS53-mediated apoptosis via
transcription-dependent and -independent mechanisms
[3]. Thus, we investigated the expression levels of MDM?2,
TRIM28, and ETV6 in our patient samples by means of
quantitative RT-PCR analysis. RNAs were treated with
deoxyribonuclease before the reverse transcription reac-
tion, and the primers were designed to span introns so as to
avoid amplification from residual genomic fragments (see
Table 2 for primer sequences). The expression levels of
each gene were normalized to those of the fB,-microglobulin
gene and are presented as relative-expression values (Fig-
ure 1). There was no overexpression of the MDM2 gene.
Their expression levels in MDS samples were similar to or
slightly lower than those in the samples from the healthy
control individuals. This result is in line with a previous
study with a smaller number of MDS samples (n = 21) in
which no MDM2 mRNA overexpression was detected with
Northern blot analysis. Thus, unlike some forms of
leukemia, MDM2 overexpression does not seem to have a
role in MDS pathogenesis. Next, we investigated the
expression of the TRIM28 gene. Recent studies have
pointed to its role in regulating c-Myc and TP53, 2 major
genes related to oncogenesis, and it is of interest to see if
there is any dysregulated expression in patient samples. In
particular, overexpression of TRIM28 could lead to the
suppression of TP53 and generate oncogenicity in hemato-
poietic cells with wild-type TP53. However, we did not
identify such overexpression in our samples.

Finally, we investigated expression of the ETV6 gene. In a
biochemical analysis, overexpression of ETV6 was reported
to suppress colony transformation of the Ratl fibroblast;
thus, the tumor-suppressive nature of the molecule has been
proposed [6,7]. In clinical samples, the loss of the ETV6 allele
or loss of ETV6 expression has been implicated in leukemia
progression [8,9]. We observed extremely low levels of the
ETV6 transcript in some MDS samples, with levels 1.5 SDs
lower than the mean level in samples from healthy individu-
als (Figure 1, ETV6-C). We previously detected several iso-
forms of the ETV6 transcript in MDS samples [10]. Thus, the
use of a single primer pair might misleadingly show null
expression simply because of the lack of target exons. There-
fore, we generated another primer set in the N-terminal por-
tion and screened for patients who showed low expression
with both primer pairs (Figure 1, ETV6-C and ETV6-N). Six
samples exhibited extremely low ETV6 mRNA expression
with both primer sets.

Table 2.

Quantitative PCR primers
h-mdm2-735F 5’-ccttcatcttcacatttggttt-3
h-mdm2-856R 5’-tcagatttgtggcgttttct-3

h-Kap1-2310F
h-Kap1-2437R

5’-acctgaaggaggaggatgg-3’
5’-gggttcgtgacagaataggg-3”

h-TEL-C-1223F
h-TEL-C-1369R

5’-cacatcatggtctctgtctee-37
5’-ggattctttgtccteccate-3

h-TEL-N-557F
h-TEL-N-682R

5’-ctgctgctgaccaaagagg-3’
5’-agggtggaagaatggtgaaa-3’
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Figure 1. Relative expression of MDM2, TRIM28, and ETV6 messenger RNA. RNA was extracted from the bone marrow cells of 40 myelodys-
plastic syndrome patients (gray bars) and 9 healthy individuals (black bars). The difference in cycle threshold (CT) values between the gene of inter-
est (CTy,.) and the control B,-microglobulin gene (CTy,) was calculated (ACT), and the relative expression value for each sample was calculated as
2:4CT_For ETV6, expression levels below the dotted lines in the 2 analyses (ETV6-C and ETV6-N) indicate expression levels lower than 1.5 SDs below
the mean of samples from healthy individuals (arrows).

The clinical and cytogenetic features of the patients with
TP53 mutations or low ETV6 expression are summarized in
Table 3. In the patients with low ETV6 expression, we detected
no deletion involving 12p13 where TEL resides at the resolution
level of cytogenetic analysis. To convincingly argue for the loss of

the ETV6 allele, one has to conduct fluorescence in situ
hybridization analysis with probes specific for the ETV6 allele.
Even for the intact ETV6 locus, however, shutoff of ETV6
expression has been documented [8,9]. In such a case, some epi-
genetic modification in the locus could account for low/null

