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cells line were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% heat-inactivated fetal bovine serum (FBS) and antibiotics.
The P19 murine teratocarcinoma cell line was cultured in a-modified Eagle’s
medium supplemented with 10% FBS and antibiotics. Twist-1-overexpressing
MC3T3-El (MC3T3-ELl-Twl) cells were obtained by puromycin selection of
MC3T3-El cells transfected with pCAGIP-Flag-Twist-1. Screening of Twist-1-
overexpressing clones was performed by western blotting of immunoprecipitates
using anti-Flag antibody.

siRNA method

Target short interfering RNA (siRNA) was determined using the siRNA design tool
(Invitrogen). The siTwist-604 sense sequence was 5'-AAGCUGAGCAAGAU-
UCAGACC-3'; siTwist-691 sense sequence was 5'-AAGAUGGCAAGCUGC-
AGCUAU-3'; siTwist-645 sense sequence was 5'-CAUCGACUUCCUGUACCA-
GGU-3'; and siTwist-481 sense sequence was 5'-CAGUCGUACGAGGAGCUG-
CAG-3'. As a control, the non-silencing siRNA sense sequence was 5'-AAG-
CGCGCUUUGUAGGAUUCG-3'. C3HIOT1/2 cells were seeded at 70%
confluence on the day before transfection. Transfections were performed using
Lipofectamine 2000 transfection reagent (Invitrogen). To examine the effects of
Twist-1-specific siRNA on reporter constructs, cells were transfected with 3GC2-
Lux and pRL-TK vector (Promega, Madison, W1) using FuGENES6 transfection
reagent (Roche, Basel, Switzerland) 24 hours after siRNA transfection. At-36 hours
after siRNA transfection, cells were treated with hBMP2 (300 ng/ml) for 12 hours.
Both firefly and Renilla luciferase activities were measured 2 days after siRNA
transfection using a dual luciferase assay system (Promega). Co-transfections of
siRNA and plasmid DNAs were performed using X-treamGENE siRNA
transfection reagent (Roche).

RNA extraction and northern blot analysis

Total RNA was isolated using Isogen (Nippon Gene, Tokyo, Japan) according to
the instructions of the manufacturer. Total RNA (15 pug) was denatured,
electrophoresed in 2% agarose gels containing 18% formaldehyde, then transferred
to Hybond-N+ membrane (Amersham Biosciences, Piscataway, NJ). Membranes
were hybridized at 65°C for 12 hours in a hybridization buffer, PerfectHyb (Toyobo,
Osaka Japan). Probes for Twist-i, osteocalcin, osteopontin and G3PDH were
labeled using the RadPrime DNA labeling system (Invitrogen). After hybridization,
membranes were washed four times with 2X standard sodium citrate (SSC) and
0.1% sodium dodecyl sulfate (SDS). Blots were exposed to X-ray films using
intensify screens at —80°C.

Alkaline phosphatase assay

Alkaline phosphatase (ALP) activity was assessed as previously described
(Wakabayashi et al., 2002). Briefly, cell lysates were centrifuged and supernatants
were used for enzyme assays. ALP activity was measured according to the methods
of Kind-King, using a test kit (Wako, Osaka, Japan) with phenylphosphate as a
substrate. Enzyme activity was expressed in King-Armstrong (K-A) units,
normalized to protein concentration. Results are presented as mean * standard
deviation (s.d.) from a representative experiment. Statistical analysis was performed
using analysis of variance (ANOVA).

Transfections and reporter assays

P19 cells were transiently transfected using 3GC2-Lux together with expression
constructs of Smadl, Smad4, Twist-1, E47, Idt and BMPR-IB(QD) using
FuGENES transfection reagent. P19 cells were chosen because the cells responded
to BMPs and expressed some of the BMP target genes. Additionally, transfection
efficiency was higher in P19 cells than in other cell lines. At 24 hours after
transfection, both firefly and Renilla luciferase activities were assayed with the dual
luciferase assay system (Promega) using a Lumat LB 9507 luminometer (Berthold
Technologies, Wildbad, Germany). Firefly luciferase activity was normalized with
respect to Renilla luciferase activity. All assays were performed at least three times
in duplicate or triplicate. Results are presented as mean = s.d. from a representative
experiment. Statistical analysis was performed using ANOVA.

Immunoprecipitation and immunoblotting

COS-7 cells were transiently transfected with the expression construct using
FuGENES transfection reagent. COS-7 cells were used because they contained no
endogenous Twist-1. At 24 hours after transfection, cells were lysed in buffer
containing 25 mM Hepes pH 8.0, 150 mM KCl, 2 mM EDTA, 0.1% Nonidet P-40
(NP-40) and EDTA-free complete protease inhibitor cocktail (Roche). After 20
minutes on ice, cell lysates were pelleted by centrifugation and supernatants were
pre-cleared with normal mouse 1gG (Santa Cruz, Santa Cruz, CA) for 30 minutes
at 4°C, then incubated with anti-FLAG M2 affinity gel (Sigma, St Louis, MO) for
4 hours at 4°C. Immunoprecipitates were washed four times with the buffer used
for cell solubilization. Immune complexes were eluted at 98°C for 5 minutes in
Laemmli's sample buffer. Immunoprecipitates were separated by SDS-
polyacrylamide gel electrophoresis (PAGE), transferred to polyvilinidendiftuoride
(PVDF) membrane, and immunoblotted with anti-Flag M2 antibody (Sigma) and
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anti-Myc antibody (MBL, Nagoya Japan). Protein bands were visualized using
Chemi-Lumi One (Nacalai Tesque, Kyoto, Japan).

To detect overexpressed Smad] and Smad4, P19 cells were lysed as described
above, 24 hours after transfection. Lysates were separated by SDS-PAGE,
transferred to PVDF membrane, and immunoblotted with anti-Smadl and -Smad4
antibody (Santa Cruz) and anti-B-actin antibody (ABcam, Cambrige, UK). Protein
bands were visualized using Chemi-Lumi One (Nacalai Tesque).

Nuclear protein extracts were prepared from MC3T3-El cells as follows. Cells
were harvested by centrifugation at 500 g for 10 minutes at 4°C. Cell pellets were
washed by gentle resuspension in cold PBS-0.5 mM EDTA and nuclei isolation
buffer (NIB) containing 10 mM Tris-HCI (pH 7.5), 60 mM KCI, 15 mM NaCl, 1.5
mM MgCl, | mM CaCl, 025 M sucrose, 10% glycerol, 0. mM
phenylmethylsulfonylfluoride (PMSF) and EDTA-free complete protease inhibitor
cocktail (Roche). Cells were re-suspended with ice-cold NIB containing 0.1% NP-
40 and allowed to swell for 10 minutes on ice. Swollen cells were centrifuged at
500 g for 10 minutes at 4°C. Nuclei pellets were washed in cold NIB and centrifuged
at 500 g for 5 minutes at 4°C. Nuclear pellets were diluted to 1.5 mg/ml DNA with
ice-cold NIB and digested using micrococcal nuclease (80 units/mg DNA;
Worthington, Lakewood, NJ). Digested nuclei were rapidly cooled on ice for 10
minutes and centrifuge at 12,800 g for 10 minutes at 4°C. Supernatant (S1) was
collected and pellets were re-suspended with ice-cold cell lysis buffer containing
10 mM Tris-HCI (pH 7.5), 2 mM EDTA, 10% glycerol, 300 mM NaCl, 0.1 mM
PMSF and EDTA-free complete protease inhibitor cocktail (Roche), then incubated
for 45 minutes on ice. Nuclear debris was spun out by centrifugation at 12,800 g
for 10 minutes at 4°C, and the supernatant (52) was collected. S1 and S2 fractions
were combined, then incubated with anti-Flag M2 affinity gel (Sigma) for 4 hours
at 4°C. Immunoprecipitates were washed four times with cell lysis buffer containing
0.1% NP-40. Immune complexes were eluted at 98°C for 5 minutes in Laermnmli’s
sample buffer. Immunoprecipitates were separated by SDS-PAGE, transferred to
PVDF membrane, and immunoblotted using anti-Flag M2 antibody (Sigma).

To analyze the interaction of 1d1 and E47, or Smad4, HDACI and Flag-Twist-1,
C3HI10T1/2 and MC3T3-E1-Tw] cells were lysed with RIPA buffer containing 50
mM Tris-HCI (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate, 150 mM NaCl, 1
mM EDTA and EDTA-free complete protease inhibitor cocktail (Roche), and the
supernatant was obtained by centrifugation of the lysates at 12,800 g for 5 minutes
at 4°C. After the removal of non-specifically bound substances using non-immune
1gG (Santa Cruz), the supernatant was incubated with anti-E47 (Santa Cruz)
antibody for 2 hours at 4°C and precipitated with protein A beads, or anti-Flag M2
affinity gel for 4 hours at 4°C. After washing the precipitates four times with the
RIPA buffer, immune complexes were eluted at 98°C for 5 minutes in Laemmli’s
sample buffer. Immunoprecipitates were separated by SDS-PAGE, transferred to
PVDF membrane, and immunoblotted using anti-1dl, anti-Smad4 (Santa Cruz),
anti-Smadl (Zymed, San Francisco, CA), anti-HDACI(Upstate Temecula, CA)
antibodies.

Pulse-chase assay

Pulse-chase assay was performed according to the method previously described
(Deed et al., 1996), with minor modification. COS-7 cells were transfected with
Flag-Twist-1, Myc-E47 and Myc-Id1 using FuGENES transtection reagent. At 24
hours after transfection, cells were starved in cysteine and methionine-free DMEM
(Invitrogen) containing with 5% dialyzed FBS for | hour, then incubated for an
additional 2 hours in cysteine and methionine-free DMEM containing 10% dialyzed
FBS and 50 p.Ci/ml of Promix (Amersham). Labeled cells were then incubated in
standard DMEM supplemented with 10% FBS and harvested at various time points.
Immunoprecipitation was performed as described above.

Real-time quantitative PCR

MC3T3-E1-Twl cells (2X10° cells) were treated with BMP (600 ng) alone or the
mixture of BMP (600 ng) and trichostatin (TSA, 330 nM; Sigma). At 24 hours after
the treatment, total RNA was extracted from cells using RNeasy kits (Qiagen.
Hilden, Germany) and digested with DNase I according to the manufacturer’s
instructions. Total RNA (5 wg) was reverse transcribed into ¢cDNA using High
Capacity cDNA Archive Kits (Applied Biosystems, Foster City, CA) and amplified
by real-time quantitative PCR using an ABI PRISM 7700 Sequence Detection
System (Applied Biosystems, Foster City, CA). Mixtures of probes and primer pairs
specific for murine ALP, Runx2, osteopontin and GAPDH were purchased from
Applied Biosystems (Foster City, CA). The concentration of target genes was
determined using the comparative CT method (threshold cycle number at the cross-
point between amplification plot and threshold) and values were normalized to an
internal GAPDH control. Results are presented as mean * s.d. from a representative
experiment.
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Abstract

Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not
clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic
bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation
(GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-
positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs)
from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the
PBMNC:s isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accu-
mulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-

derived OPCs in circulating blood.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Bone morphogenetic protein; Ectopic bone; Circulating osteoblast progenitor cells; Bone marrow transplantation

BMP-2 and other members of the BMP family are well-
known inducers of bone formation in vitro and in vivo[1]. Dur-
ing healing of bone fractures, stimulation from BMPs recruits
OPCs to the fracture sites and induces their differentiation to
become osteoblasts. An experimental model of ectopic bone
formation in mice has also indicated that BMP-2 stimulation
is essential for the recruitment of OPCs to the osteogenic sites
[2]. The source and the route for the recruitment of the OPCs
in this model, however, have not been fully elucidated. Nota-
bly, the surrounding soft tissues, the periosteum and the bone

Abbreviations: OPCs, osteoblast progenitor cells; BMPs, bone mor-
phogenetic proteins; MOPCs, marrow-derived OPCs; GFP, green fluo-
rescent protein;, BMT, bone marrow transplantation; PBMNCs,
peripheral blood mononuclear cells; DAPI, 6-diamidino-2-phenylindole;
FITC, fluorescein isothiocyanate; H&E, hematoxylin and eosin; TRAP,
tartrate-resistant acid phosphatise.
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marrow all constitute potential origins for the OPCs involved
in osteogenesis, but it is unclear how these OPCs target the
region expressing BMPs 3]

Recent studies have shown the existence of OPCs (or
indeed osteoblasts) in the circulating blood of various
mammals, including humans [4-6]. These reports indicate
an ability of circulating cells to function as osteoblasts in
culture and to form osseous tissues after transplantation,
suggesting that OPCs and/or osteoblasts may be supplied
via the circulation to regenerating bone in wvivo. This
hypothesis is potentially an attractive one for the field of
bone-regenerative medicine, especially if an adequate num-
ber of circulating OPCs can be isolated from peripheral
blood, expanded in culture, and delivered to sites requiring
bone regeneration. However, the origins of circulating
OPCs and evidence of endogenously circulating cells with
the potential to migrate and contribute to bone regenera-
tion in vivo have not yet been fully demonstrated.
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Here, we report for the first time that marrow-derived
OPCs (MOPCs) can migrate to a BMP-2 pellet implanted
into mouse muscle and differentiate to become osteoblasts
within the BMP-2-induced ectopic bone. We have also suc-
ceeded in culturing circulating OPCs from PBMNC:s isolat-
ed from BMP-2-implanted mice. Furthermore, intravenous
transfer of the GFP-transgenic PBMNCs containing OPCs
to nude mice implanted with BMP-2 pellet generates a sig-
nificant number of GFP-osteoblasts in the BMP-2-induced
ectopic bone. We believe that these new findings will accel-
erate further understanding of the role of circulating OPCs,
not only in ectopic osteogenesis, but also in the healing of
bone fractures in vivo.

Materials and methods

Bone marrow cell transplantation (BMT). Under sterile conditions,
bone marrow cells were isolated from 8- to 10-week-old male C57BL/6
transgenic mice that ubiquitously expressed enhanced GFP (7). Eight- to
10-week-old female C57BL/6 mice were lethally irradiated with 10 Gy. For
BMT, each irradiated mouse received 5 x 10° bone marrow cells from GFP
transgenic mice. Experiments on BMT mice were performed at least 6
weeks after BMT. All animals were handled according to approved pro-
tocols and the guidelines of the Animal Committee of Osaka University.

Preparation and implantation of BMP-2-containing collagen pellets.
Recombinant human BMP-2 was provided by Astellas Pharma Inc. (Tokyo,
Japan). The BMP-2 was suspended in buffer solution (5 mmol/L glutamic
acid, 2.5% glycine, 0.5% sucrose, and 0.01% Tween 80) at a concentration of
I pg/pl. Next, 3 pL (3 pg of BMP-2) of the BMP-2 solution was diluted in
22 uL PBS and blotted onto a porous collagen disc (6 mm diameter, | mm
thickness), freeze-dried, and stored at —20°C. All procedures were carried
out under sterile conditions. BMP-2-containing or control PBS-containing
collagen pellets were implanted onto the backs (below muscle fascia) of
BMT mice, C57BL/6 mice, or nude mice. Three weeks later, fluorescent
photos of ectopic bone formation were taken using a digital microscope
(Multiviewer system VB-S20 KEYENCE, Osaka, Japan).

Morphological and immunofiuorescent analysis of the ectopic bone.
Ectopic bone was removed and fixed with 4% paraformaldehyde at 4 °C for
48h. After taking soft X-ray photos, the bones were decalcified at 4 °C for 6
days with the EDTA solution replaced every other day. After decalcifica-
tion, the pellets were equilibrated in PBS containing 15% sucrose for 12 h
and then in PBS containing 30% sucrose for 12 h, embedded in Tissue-Tec
OCT Compound (Sakura Finetek Japan, Tokyo, Japan), and frozen on dry
ice and stored at ~20°C. For immunofluorescence staining, 6-pm-thick
sections were cut with a Cryostat (Leica Microsystems AG, Wetzlar, Ger-
many). After washing, the sections were treated with 0.1% trypsin (Difco
Laboratories, Detroit, MI) in PBS for 30 min at 37°C to activate antigens.
Then the sections were blocked with normal goat serum for 1 h before
incubation with polyclonal anti-mouse osteocalcin antibody (1:250, Takara
Bio Inc., Shiga, Japan). Subsequently, sections were stained with Alexa
Fluor 546 goat anti-rabbit secondary antibody (Molecular Probes, Eugene,
OR) for 2 h. Then, sections were stained with 4',6-diamidino-2-phenylin-
dole (DAPI) for 10 min at room temperature and mounted with anti-fade
solution VECTOR Shield (Vector Laboratories, Inc., Burlingame, CA).

GFP and tartrate-resistant acid phosphatase ( TRAP) double staining of
the ectopic.bone. For GFP immunohistochemistry, 6-um-thick sections of
BMP-2-induced ectopic bone were treated with 0.6% hydrogen peroxide in
80% methanol for 30 min and then 3% hydrogen peroxide in PBS for
15 min to inhibit endogenous peroxidase. Then the sections were blocked
with normal goat serum for | h before incubation with polyclonal anti-
GFP antibody (1:250, MBL, Nagoya, Japan). Signals were detected using
diaminobenzidine. Subsequently, to detect osteoclasts, TRAP staining was
carried out using a staining kit (Cell Garage, Tokyo, Japan) according to
the manufacturer’s protocol. Counterstaining was performed with
hematoxylin.