Table 3.
Clinical and Cytogenetic Features of the Patients with TP53 Mutation or Low ETV6 Expression™
Patient ID No. Sex Age, y FAB Karyotype
Patients with low ETV6 expression
1 M 66 RAEB 46,XY,1(1;11)(q21:q13)[11/46,idem,-2,add(3)(p13),
add(4)g31),add(5)(q13),+mar1(2]1/46,XY[13]
1 F 24 RA 46,XX[20]
12 M 62 RA 47 XY,+8[11/46,XY[19]
15 M 50 RA 47,XY,del(20)(q11q13.3),+mar1[9)/47,
idem,inv(19)(p13q13)[11]
38 M 80 RAEB-t 45 XY,+1,der(1;5)(q10;p10),-18(31/44,
idem,—11[21/45,idem,-11,+r1[51/46,XY[3]
39 M 58 RAEB 46,XY[12)/45 X,-Y[8]
Patients with TP53 point mutation
4 M 93 RA 44,XY,add(7)(p15),+8,-10,add(12)(p11),
add(14)(p11),del(15)(q?),-16,-17,~18,-20,+mar1 +mar2{19]
8 M 67 RAEB-t 45 XY,-3,add(5)(q31),del(7)(q?),—12,+r1[12]/38,
idem,—4,add(7)(q32),add(8}(q24),-10,~11,-15,~15,-17,-18,
—22,-r1,+mar(1]
22 M 74 RAEB-t 46,XY,-5,del(7)(q?),add(15)(p11),-17 ~18,-22,+mart,+mar3,
+mar4[91/47 idem,add(4)(q21),add(12)(p11),add(14)(q24),
—mar2,+mar5,+mar6[{21/46,XY[2]
29 M 76 CMMol 46,XY[20}

*FAB indicates French-American-British classification; RAEB, refractory anemia with excess of blasts; RA, refractory anemia; RAEB-t, RAEB in trans-
formation; CMMolL, chronic myelomonocytic leukemia.
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ETV6 expression. For TP53, 2 of the 4 patients with TP53 muta-
tions had the RAEB-t phenotype, an observation consistent with
the previous finding that mutations in 7P53 are typically found
in advanced stages of MDS [5]. In addition, we did not detect
expression of the wild-type TP53 allele in any of the 4 mutated
samples, a result consistent with the initial report on MDS and
other cancers showing loss of heterozygosity of the 7P53 gene.

Abnormalities in TP53 regulatory molecules could have a
significant impact on its tumor suppressor activity. Therefore,
we hypothesized that mutations in or aberrant expression of
these molecules might affect the development of MDS, at least
in a subgroup of patients with intact TP53. To our knowledge,
no study has surveyed mutations in TRIM28 or ETV6, or their
expression levels, in MDS patients. In this analysis, we found
extremely low ETV6 expression in MDS patients.

The role of ETV6 in tumor/leukemia suppression has been
documented in various aspects: (1) Loss of heterozygosity of
the short arm of chromosome 12 is frequently seen in a wide
range of hematologic malignancies and solid tumors [7]. (2)
Loss of the wild-type ETV6 allele is observed in childhood
leukemia with the ETV6-RUNX1 fusion gene [9]. (3) Null/low
ETV6 protein expression has been reported in acute myeloid
leukemia patients [11}. (4) Overexpression of ETV6 suppresses
the colony formation of Ratl cells [6]. By analogy, therefore,
loss of normal ETV6 function is postulated to predispose an
individual to MDS, at least in a portion of disease cases.

In searching for the proposed tumor suppressor property
of ETV6, we identified that ETV6 induces apoptosis in
myeloid cells through the activation of TP53. Thus, one of the
mechanisms by which loss of ETV6 expression causes MDS
could be down-regulation of the TP53 pathway. However,
this effect may not be as critical as the loss of TP33 itself, a
supposition that may explain the higher incidence of low-
grade MDS (3 RA patients) in our patient samples (Table 3).

In conclusion, our study demonstrated that low/null
expression of the ETV6 gene is occasionally detected in
patients with MDS, and even for individuals with intact
TP53 loci, low/null expression of ETV6 may disable the
tumor suppressor shield that uses the ETV6-TP53 channel.
Further studies are warranted to clarify the molecular mech-

anism responsible for MDS development, especially in cases
where no genetic aberration in the TP53 gene is detected.
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Abstract