Culture of MOPCs in PBMNCs. Peripheral blood was taken from the
heart of BMP-2-implanted mice with a 24-gauge needle and 1-mi syringe
containing heparin and enriched for light-density mononuclear cells
(PBMNCs) by Ficoll-Paque (Amersham Biosciences AB, Uppsala, Swe-
den) centrifugation. Red blood cells were removed by resuspending in
0.125% Tris—-NH,4CI buffer and sieving through a nylon mesh. To culture
MOPCs, were then inoculated in basal medium consisting of DMEM
supplemented with 10% FCS, 100 U/mL streptomycin/penicillin, and 50%
conditioned culture medium (DMEM with 10% FCS) of mouse bone
marrow-mesenchymal ceils as a growth factor supplement (Otsuru and
Tamai, unpublished data). To induce osteoblast differentiation, those cells
were cultured in the osteogenic medium consisting of IMDM supple-
mented with 0.1 uM dexamethasone (Nacalai Tesque, Kyoto, Japan),
10 mM B-glycerol phosphate (Sigma, Saint Louis, MO), and 0.05 mM
ascorbic acid 2-phosphate (Sigma) for 3-4 weeks. Cells were then fixed
with 4% paraformaldehyde for 10 min and treated with 0.2% Triton X in
phosphate-buffered saline (PBS) for 10 min.

Immunostaining of cultured MOPCs. Cultured MOPCs were pre-
treated with 3% skim milk (Nacalai Tesque) in PBS for 1h before
incubation with polyclonal anti-mouse osteocalcin antibody (1:250,
Takara Bio Inc.), monoclonal anti-mouse alkaline phosphatase antibody
(1:250, R&D Systems, Minneapolis, MN) or polyclonal anti-mouse
osteopontin antibody (1:250, LSL, Tokyo, Japan). Subsequently, sec-
tions were stained with Alexa Fluor 546 goat anti-rabbit or anti-rat 1gG
secondary antibody (Molecular Probes) for 2 h. Those cells were stained
with 4’,6-diamidino-2-phenylindole (DAPI) for 10 min at room tem-
perature and mounted with the anti-fade solution VECTOR Shield
(Vector Laboratories, Inc.).

Passive transfer of PBMNCs from BMP-2-implanted GFP-mouse to
BM P-2-implanted nude mouse. For passive transfer of PBMNCs containing
MOPCs, nude mice implanted with BMP-2-containing collagen pellets
were injected with PBMNCs from the GFP-transgenic BMP-2-implanted
mice via a tail vein. Injections were carried out everyday for one week.

Results

Bone marrow-derived cells contribute to BMP-2-induced
ectopic bone formation

We first evaluated whether bone marrow-derived cells
are involved in the process of BMP-2-induced ectopic bone
formation. We implanted BMP-2 pellets under the muscu-
lar fascia in the backs of GFP-BMT mice that had been
transplanted with GFP-transgenic bone marrow cells after
lethal dose irradiation (Fig. 1A). Three weeks after the
implantation of BMP-2 collagen pellets, intense GFP fluo-
rescence had accumulated in the region of the BMP-2-in-
duced ectopic bone (Fig. 1B). Immunohistological
analysis revealed that a significant number of GFP-positive
cells expressing osteocalcin (OC) were seen lining the newly
generated bone (Fig. 1C). Tartrate-resistant acid phospha-
tase (TRAP) and GFP double staining revealed that some
of the GFP-positive lining cells were TRAP-positive osteo-
clasts, which were clearly distinguishable from GFP-posi-
tive/TRAP-negative positive cells (Fig. 1D).

Successful culture of OPCs in PBMNCs from a BMP-2-
implanted mouse

To determine if a BMP-2-implanted mouse contained
OPCs in circulating blood, we isolated PBMNCs from a
BMP-2-implanted mouse and cultured those cells in the con-

—158—



S. Otsuru et al. | Biochemical and Biophysical Research Communications 354 (2007) 453458 455

A GFP-mouse (C57BL/6)

Radiation
{10Gy)

<

BMT

— L= LT

Wild mouse (C57BL/6) GFP-BMT mouse

BMP2 collagen peliet

. ¥

Fig. 1. Bone marrow-derived osteoblast progenitor cells contribute to BMP-2-induced ectopic bone formation in GFP-BMT mice. (A) A BMP-2 peilet is
shown implanted under the muscular fascia of a GFP-BMT mouse. (B} A BMP-2 pellet shows accumulation of GFP fluorescence three weeks after
implantation. Soft X-ray photo of the BMP-2 pellet demonstrates that ectopic bone has formed in the BMP-2 pellet. Histologic section stained with
hematoxylin and eosin (H&E) of the BMP-2 pellet also reveals bone formation in the BMP-2 pellet. Magnification, 400x. (C) Immunofluorescence staining
shows that cells lining the newly generated ectopic bone are osteoblasts expressing osteocalcin (OC), and that some of those cells show GFP fluorescence
(GFP), revealed as yellow-colored cells in merged picture (Merge) of OC, GFP and DAPI staining (DAPI). Magnification, 400x. (D) GFP and TRAP
double staining reveals that the bone marrow-derived osteoclasts (red arrow-head) as well as bone marrow-derived non-osteoclastic cells (brown arrow-

head) line the newly formed ectopic bone. Magnification, 400x.

ditioned culture medium, as described in the methods section
(Fig. 2A). As we expected, adhesive stromal type cells success-
fully expanded in culture. Then we looked at the expression of
osteoblast-specific proteins before and after induction of oste-
ogenic differentiation. OP, a marker of undifferentiated oste-
oblasts, was shown to be expressed in the cultures without
induction of differentiation (Fig. 2B). Under these culture
conditions, however, the differentiation-specific makers
ALP and OC were not expressed (Fig. 2B). After change of
culture medium to the osteogenic medium, however, these

cells then expressed and secreted abundant ALP and OC as
well as OP in the culture medium (Fig. 2C).

Intravenous transplantation of GFP-PBMNCs provides
GFP-osteoblasts in the ectopic bone in the BM P-2-implanted
nude mouse

To confirm further that significant numbers of MOPCs
mobilize from bone marrow to peripheral blood and con-
tribute to ectopic bone formation, we isolated PBMNCs
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PBMNC isolation PBMNC in culture

B Basal medium C Osteogenic medium
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B

Fig. 2. OPCs in PBMNCs from a BMP-2-implanted mouse express bone matrix proteins in culture. (A) Cultured PBMNCs isolated from peripheral blood
of a BMP-2-implanted mouse. (B) Immunofluorescence staining of the cultured cells from isolated PBMNCs shows only osteopontin (OP) expression in
normal medium. (C) When those cells were cultured in osteogenic medium, however, there is positive immunoreactivity for alkaline phosphatase (ALP)
and osteocalcin (OC) as well as OP. The staining patterns and DAPI staining (DAPI) are shown in the merged image (Merge). Magnification, 200x.

A

GFP-PBMNC isolation GFP-PBMNC injection

Fig. 3. OPCs in PBMNCs can contribute to ectopic bone formation in a BMP-2 pellet. (A) A nude mouse implanted with a BMP-2 pellet is injected daily
for 7 days with PBMNCs taken from BMP-2-implanted GFP transgenic mice. (B) A histologic H&E-stained section shows ectopic bone formation in the
BMP-2 pellet. Magnification, 400x. (C) Immunofluorescence staining of the newly generated ectopic bone shows that osteocalcin-expressing osteoblasts
(OC) and GFP-positive cells derived from the injected PBMNCs (GFP) co-localize with yellow-colored cells in the merged picture (Merge) with DAPI
staining (DAPI). Magnification, 400x.
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everyday from BMP-2 pellet-implanted GFP-transgenic
mice and injected the isolated PBMNCs (1 x 10°) through
the tail veins of BMP-2 pellet-implanted nude mice daily
for 7 days (Fig. 3A). Two weeks later, the implanted pellets
were recovered and examined histologically. We observed
that GFP-positive osteoblasts originating from the injected
PBMNC:s contributed significantly to ectopic bone forma-
tion in the mice (Fig. 3B).

Discussion

Circulating mesenchymal precursor/stem cells or osteo-
- blast lineage cells have been shown to exist in various mam-

mals, including humans and mice [4-6,8,9]. Moreover,
those circulating mesenchymal/osteoblast lineage cells have
been isolated from peripheral blood, expanded in culture,
and inoculated to show their potency to become osteo-
blasts both in vitro and in vivo. Nevertheless, a number of
important questions have been raised following those
observations, including as to where those circulating cells
came from and where they went in vivo? In this study, we
have shown, for the first time, clear evidence that marrow
cells in intact bone are the major, if not the exclusive,
source of circulating OPCs in an in vivo model of ectopic
bone formation using BMP-2-stimulation in mouse muscle.
Of note, our GFP-BMT mouse model showed that ~40%
of osteocalcin-producing cells in the ectopic bone were
derived from MOPCs, suggesting that endogenous circulat-
ing MOPCs may contribute to ectopic bone formation
observed in various pathological conditions, and possibly,
to fracture healing. Other findings that showed the need
for adequate blood flow to obtain mature bone regenera-
tion also add credence to the importance of MOPCs in
the circulation [10].

Currently, little is known about the signals that trigger
the migration of OPCs from the bone marrow into the cir-
culation and this was not addressed in detail in the current
study. Vascular endothelial growth factor (VEGF) previ-
ously has been shown to have the capacity to recruit mar-
row-derived vascular endothelial progenitor cells [11] and
we also observed elevation of VEGF levels in the muscle
around the implanted BMP-2 pellets (data not shown).
This observation may suggest that VEGF contributes to
angiogenesis in the area of bone regeneration, although
further evidence is needed to support this hypothesis.

The importance of providing additional OPCs to sites
of new bone formation has been shown in a number of
previous studies [12-17]. From a clinical perspective, iden-
tification of signals that induce migration of MOPCs into
the circulation could have potential future clinical applica-
tions, since increasing MOPCs in the circulation may help
patients with delayed or non-union of bone fractures by
increasing the number of MOPCs at the bone repair site.
The ability to induce circulating MOPCs to enter the
peripheral blood circulation may also enable us to easily
isolate these cells by simple venous blood sampling, thus
providing an opportunity to develop novel cell-based

regenerative therapies for bone fractures and possibly for
other damaged tissues. Because current procedures to iso-
late mesenchymal cells directly from the bone marrow are
invasive and carry a possible risk of bone marrow infec-
tion, the easier approach of isolating MOPCs from periph-
eral blood has advantages in terms of safety, repeatability,
and acceptability. In addition, this method may also be
helpful in developing new therapies for genetic disorders
such as osteogenests imperfecta through genetic manipula-
tion of isolated MOPCs [18,19]. Thus, further investigation
of circulating MOPC:s is warranted to more precisely char-
acterize their cell biology and the mechanisms that lead to
their induction. Such work may have very exciting implica-
tions for novel therapeutic strategies in bone regenerative
medicine.
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STAT5a/PPARy Pathway Regulates Involucrin
Expression in Keratinocyte Differentiation

Xiuju Dai', Koji Sayama', Yuji Shirakata', Yasushi Hanakawa', Kenshi Yamasaki', Sho Tokumaru’,
Lujun Yang', Xiaoling Wang', Satoshi Hirakawa', Mikiko Tohyamal, Toshimasa Yamauchi®®, Kadowaki
Takashi®?, Hiroyuki Kagechika* and Koji Hashimoto'

Signal transducers and activators of transcription (STATs) are critical to growth factor-mediated intracellular
signal transduction. We observed the rapid expression and activation of STAT5a during keratinocyte
differentiation induced by suspension culture. STAT5a expression preceded that of involucrin, an important
molecule in the terminal differentiation of keratinocytes. To determine whether STAT5a regulated involucrin
expression, we expressed a dominant-negative (dn) STAT5a that blocks the dimerization of STAT5 and inhibits its
nuclear translocation. We found that dn-STAT5a inhibited involucrin expression in keratinocytes. Given that
STATS regulates adipogenesis via activating the peroxisome proliferator-activated receptor (PPAR) y signal, we
hypothesized that STAT5a regulated involucrin expression in the same manner. To test this hypothesis, we
examined the expression and transactivation of PPARy in a suspension culture of keratinocytes. Suspension
culture induced PPARy expression and triggered PPARy transactivation rapidly and dn-STAT5a downregulated
this induction and suppressed PPARy transactivation. Furthermore, preincubation with the PPARj/retinoid
X-receptor inhibitor HX-531 or the introduction of a dn-PPARy prevented the activation of involucrin promoter
and inhibited its induction. This report provides early evidence of a major role for STAT5a in the differentiation

of keratinocytes, where it contributes to involucrin expression by activating the PPARy signal.

Journal of Investigative Dermatology (2007) 127, 1728-1735; doi:10.1038/5}.jid.5700758; published online 1 March 2007

INTRODUCTION

Signal transducers and activators of transcription (STATs) are
a family of transcription factors that are essential for
intracellular signaling in response to stimulation by cyto-
kines, growth factors, and hormones (Horvath, 2000). STAT
proteins form homo- or heterodimers on tyrosine phosphor-
ylation and dimerized STAT proteins immediately enter the
nucleus, where they bind to specific DNA sequences in the
promoters of various genes and mediate transcriptional
regulation. In mammals, seven STAT proteins have been
identified, including two highly similar STAT5 isoforms.
Although STAT5a and STAT5b are roughly 95% similar at the
cDNA level, they exhibit both redundant and nonredundant
functions in vivo, probably because of differences in their
transactivation domains (Grimley et al., 1999). STAT5s are

'Department of Dermatology, Ehime University School of Medicine, Ehime,
Japan; ?Department of Integrated Molecular Science on Metabolic Diseases,
Graduate School of Medicine, University of Tokyo, Tokyo, Japan;
*Department of Metabolic Diseases, Graduate School of Medicine, University
of Tokyo, Tokyo, Japan and “School of Biomedical Science, Tokyo Medical
and Dental University, Tokyo, Japan

Correspondence: Dr Koji Sayama, Department of Dermatology, Ehime
University School of Medicine, Toon, Ehime 791-0295, Japan.

E-mail: sayama@m.ehime-u.ac.jp

Abbreviations: Ax, adenovirus vector; m.o.i., multiplicity of infection; PPAR,
peroxisome proliferator-activated receptor; RT-PCR, reverse transcriptase-
PCR; STATSs, signal transducers and activators of transcription

Received 18 july 2006; revised 19 November 2006; accepted 19 December
2006; published online 1 March 2007

1728 Journal of Investigative Dermatology (20071, Volume 127

involved in a variety of cellular processes, as has been
demonstrated in STAT5 knockout mice (Coffer et al., 2000;
Levy and Gilliland, 2000). Adipogenesis is a complex process
controlled by the interplay of signals emanating from both
environmental and intracellular factors. STAT5s are reported
to function in fat-cell development, adipocyte differentiation,
and lipid accumulation by regulating peroxisome prolifera-
tor-activated receptor (PPAR)y and CCAAT-enhancer binding
proteins « signals (Stephens et al., 1999; Nanbu-Wakao et al.,
2002; Floyd and Stephens, 2003; Stewart et al., 2004).

PPARs are transcription factors belonging to the ligand-
activated nuclear hormone receptor superfamily. Upon
binding exogenous or endogenous ligands, PPARs form
heterodimers with the retinoid X receptor (RXR), recruit a
coactivator, and facilitate the transcription of target genes
involved in many cellular functions, including differentiation
(Kuenzli and Saurat, 2003). All of the PPAR superfamily
members - PPARx, PPARB/S, and PPARy - have been
identified in keratinocytes and have been shown to play
physiological roles in epidermopoiesis, such as in keratino-
cyte proliferation and differentiation (Kuenzli and Saurat,
2003).

Although the function of STATS5 has been studied in
several cell types, its roles in skin and keratinocytes are
unclear, despite the observation of its in vivo and in vitro
expression in human keratinocytes (Poumay et al., 1999;
Nishio et al., 2001). We hypothesized that STATS is involved
in keratinocyte differentiation because it is expressed to a
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substantial degree in the granular layer and in the horny
keratinized cells of the epidermis (Nishio et al., 2001). We
present evidence that STAT5a is activated and essential for
involucrin expression in suspension cultures of keratinocytes.
We further demonstrate that STAT5a regulates PPARy
activation, which contributes to involucrin expression during
keratinocyte differentiation. This report demonstrates early
evidence of a vital role for STAT5a in involucrin expression.

RESULTS

Rapid induction of STAT5a but not STAT5b during keratinocyte
differentiation

We investigated the expression of STAT5s in a suspension
culture model of keratinocyte differentiation (Watt et al.,
1988). For the suspension cultures, we used polyhydrox-
yethylmethacrylate-coated culture plates, which inhibit cell-
to-extracellular matrix interactions but not cell-to-cell inter-
actions (Wakita and Takigawa, 1999). The expression of
mRNAs for both STAT5a and STAT5b was detected in the
suspension culture. STAT5a mRNA started to increase at
3 hours, reached a peak at 12 hours, and was induced more
than 20-fold; the STAT5b mRNA level did not change during
suspension culture (Figure 1a). Immunoblotting confirmed
the mRNA data: STAT5a protein increased within 6 hours and
peaked at 24 hours, whereas the level of STAT5b remained
unchanged (Figure 1b). We used a phospho-specific antibody
to examine STATS5 phosphorylation at conserved tyrosine,
which is required for the activation of STAT5 (Grimley et al.,
1999). As shown in Figure 1b, STAT5 was rapidly phos-
phorylated in cell suspension and the level of phosphorylated
STATS varied with the level of total STAT5a protein. Next, we
investigated the nuclear translocation of STATSs. After
suspension culture, the cells were harvested at the indicated
times and the levels of STAT5a, phospho-STAT5, and STATSb
in the nuclear fraction were determined using Western blots.
As shown in Figure 1c, STAT5a and phospho-STAT5 were
definitely detected in the nucleus beginning at 6 hours in
suspension culture, implying that suspension culture triggers
the nuclear translocation of phosphorylated STATS5a. In
contrast, STAT5b protein was only detected weakly in the
nuclear fraction and its level in suspension culture remained
constant. These data suggest that STAT5a is transactivated
during keratinocyte differentiation induced by suspension
culture.

Involucrin expression has been analyzed as an important
marker of keratinocyte differentiation (Eckert et al., 2004). In
suspension culture, involucrin was induced in a time-
dependent manner and occurred after the activation of
STAT5a (Figure 1a and b). These data suggested the
possibility of a causal relationship between STAT5a and
involucrin expression.