Although immunosuppressive therapy using antithymocyte globulin or cyclosporine A (CSA) is effective in selected
patients with low-risk myelodysplastic syndrome, the response rates reported so far are inconsistent, and the indication of
immunosuppressive therapy for myelodysplastic syndrome has not been clearly defined. We treated 20 myelodysplastic syn-
- drome patients (17 refractory anemia cases [RA],2 RA with excess blasts, and one RA with ringed sideroblasts) with 4 mg/kg
per day of CSA for 24 weeks. Among the 19 patients evaluated, 10 showed hematologic improvement; 8 patients showed an
erythroid response, 6 showed a platelet response, and one showed a neutrophil response. Most patients with hematologic
improvement continued CSA thereafter, and the progressive response was observed until the latest follow-up (median, 30
months). Most toxicities associated with CSA usage were manageable, and no patient had developed acute leukemia up to this
point. Short duration of illness, refractory anemia with minimal dysplasia determined by bone marrow morphology, and the
presence of paroxysmal nocturnal hemoglobinuria-type cells were significantly associated with the platelet response. A minor-
ity of RA patients who did not possess such predictive variables achieved an isolated erythroid response. In conclusion, CSA
may be a therapeutic option for patients with RA who do not have adverse prognostic factors.
Int J Hematol. 2007;86:150-157. doi: 10.1532/1JH97.07052
© 2007 The Japanese Society of Hematology

Key words: Myelodysplastic syndromes; Cyclosporine A

1. Introduction (IPSS) is the most reliable tool for evaluating the risk of
leukemic transformation in individuals [2]. According to IPSS,
Myelodysplastic syndromes (MDS) are clonal stem cell dis- MDS are divided into 4 groups. Complications of bone mar-

orders characterized by peripheral cytopenia, morphological ~ row failure are more likely to influence survival than leukemic
dysplasia, and an elevated likelihood of progression to acute transformation in patients with low and intermediate-1 risk
leukemia [1]. The international prognostic scoring system categories [3-5]. Therefore, therapeutic approaches for low

and intermediate risk patients are mainly aimed at restoring

hematopoiesis.
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use of erythropoietin did not increase survival in a controlled
trial. According to recent reports, the use of lenalidomide
resulted in hematologic improvement (HI), which was
defined by International Working Group (IWG) criteria [8],
in 56% of enrolled patients, and the response rate was espe-
cially high in patients harboring a clonal interstitial deletion
involving chromosome 5q31.1 [9,10]. However, the response
rate of lenalidomide for MDS patients without chromosome
5q abnormality appears to be less than 50% [11].

Immunosuppressive therapy raises the blood cell count in
some MDS patients. Antithymocyte globulin (ATG) leads to
a sustained increase in red blood cell, platelet, and neutrophil
production in about one third of patients with low-risk MDS,
who are not at increased risk of leukemic transformation. A
series of phase II trials demonstrated that lasting transfusion
independence is obtained in about one third of patients who
also achieved a long survival without added risk of leukemic
progression [12-14]. Younger age, shorter duration of illness,
diagnosis of French-American-British (FAB) refractory ane-
mia (RA), expression of D-related human leukocyte antigen
15 (HLLA-DR15), and the presence of a minor clone with the
paroxysmal nocturnal hemoglobinuria (PNH) phenotype
have been postulated as pretreatment characteristics corre-
lated with ATG responsiveness [12-16]. Since ATG therapy
causes severe adverse events, such as serum sickness, patients
must be carefully selected for this modality. Cyclosporine A
(CSA) also improves cytopenias in selected MDS patients
{17-23]. Previously, we collected the results from individual
pilot studies investigating CSA treatment for MDS in Japan,
and reported that 30 of 50 patients responded to CSA [24].
These promising results prompted us to perform a prospec-
tive trial to evaluate the efficacy and safety of CSA for
patients with low-risk MDS.

2. Patients and Methods
2.1. Study Design

In May 2001, we initiated an open-labeled, prospective,
multicenter, phase II study to evaluate the efficacy and safety
of 24-week oral cyclosporine in patients with low and inter-
mediate-1 risk MDS according to IPSS. The primary endpoint
was the rate of HI according to the criteria of IWG. Secondary
endpoints were the duration of responses beyond 24 weeks
and the rate of adverse events. The study was conducted in
complete concordance with the declaration of Helsinki and
approved by the ethics committees of the participating insti-
tutions. Patients fulfilled all of the inclusion criteria: mor-
phologically proven MDS according to FAB classification;
IPSS score of less than 1.5; presence of cytopenia (either
hemoglobin value less than 10g/dL, platelet count less than
100,000/uL., or neutrophil count less than 1500/uL); age range
from 18 to 70 years; Zubrod performance status less than 2;
and written informed consent. The exclusion criteria were:
presence of clinically significant coexisting medical illness;
prior history of malignancy or cytotoxic therapy; prior usage
of CSA or ATG; and pregnant or lactating women. In all
patiexts registered, the diagnosis of MDS was re-examined by
centrai morphologicai evaluation in a blinded fashion by
independent reviewers (K.T. and Y.Y.) who were not involved