Regulation of involucrin expression by STAT5a during
keratinocyte differentiation

To explore the function of STAT5a in involucrin expression,
we constructed an adenovirus expression vector (Ax) carrying
a dominant-negative (dn) mutant of STAT5a (Axdn-STAT5a)
that inhibits the dimerization of phosphorylated STAT5a, a
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Figure 1. Suspension culture resulted in the induction and activation of
STATS5a. (a) Keratinocytes were plated onto polyhydroxyethylmethacrylate-
coated plates and cultures were incubated for the indicated times. Total RNA
was collected and real-time RT-PCR was performed to detect the mRNA
levels of STATS5a, STAT5b, and involucrin. The relative mRNA expression
levels were expressed as the mean+SD (n=3). An asterisk indicates
significant deviation from the control (P<0.05). (b) Suspension cultures were
established and cells were collected after the indicated times of incubation.
Total protein samples were analyzed by Western blotting with antibodies
against involucrin, STAT5a, STATSb, and phospho-STATS5. The data shown
are representative of three separate experiments. (c) Keratinocytes were
collected at the indicated times after suspension culture. The nuclear fraction
was subjected to antibodies against STAT5a, phospho-STAT5, and STATSb.
The data shown are representative of three separate experiments.

key step required for nuclear translocation and DNA binding
(Ariyoshi et al., 2000), and infected keratinocytes at different
multiplicities of infection (m.o.i.). After 24 hours, sufficient
STAT5a protein expression was detected with an m.o.i. of 50
(Figure 2a). To investigate the role of STAT5a in the activation
of the involucrin promoter, we performed a luciferase assay.
Keratinocytes transfected with an involucrin promoter-luci-
ferase reporter plasmid (pINV-Luc) were infected with
adenovirus at an m.o.i. of 50 and then subjected to
suspension culture for 24hours. The reporter activity
increased about sevenfold in suspension culture, which was
significantly suppressed by dn-STAT5a (Figure 2b). Subse-
quently, we also examined the influence of dn-STAT5a on
involucrin mRNA and protein expression. Infection with
Axdn-STAT5a suppressed the suspension culture-induced
expression of involucrin mRNA (Figure 2¢) and protein
(Figure 2d) by more than 50%. These data unequivocally
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Figure 2. dn-STAT5a-inhibited involucrin expression. (a) Subconfluent
keratinocytes were infected with Ax carrying dn-STATS5a at different m.o.i.
values. After 24 hours, cells were collected and the protein level of STAT5a
was detected by immunoblotting. (b) Keratinocytes were transfected with
involucrin reporter plasmid (pINV-Luc) and pRL-TK (Renilla luciferase) using
FUGENE®G. After 24 hours, the cells were infected with AxXTW or Axdn-STAT5a
and cultured for an additional 24 hours. Then, the cells were subjected to
suspension culture for 24 hours. Luciferase activity was measured using the
Dual-Luciferase reporter assay system. Transfection was performed in
triplicate. The relative luciferase activity was calculated by normalizing to the
Renilla tuciferase activity and is presented as the mean+5D (n=3).

An asterisk indicates significant deviation (P<0.05). (¢} Keratinocytes were
infected with Axdn-STATS5a or a control (Ax1W) for 24 hours and suspension
cultures were established. Total RNA was collected 24 or 36 hours post-
suspension and involucrin mRNA detected by real-time RT-PCR. The
involucrin mRNA expression is presented as the mean £ SD (n=3).

An asterisk indicates significant deviation (P<0.05). (d) Keratinocytes were
infected with Axdn-STAT5a or AXTW for 24 hours before suspension culture.
Celis were collected 36 hours after suspension and the level of involucrin
protein was evaluated on Western blots. The data shown are representative of
three separate experiments.

defined a positive role of STAT5a in the expression of
involucrin during keratinocyte differentiation.

Inducible expression and transactivation of PPARy during
keratinocyte differentiation

Human involucrin promoter activity is complex and cell
type-specific. ‘The involucrin promoter contains binding
sites for transcription factors of the activator protein-1, Sp-1,
and CCAAT-enhancer binding protein families, but no STAT-
binding site has been detected (Eckert et al., 2004). Thus,
STAT5a must regulate involucrin expression in an indirect
manner.

We hypothesized that STAT5a acts™on involucrin expres-
sion by controlling the PPARy signal, given that STAT5a/
PPARy functions in adipocyte differentiation (Nanbu-Wakao
et al., 2002; Floyd and Stephens, 2003). We first examined
the expression of PPARs in suspension cultures of keratino-
cytes. As shown in Figure 3a and b, PPARx and PPARp/S
remained relatively constant during culture, whereas the
expression of PPARy mRNA and protein was significantly
induced, with expression beginning to increase at 6 hours and
peaking at 24hours after suspension culture. We also
performed electrophoretic mobility shift assays (EMSA) to
examine the DNA-binding activity of PPARy in nuclear
extracts of keratinocytes. This activity was also induced in
suspension culture, and a significant effect was seen between
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Figure 3. Suspension culture activated PPARy. (a) Total RNA was collected
as described in Figure 1a and the mRNA levels of PPAR family members were
evaluated by real-time RT-PCR. The relative mRNA expression levels are
expressed as the mean + SD (n=3). An asterisk indicates significant deviation
from the control (P<0.05). (b) Keratinocytes were subjected to suspension
culture for the indicated times. PPARq, f/5, and v protein levels were detected
by immunoblotting. (c) Keratinocytes were subjected to suspension culture
and nuclear extracts were collected at the indicated times. Biotin-labeled
PPARy probe was incubated with nuclear protein and EMSA was performed.
(d) Nuclear extracts from keratinocytes of 24-hour suspension culture were
incubated with biotin-labeled PPARy. Lane 1: no addition of unlabeled probe;
lane 2: addition of unlabeled probe for PPARy; lane 3: addition of unlabeled
PPAR« probe; lane 4: addition of unlabeled PPARS/S probe. (e) Nuclear
extracts from keratinocytes of 24-hour suspension culture were mixed with
biotin-labeled PPARy probe in the presence of antibodies. Note the
supershifted PPARy-DNA complex seen using an anti-PPARy antibody

(sh: supershifted band). Lane 1: no antibody added; lanes 2-6: addition of
normal goat IgG, normal rabbit 1gG, goat anti-PPARy, rabbit anti-PPAR«,
and rabbit anti-PPARp/S, respectively. The data shown are representative of
three separate experiments.
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12 and 36hours post-suspension (Figure 3c). The PPARy
probe used for EMSA was specific, as the protein-DNA
complex was removed by the addition of unlabeled PPARy
probe (lane 2) and was not affected by the presence of the
unlabeled probe for PPARa or PPARB/S (Figure 3d). The
protein-DNA complex couid also be supershifted by pre-
incubation of nuclear extracts with an antibody specific to
PPARy (lane 4), but not with antibodies to PPARx or f/§
(Figure 3e). Our data suggest that the PPARy signal was
activated in keratinocyte differentiation.

STAT5a regulates the expression and transactivation of PPARy
during keratinocyte differentiation

To investigate whether STAT5a regulates the induction of
PPARy in suspension culture, keratinocytes were infected
with Axdn-STAT5a before being subjected to suspension
culture and the PPARy mRNA and protein levels were
analyzed. In support of the hypothesis, dn-STAT5a inhibited
PPARy expression in suspension culture (Figure 4a and b),
confirming the previous report in adipocytes (Rosen et al.,
2000; Nanbu-Wakao et al, 2002; Floyd and Stephens,
2003). In addition, dn-STAT5a almost completely blocked

—165—



1 -
a s 0O 24 hours N
~ 15 | 3 36 hours . ;N
14
g 2t T —
[
: L
2
B 9r
3
©
£
S st
o
E 1
| ’>
0 [ 1 . . .
) -} 1w dn-STAT5a
Adherent Suspension
b Adherent Suspension
- -) 1w dn-STATS5a

l-—— e aE— —-———|PPAH-,

I — J/I-Actin

c Adherent Suspension

-) - w

. B2

dn-STAT5a

= 4— PPAR;-DNA

. . . . . e prODe

Figure 4. The induction of PPARy expression by suspension culture was
suppressed by dn-STAT5a. RNA samples were prepared as described in Figure
2b. Real-time RT-PCR was performed to detect the level of PPARy mRNA
(a)The relative mRNA expression level is expressed as the mean 5D (n=3).
An asterisk indicates significant deviation (P<0.05). (b) Keratinocytes were
infected with Axdn-STAT5a or Ax1W. Cells were collected 24 hours after
suspension culture and the level of PPARy protein was detected on Western
blots. (c) Keratinocytes were infected with Axdn-STAT5a or Ax1W. Nuclear
extracts were collected 24 hour after cell suspension and the DNA-binding
activity of PPARy protein was detected by EMSA. The data shown are
representative of three separate experiments.

the DNA-binding activity of PPARy triggered by suspension
culture (Figure 4c). These results indicate that STAT5a regu-
lates the PPARy signal during keratinocyte differentiation.