in the treatment of these patients. In addition, peripheral
blood samples were subjected to the following analysis: the
detection of PNH-type cells, the genetic typing of HLA-DR
molecules, and the analysis of abnormally expanded T-cell
clones. These tests were not compulsory, and written informed
consent was taken independently.

Registered patients initially received 2mg/kg of body
weight twice per day of CSA (Neoral), which was supplied
by Novartis Pharma K.K. (Tokyo, Japan). Thereafter, the
dose was adjusted to keep the blood trough value at 150
to 200 ng/mL. The response to treatment, adverse events, and
blood trough level of CSA were assessed every 2 weeks.
Adverse events were graded according to the National
Cancer Institute Common Toxicity Criteria (NCI-CTC)
version 2.0. In cases with more than grade II nonhematologic
toxicity or serum creatinine elevation of 1.5 or higher from
the baseline, the treatment of CSA was withheld until the
patients recovered. Except for treatment during infectious
episodes, the use of or corticosteroid was not permitted.
If progressive cytopenia or sign of leukemic transformation
developed during the course of CSA treatment, patients
were considered nonresponders and were allowed to choose
alternative therapy. The daily dose, targeted trough level of
CSA, and the appropriate treatment period to evaluate the
response were based on our previous retrospective survey.

Bone marrow aspiration was performed before starting
CSA and just after 24 weeks of therapy. Patients who met the
criteria of HI in any of the 3 hematologic lineages at the 24th
week received CSA for an additional 8 weeks to confirm the
stability of the response. Patients with a sustained response
until the 32nd week were regarded as hematologic responders,
The treatment of enrolled patients after the response judg-
ment was not identified. The status of the enrolled patients was
monitored every 6 months for 36 months.

2.2. Detection of Minor Populations of PNH-Type
Cells

Heparinized peripheral blood was drawn from patients,
and minor populations of PNH-type cells were detected by
high-resolution 2-color flow cytometry, as described previ-
ously [25,26]. Identification of the presence or absence of
PNH-type cells was performed by S.N., who did not know the
clinical response to CSA at the time of each experiment.

2.3. Analysis of Abnormally Expanded T-Cell Clones

RNA isolated from peripheral blood mononuclear cells
was converted to double-stranded complementary DNA, and
T-cell receptor (TCR) B chain variable region (V) reper-
toires were analyzed with an adaptor ligation polymerase
chain reaction (PCR)-based microplate hybridization assay
[27]. Then, complementarity-determining region 3 size spec-
tratyping was performed [28]. Using peripheral blood
mononuclear cells from 4 healthy donors, we confirmed that
a normal spectratype was distributed in a Gaussian fashion
with 6 to 10 different size classes at 3 nucleotide intervals, as
reported previously [29,30]. We defined the spectratype as
skewed if more than one oligoclonal or monoclonal patiern
was detected. :
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2.4. Statistical Analysis

Fisher’s exact probability test was used to define predic-
tive parameters for responses at the 24th week. All statistical
analyses were performed using Stat View software (version
5.0; SAS Institute, Cary, NC, USA).