Regulation of involucrin expression by PPARy during
keratinocyte differentiation

The treatment of cultured human keratinocytes with ciglita-
zone, a PPARy activator, has been shown to increase
involucrin and transglutaminase 1 mRNA levels. Moreover,
topical treatment of hairless mice with ciglitazone increases
both involucrin and filaggrin expression (Mao-Qiang et al.,
2004). We found that stimulation with pioglitazone, another
PPARy activator, upregulated involucrin expression in human
keratinocytes (data not shown), suggesting that PPARy

X Dai et al.
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activation stimulates the expression of differentiation mar-
kers. In this study, we investigated whether PPARy is
important for involucrin expression induced in suspension
culture by using HX-531, which has been shown to inhibit
significantly PPARy/RXR transactivation in adipocytes (Ya-
mauchi et al., 2001) and in other epithelial cells (Varley et al.,
2004). A luciferase assay was performed to investigate the
role of HX531 in activating the involucrin promoter.
Keratinocytes transfected with report plasmids were treated
with HX531 and then subjected to suspension culture for
24 hours. The suspension culture-increased luciferase activity
was inhibited by HX531 (Figure 5a). The expression of
involucrin mRNA and protein, which was significantly
induced by suspension culture, was also lowered by
pretreatment with HX531 (Figures 5b and c). Although it is
theoretically possible that HX-531 inhibits vitamin D
receptor/RXR activation as an antagonist of RXR, Yamauchi
et al. (2001) reported that HX-531 had no apparent effect on
the transactivation of RXR partners other than PPARy in
adipocytes. In our study, this possibility is unlikely because
vitamin D-receptor expression in keratinocytes is anchorage-
dependent and is significantly inhibited by suspension culture
(Segaert et al., 1998).

We infected keratinocytes with Axdn-PPARy, which
inhibits thiazolidinedione-induced target gene transcription
and cellular differentiation in human adipocytes (Gurnell
et al., 2000). In human keratinocytes, infection of Axdn-P-
PARy at an m.o.i. of 10 resulted in protein expression (Figure
6a) sufficient to inhibit the activation of the involucrin
promoter in suspension culture (Figure 6b) and to decrease
the involucrin mRNA and protein expression (Figure 6c¢ and
d). These data indicate that PPARy is an important regulator
of involucrin transcription and that PPARy transactiva-
tion stimulates involucrin expression during keratinocyte
differentiation.

DISCUSSION

The three PPAR isotypes exhibit distinct patterns of tissue
distribution. In human epidermis, PPARS/S is the prevalent
PPAR subtype and PPARx and PPARy are expressed at lower
levels (Kuenzli and Saurat, 2003). In the suspension culture of
keratinocytes, the expression and transcriptional activity of
PPARy significantly increased, whereas PPARo expression
was unchanged and the PPARS/S level remained constantly
high. Our data are not completely consistent with the report
that in the ex vivo differentiation of keratinocytes, the level of
PPARB/6 remained unchanged, whereas PPARx and PPARy
increased significantly (Rivier et al., 1998). In differentiating
keratinocytes stimulated by phorbol ester, PPARS/S mRNA
expression increased {Matsuura et al., 1999) and we have
also detected increased expression of PPARS/6 and PPARy,
but not PPARe, in VD3-induced keratinocyte differentiation
(Dai et al., unpublished data). These conflicting data may be
attributable to the different differentiation models used. In this
study, we demonstrated the important role of PPARy in
involucrin expression by blocking PPARy/RXR transactiva-
tion. The PPARy ligand has been shown to induce involucrin
expression in keratinocytes directly or to act synergistically
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Figure 5. HX-531 suppresses the expression of involucrin. (a) The reporter
plasmids were introduced into the keratinocytes as described in Figure 2b.
After 24 hours, the cells were treated with 1 um HX-531 or with DMSO for
2 hours and were then subjected to suspension culture for 24 hours. Luciferase
activity was measured using the Dual-Luciferase reporter assay system.
Transfection was performed in triplicate. The relative luciferase activity was
calculated by normalizing to the Renilla luciferase activity and is presented as
the mean+SD (n=3). An asterisk indicates significant deviation (P<0.05).
(b) Keratinocytes were pretreated with 1 um HX-531 or with DMSO for 2 hours
before being subjected to suspension culture. RNA was collected
post-suspension and involucrin mRNA was detected by real-time RT-PCR;
the relative mRNA expression level is expressed as the mean+SD (n=3).
An asterisk indicates significant deviation (P<0.05). (c) Keratinocytes were
treated with HX-531 for 2 hours and then subjected to suspension cultures;
the cells were collected at 36 hours. The fevel of involucrin protein was
evaluated on Western blot. The data shown are representative of three
separate experiments.

with other factors (Westergaard et al, 2001; Mao-Qiang
et al., 2004). The regulation of differentiation-associated
genes by PPARy has also been reported in other normal
epithelia (Varley et al., 2004). The ligands of PPARy show an
ability to regulate cell differentiation and cutaneous home-
ostasis similar to that of other nuclear hormones, such as
glucocorticoids, retinoids, and vitamin D. Treatment with
PPARy-selective ligands has promoted differentiation and
normalized the histological features of psoriatic skin in organ
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Figure 6. Infection with Axdn-PPARy inhibited involucrin expression.

(a) Subconfluent keratinocytes were infected with Axdn-PPAR;y at different
m.o.i. values. After 24 hours, cells were collected and PPARy protein was
detected by immunoblotting. (b) The reporter plasmids (pINV-Luc and
pRL-TK) were introduced into the keratinocytes as described in Figure 2b.
After 24 hours, the cells were incubated with Ax1W or Axdn-PPARy for an
additional 24 hours. Then, the cells were subjected to suspension culture and
the luciferase activity was measured as described in Figure 2b. Transfection
was performed in triplicate. The relative luciferase activity was calculated by
normalizing to the Renilla luciferase activity and is presented as the
mean+SD (n=3). An asterisk indicates significant deviation (P<0.05).

() Keratinocytes were infected with Axdn-PPARy or Ax1W for 24 hours and
suspension cultures were established. Total RNA was collected 30 hours after
suspension culture and involucrin mRNA was detected by real-time RT-PCR.
The relative mRNA expression level is expressed as the mean+SD (n=3).
An asterisk indicates significant deviation (P<0.05). (d) Keratinocytes were
infected with Axdn-PPARy or Ax1W for 24 hours before suspension culture.
Cells were collected 36 hours after suspension culture and the level of
involucrin protein was evaluated on Western blots. The data shown are
representative of three separate experiments.

culture (Ellis et al., 2000) and in a murine model of epidermal
hyperplasia (Demerjian et al., 2006). Together with our study,
this suggests that PPARy probably contributes to keratinocyte
differentiation and normalizes epidermal histology by regu-
lating involucrin expression. Although PPARy functions in
involucrin transcription, the PPARy signal activates the
involucrin promoter in a complicated manner and the details
are still unclear; it might involve the transcriptional activation
of activator protein-1 and CCAAT-enhancer binding proteins
(Dai et al., unpublished data).

Our study demonstrated that STATSa is induced, acti-
vated, and involved in involucrin induction, whereas STAT5b
expression remains weak and unchanged during suspension
culture. Such a difference between isoforms in cell differ-
entiation has been shown previously; STAT5a was sufficient
to induce adipogenesis in BALB/C and NIH-3T3 cells,
whereas STAT5b alone was not adipogenic. However, the
presence of STAT5b enhanced the adipogenic ability of
STAT5a (Floyd and Stephens, 2003).

The expression of STATS increases early during the course
of adipogenesis (Stephens et al., 1999); STAT5 becomes
activated during differentiation and it contributes to the
enhanced expression of PPARy (Nanbu-Wakao et al., 2002).
Epithelial cell differentiation in vitro is reminiscent of
adipocyte differentiation in some ways and the ability of
STAT5a to induce involucrin expression in suspension culture
might be mediated by its ability to regulate PPARy expression



(Nanbu-Wakao et al., 2002; Floyd and Stephens, 2003). The
PPARy gene produces four different PPARy mRNAs by
alternative splicing and promoter usage. PPARy1 is expressed
ubiquitously (the PPARy expressed in keratinocytes is mainly
PPARy1), PPARy2 is restricted to adipose tissue, and PPARy3
is mainly confined to macrophages, adipose tissue, and the
colon (Fajas et al.,, 1998). The tissue expression of PPARy4
has not been investigated. Although a putative STAT5-
consensus motif in the human PPARy2 and PPARy3
promoters has been explored (Nanbu-Wakao et al., 2002;
Meirhaeghe et al., 2003), the presence of the STAT5 motif in
the PPARy1 promoter has not been reported (Fajas et al.,
1997). Therefore, to elucidate how STAT5a induces PPARy
expression during keratinocyte differentiation and determine
whether the PPARy expressed in skin is a direct target of
STAT5a requires further study. Another interesting finding is
that blocking the PPARy signal decreased STAT5a expression
in suspension culture slightly (data not shown), implying that
the PPARy and STAT5a signals regulate each other (Olsen

and Haldosen, 2006). Although the STAT5a/PPARy pathway

plays a role in involucrin expression, neither STAT5-deficent
mice (Coffer et al., 2000; lkeda et al, 2005) nor PPARy-
deficient mice (Mao-Qiang et al., 2004) show any particular
skin defect. This feature can be explained by the fact that
blocking the activation of STAT5a or inhibiting the PPARy
signal only partially decreases the inducible expression
of involucrin.