3. Results
3.1. Patient Characteristics at Registration

From May 2001 to April 2004, 22 patients were registered
for this protocol. Two patients could not be evaluated because
careful follow-up revealed coexisting illness negatively
affecting hematopoiesis: smoldering multiple myeloma in
one patient and chronic alcoholism in the other. The diagno-
sis of MDS and the eligibility based on criteria were con-
firmed in the remaining 20 patients. Primary data for the
20 patients are presented in Table 1. The median age was
52 years old, and 11 patients were male. The median duration
of illness before CSA treatment was 5 months (range, 1-168
months). At the time of registration, 19 of 20 patients had
anemia (hemoglobin less than 10g/dL), and 10 patients were
transfusion-dependent. Thrombocytopenia with platelet
counts of less than 100,000/ul. was seen in 18 patients, and
one patient required regular platelet transfusion. Neutrope-
nia of less than 1500/uL was observed in 15 patients. Central
morphological review identified that 17 patients (85%) had
RA according to FAB classification (FAB-RA). Two other
patients had RA with excess of blasts (RAEB) and one
had RA with ring sideroblasts (RARS). According to a
World Health Organization (WHO) classification system,
17 patients with FAB-RA were categorized either with RA
(WHO-RA, eight patients) or refractory cytopenia with mul-
tilineage dysplasia (RCMD, 9 patients). Patients with RAEB
by FAB classification were diagnosed as RAEB-1 and
RARS as RCMD-RS by WHO classification. Bone marrow
cellularity was normo- or hyper-cellular in 18 patients. A total
of 17 patients had a diploid karyotype. Among 8 patients with
WHO-RA, 6 patients had persistent unexplained cytopenia
with mild morphological abnormalities. For these patients,
central reviewers carefully examined not only smear prepara-
tions, but also complete blood counts and biochemical data
at diagnosis as well as follow-up periods, as recommended
by Yoshida et al [31], and finally diagnosed as RA by WHO
classification. ,

3.2. Hematologic Response

One patient was excluded from HI evaluation; this patient
(No. 20) suffered from acute cholecystitis and pneumonia at
the 11th week of therapy, and, after full recovery from an
infectious episode, he refused further CSA treatment. Two
more patients did not complete the 24 weeks of CSA treat-
ment because of grade 4 cytopenia (No. 18), and progres-
sively elevated values of peripheral blood Wilm’s tumor gene
products (No. 19), which is reportedly predictive of evolution
into acute leukemia [32]. Both patients received allogeneic
bone marrow transplantation from HLA-matched sibling
donors. These 2 patients were regarded as nonresponders.

The therapeutic responses are shown in Table 2. Ten patients
(53%) showed HI at the 24th week of therapy, according
to IWG criteria, and all responses were continuously
observed for 8 successive weeks. Improvement in anemia
(HI-E) was observed in 8 of 18 anemic patients. Four of
10 patients became transfusion-independent within 32 weeks.
The improvement in thrombocytopenia (HI-P) and neutrope-
nia (HI-N) was observed in 6 of 17 thrombocytopenic (35%)
and in one out of 14 (7%) neutropenic patients, respectively.

3.3. Adverse Events within 6 Months of CSA
Treatment

Adverse events were assessed in the 20 patients available
for evaluation (Table 3). The most common adverse events
observed were impaired renal function tests, elevated liver
enzymes, and hypomagnesemia, the majority of which
were categorized as grade 1 toxicities. One patient required
temporal cessation of CSA because of elevated serum crea-
tinine values. Over grade 2 toxicities were documented in 4
patients. A patient with acute cholecystitis and pneumonia
was described. One patient (No. 17), who showed therapy-
unresponsive severe neutropenia (neutrophil count of less
than 200/pL), developed fatal pneumonia. Progressive ane-
mia and thrombocytopenia were documented in one patient,
respectively. No patient demonstrated increased blast counts
in the bone marrow examination performed at the 24th week
of therapy.

3.4. Variables Associated with Response

We determined the effect of pretreatment parameters on
the probability of response to CSA at the 24th week by uni-
variate analysis. Variables compared with response inciuded
age, sex, bone marrow cellularity, pretreatment blood cell
counts, transfusion dependence, FAB and WHO classifica-
tions, karyotypes, IPSS score values, and genetically typed
HLA-DR. As the distribution of patients with platelet and-
erythroid responses was not similar, patients were also indi-
vidually analyzed. As shown in Table 4, we couid not detect
any variables predictive of the overall as well as erythroid
response. In contrast, 3 variables were significantly associ-
ated with the platelet response: disease duration of less than
4 months, the presence of PNH-type cells, and the bone mar-
row morphology (judged as RA with minimal dysplasia).

3.5. Follow-up

Among the 20 patients, the follow-up of one patient was
lost. In addition, 2 patients who received allogeneic stem cell
transplantation were not included in the analysis of the long-
term outcome. As shown in Table 2, 16 patients are currently
alive without disease progression with a median follow-up of
30 months. In 9 responders, 8 patients maintain hematologic
responses with the continuous use of CSA. One patient
(No. 16) with an isolated erythroid response refused to con-
tinue CSA after 32 weeks and lost the response. Retreatment
with CSA was not successful. Another patient who stopped
CSA therapy (No. 5) also lost the platelet response, which
recovered with the resumption of CSA. She was categorized