Considering all of the available evidence, we suggest that
the activation of STAT5a by a challenge to keratinocyte
differentiation, such as suspension culture, contributes to
involucrin induction by regulating the PPARy signal. STAT5a
thus appears to be an initial transcription factor involved in
involucrin expression and keratinocyte differentiation and
this study provides early evidence that a STAT5a/PPARy
pathway plays a role in involucrin expression in normal
human keratinocytes.

MATERIALS AND METHODS

Keratinocyte culture

Primary normal human keratinocytes were isolated from surgically
discarded neonatal skin samples. This study was conducted
according to the Declaration of Helsinki Principles and all of the
procedures that involved human subjects received prior approval
from the Ethics Committee of Ehime University School of Medicine,
Japan. All subjects provided written informed consent.

Normal human keratinocytes were cultured in MCDB153
medium supplemented with insulin- (1 ug/ml), hydrocortisone
(0.5ug/ml),  ethanolamine  (0.1mm),  phosphoethanolamine
(0.1 mm), bovine hypothalamic extract (50 ug/ml), and Ca®*
(0.1 mm), as described elsewhere (Shirakata et al, 2004). Polyhy-
droxyethylmethacrylate-coated plates were made by coating with a
10-mg/mi solution of polyhydroxyethylmethacrylate (Sigma Chemi-
cal, St Louis, MO), and suspension cultures were performed as
described previously (Sayama et al., 2002).

Ax construction and Infection
The cosmid cassette pAXCAw and parent virus Ad5-dIX have been
described previously (Miyake et al., 1996). The full-length coding
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region of dn-STAT5a cDNA, a dn mutant with phenylalanine
substituted for tyrosine at a phosphorylation site (Ariyoshi et al.,
2000; Nanbu-Wakao et al., 2002), was subcloned into pAxCAw. The
pcDNA3 expression vector expressing flag-tagged L468A/E471A
PPARy (dn-PPARy) was a gift from Professor Chatterjee (University of
Cambridge, Cambridge, UK). This double-mutant form of PPARy
exhibits impaired transcriptional activity and coactivator recruit-
ment, silences basal transcription by recruitment of corepressors,
and is a potent dn inhibitor of wild-type PPARy activity (Gurnell
et al., 2000). The full-length dn-PPARy cDNA was also cloned into
pAxCAw. Adenovirus containing the CA promoter and target gene
was generated by the Cosmid-terminal protein complex method
(Miyake et al., 1996). Recombinant viruses were generated through
homologous recombination in 293 cells; purified virus stocks were
prepared by the CsCl gradient method, and the virus titer was
checked with a plaque formation assay (Miyake et al, 1996).
Cultured normal human keratinocytes were infected with Ax; AxX1W
was used as the control vector to exclude the effect of Ax itself, as
described previously (Dai et al., 2004).

Real-time RT-PCR

Total RNA samples from cultured cells were isolated using Isogen
(Nippon Gene, Tokyo, Japan). Real-time reverse transcriptase-PCR
(RT-PCR) was performed and analyzed in an ABI PRISM 7700
sequence detector (PE Applied Biosystems, Branchburg, Nj). The
primers and probes for glyceraldehyde-3-phosphate dehydrogenase,
STAT5a, STATSb, involucrin, and PPARs used for real-time PCR
were obtained from Applied Biosystems (Norwalk, CT). The RNA
analysis was carried out using a TagMan RT-PCR Master Mix
reagents kit (Applied Biosystems). The cDNA synthesis and PCR
were performed as described previously (Dai et al., 2004), according
to the manufacturers’ protocols. The quantification of gene expres-
sion was performed using the comparative CT method as described
previously (Dai et al., 2004). The target gene expression in the test
samples was normalized to the corresponding glyceraldehyde-3-
phosphate dehydrogenase gene expression and was reported as the
fold difference relative to glyceraldehyde-3-phosphate dehydrogenase.

Western blotting

Keratinocytes were harvested at the indicated times after suspension
culture and whole-cell lysates and the nuclear fraction were
extracted as described previously (Yahata et al., 2003). Analyses
were performed using a Vistra ECF kit (Amersham Biosciences,
Arlington Heights, IL) according to the manufacturer’s instructions.
Twenty micrograms of protein was separated by 10% SDS-PAGE and
transferred to nitrocellulose membranes. The membranes were
blocked with 5% non-fat dry milk in TrissHCl (pH 7.4), 0.15m
NaCl, and 0.05% Tween-20, followed by overnight incubation with
mouse antibody against STAT5a or STAT5b (ZYMED Laboratories,
San Francisco, CA), rabbit anti-phospho-STAT5 (Cell Signaling
Technology, Beverly, MA), rabbit anti-involucrin (Biomedical
Technologies, Stoughton, MA), mouse anti-PPARy, goat anti-B-actin
(Santa Cruz Biotechnology, Santa Cruz, CA), or rabbit anti-PPARa or
p/é (Abcam, Cambridge, UK). After washing, the membrane was
incubated with a 1:2500 dilution of fluorescein-labeled 1gG for
1 hour. The signal was amplified with an anti-fluorescein antibody
conjugated with alkaline phosphatase, followed by the fluorescent
substrate AttoPhos (Amersham Biosciences). The membrane was
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then scanned using a Fluorolmager (Molecular Dynamics, Sunny-
vale, CA).

Preparation of nuclear extracts and EMSA

Nuclear proteins were isolated as described previously (Dignam
et al., 1983). Briefly, cells were scraped into a lysis buffer (50 mm
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (pH 7.8), 10mm
KCl, 0.1mm EDTA, pH 8.0, 1mm dithiothreitol) containing a
protease-inhibitor cocktail and 0.5% NP-40. Nuclei were collected
by centrifugation and resuspended in 100 pl of 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid buffer without NP-40 and containing
420mm KCl and 5 mm MgCl,. After a 30-minute incubation on ice,
nuclear debris was removed by centrifugation at 20,000 x g for
15 minutes at 4°C. Supernatants were collected and stored at —80°C
until use.

EMSA was performed using a Light Shift® Chemiluminescent
EMSA kit (Pierce, Rockford, IL) according to the manufacturer’s
instructions. Specific PPARy, «, and /6 oligonucleotide probe sets
(biotin-labeled and unlabeled probes; Panomics, Redwood City, CA)
were used as described (Juge-Aubry et al., 1997). In brief, binding
reactions (20 ul) containing 1 x binding buffer, 50 ng/ul poly(d!dC),
biotin-labeled PPARy probe, and nuclear protein (5 ug) were
prepared and incubated at room temperature for 20 minutes. In
competition experiments, unlabeled probes were added at 100-fold
molar excess. For supershift assays, nuclear extracts were preincu-
bated with goat polyclonal anti-PPARy (Santa Cruz Biotechnology),
rabbit polyclonal anti-PPARx or f/6 (Abcam), or with species-
matched control IgG for 1 hour at 4°C, followed by the addition of a
biotin-labeled PPARy probe.

Protein-DNA complexes were separated by electrophoresis in
5% native polyacrylamide gels and transferred to Biodyne® B nylon
membranes (Pierce). The labeled DNA was cross-linked to the
membrane by exposure to 302-nm UV radiation on a UV
transilluminator for 1 minute. The biotin-labeled molecules in the
membrane were detected using a chemiluminescent nucleic acid
detection module (Pierce). The membrane was briefly soaked in a
blocking solution, incubated in conjugate/blocking solution for
15 minutes, washed four times in wash buffer and once in substrate
equilibration buffer, incubated in substrate working solution for
5minutes, and exposed to X-ray film.

Luciferase assay

A reporter plasmid containing the involucrin promoter and firefly
luciferase (pINV-Luc) was constructed, as described previously
(Sayama et al., 2001). To normalize the transfection efficiency, a
plasmid containing Renilla luciferase driven by the herpes simplex
virus thymidine kinase promoter (pRL-TK; Promega, Madison, WI)
was included in the assay. The reporter plasmids were introduced
into the keratinocytes using FUGENE6 (Roche Molecular Biochem-
icals, Indianapolis, IN} according to the manufacturer’s instructions.
After 24 hours, the cells were infected with the indicated adenovirus
or treated with HX531 and subjected to suspension culture for
24 hours. Then, the same number of cells was harvested with 250 ul
of lysis buffer (Promega) and the luciferase activity was measured
using the Dual-Luciferase reporter assay system (Promega) with a
luminometer (Luminescencer JNR AB-2100; Atto, Osaka, Japan).
The relative luciferase activity was calculated by normalizing to the
Renilla luciferase activity.
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Chemical
HX531 was synthesized as described elsewhere (Yamauchi et al,
2001) and dissolved in DMSO.

Statistical analysis

At least three independent experiments were performed with similar
results. One representative experiment is shown in each figure.
Statistical significance was determined using Student’s paired t-test.
Differences were considered statistically significant at P<0.05 (*).
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Activation of growth factor receptors by ligand binding leads to an increased expression of c-Myc, a transcriptional regulator for cell
proliferation. The activation of transcriptional factors via the activated receptors is thought to be the main role of c-Myc gene expression.
We demonstrate here that epidermal growth factor receptor (EGFR)- and fibroblast growth factor receptor (FGFR)-mediated
¢c-Myc induction and cell cycle progression in primary cultured mouse embryonic fibroblasts (MEFs) are abrogated by knockout of the
heparin-binding EGF-like growth factor (Hb-egf) gene, or by a metalloproteinase inhibitor, although molecules downstream of the receptors
are activated. Induction of c-Myc expression by EGF or basic FGF is recovered in Hb-egf-depleted MEFs by overexpression of wild-type
proHB-EGF, but no recovery was observed with an uncleavable mutant of proHB-EGF. The uncleavable mutant also inhibited
EGF-induced acetylation of histone H3 at the mouse ¢-Myc first intron region, which could negatively affect transcriptional activation. We
conclude that signal transduction initiated by generation of the carboxyl-terminal fragment of proHB-EGF (HB-EGF-CTF) in the shedding

event plays an important intermediary role between growth factor receptor activation and c-Myc gene induction.

J. Cell. Physiol. 214: 465-473, 2008. < 2007 Wiley-Liss, Inc.

Growth factors stimulate quiescent cells into DNA synthesis.
The transcription factor encoded by the c-Myc gene is
expressed in a strictly growth factor-dependent manner in
quiescent cells (Obaya et al., 1999) and directs gene
transcription associated with the transition from quiescence to
proliferation. For example, c-Myc induces a number of target
molecules involved in G| phase entry into the cell cycle,
including Cdc25A, cyclin D2, CDK4, Cull, and E2F2
(Galaktionov et al., 1996; Leone et al., 1997; Bouchard et al,,
1999; Hermeking et al., 2000), supporting the conclusion that
¢-Myc plays a central role in cell cycle progression as an
upstream regulator of cell cycle regulatory molecules. Indeed,
¢-Myc null cells are able to survive, but display a marked
lengthening of both the GI and G2 phases of the cell cycle.
Although the duration of S phase in c-Myc null cells remains
unchanged, the GO to S phase transition is also significantly
delayed (Mateyak et al., 1997).

A key step for signaling through the epidermal growth factor
receptor (EGFR) is the release of mature ligands such as
heparin-binding EGF-like growth factor (HB-EGF) from their
membrane-anchored precursor forms, a process referred to as
“actodomain shedding” (Blobel, 2005; Higashiyama and Nanba,
2005). The HB-EGF precursor (proHB-EGF) is cleaved by
members of the “a disintegrin and metalloprotease” (ADAM)
protease family (Asakura et al., 2002; Blobel, 2005; Higashiyama
and Nanba, 2005), yielding the carboxyl terminal fragment of
proHB-EGF (HB-EGF-CTF) in parallel with the production of
HB-EGF. We have previously characterized HB-EGF-CTF as
a novel intracellular signaling molecule that is acquired
post-translationally and translocated into the nucleus, where it
binds to and inactivates the promyelocytic leukemia zinc finger
protein (PLZF) (Nanba et al., 2003). PLZF is a transcriptional
repressor that suppresses transcription of genes such as ¢c-Myc,
cyclin A2, and HoxD 1| (Yeyati et al.,, 1999; Barna et al., 2000;
McConnell et al., 2003). Thus, shedding of proHB-EGF

participates in activation of two independent signal
transduction pathways: signaling from EGFR after engagement
of the shed growth factor, and a HB-EGF-CTF-mediated
signaling (Higashiyama and Nanba, 2005). Here, we
demonstrate that HB-EGF-CTF signaling is involved in growth
factor-induced c-Myc expression.

Materials and Methods
Materials

12-o-tetradecanoylphorbol- | 3-acetate (TPA) was purchased from
WAKO Pure Chem. Ind., Ltd. (Osaka, Japan). KB-R7785 (Asakura
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etal,, 2002) and EGFR-neutralizing antibodies were obtained from
Carna Biosciences, Inc. (Kobe, Japan) and Immuno-Biological
Laboratories Co., Ltd. (Takasaki, Japan), respectively. Recombinant
EGF and basic fibroblast growth factor (bFGF) were purchased
from R&D Systems, Inc. (Minneapolis, MN).

Cell culture

The fibrosarcoma cell line HT 1080 was cultured in Eagle minimum
essential medium (EMEM) (Nikken Bio Medical Laboratory, Kyoto,
Japan) with 10% fetal calf serum (FCS), 100 units of penicillin G
potassium, and 100 pg of streptomycin sulfate per milliliter. The
culture of primary human epidermal keratinocytes was prepared as
described previously (Hashimoto etal., 1994). E13.5 embryos from
loxHB-EGF mice were used to generate mouse embryonic
fibroblasts (MEFs). MEFs were maintained in Dulbecco’s modified
Eagle medium (DMEM) (Nikken) supplemented with 10% FCS,
100 units of penicillin G potassium, and 100 pg of streptomycin
sulfate per milliliter. Quiescent MEFs were prepared by serum
starvation for 3 days. All cells were cultured in a humidified 37 C/
5% CO, incubator.

Ribonuclease protection assay (RPA)

Total RNA was isolated from keratinocytes (1.0 x 10° cells) or
MEFs (2.0 x 10° celts) with Trizol reagent (Invitrogen, Carlsbad,
CA). Riboprobes were labeled with digoxigenin (DIG) using the
DIG RNA labeling kit (Roche Diagnostics, Basel, Switzerland)
according to the manufacturer’s protocol. Thirty micrograms of
total RNA harvested from cells cultured under each condition
were hybridized with DIG-labeled probes. RNase treatment and
gel resolution of protected probes were performed according to
the manufacturer’s protocol with the RPAIll kit (Ambion, Austin,
TX). Each value (c-Myc/Gapdh) was normalized using the value for
non-treated cells as taken to be one in each experiment. The values
(means + SD) were determined based on results in at least three
independent experiments. P-values were obtained from Student’s
t-test.

Immunoprecipitation and immunoblotting

immunoprecipitation and immunoblotting of cell lysates was
performed as described previously (Goishi etal., | 995; Nanba etal.,
2003). The primary antibodies used were as follows: mouse
monoclonal antibodies to phospho-EGFR (Upstate, Billerica, MA);
rabbit polycional antibodies to EGFR (Santa Cruz Biotechnology,
Santa Cruz, CA), Erkl/2, phospho-Erki/2 (Cell Signaling

TABLE 1. Primer sequences for PCR and RT-PCR analysis

ET AL.

Technology, Lexington, KY), anti-B-actin (SIGMA, St. Louis, MO)
and anti-HB-EGF-CTF antibodies (H1). Incubations of | h were
performed with two secondary antibodies: HRP-conjugated goat
anti-mouse and rabbit IgG (Promega, Madison, WI).

ProHB-EGF-AP shedding assay

HT!080 cells stably expressing alkaline phosphatase (AP)-tagged
proHB-EGF (Asakura etal., 2002) were seeded in 24-weli plates at
a density of 1.0 x 10° cells per well and incubated for 24 h.
Recombinant EGF (final 1~50 ng/ml), and bFGF (final 1-50 ng/ml)
were added and the plates were incubated for a further | h. pAP-
HB-EGF plasmids were transiently transfected into MEFs using a
MEF Nucleofector kit (Amaxa Biosystems, Gaithersburg, MD).
Twenty-four hours after transfection, the cells were treated with
KB-R7785 (final 10-20 .M) and TPA (final 100 nM). Aliquots (100
wl each) of the conditioned media were used to measure AP activity
as described previously (Tokumaru et al.,, 2000).

Immunofluorescence microscopy and visualization of the
fluorescent signal intensity

tmmunofluorescence microscopy of human keratinocytes using
a rabbit polyclonal antibody to HB-EGF-CTF (Miyagawa et al.,
1995) was performed as described previously (Nanba et al., 2003).
We visualized the intensity of the fluorescent signal in each picture
using Scion image (Scion Corporation, Frederick, MD).

Adenovirus construction and infection

Adenovirus vectors carrying genes encoding LacZ, green
fluorescent protein (GFP), AP-tagged or non-tagged proHB-EGF,
and uncleavable proHB-EGF were prepared using an adenovirus
expression kit (Takara Biomedicals, Otsu Japan). An adenovirus
expressing Cre recombinase (Kanegae et al., 1995) under the
control of the CAG promoter (Niwa etal., 1991) was obtained
from RHCEN BRC (Tsukuba, Japan). Purified, concentrated, and
titer-checked viruses were applied to cells at a multiplicity of
infection (MOI) of 100.

PCR, RT-PCR, and quantitative PCR analysis

Deletion of the mouse Hb-egf gene, mRNA expression of EGFR
ligands, and Pizf in MEFs were confirmed by PCR and RT-PCR
analysis, respectively. Primers are shown in Table I. Quantitative
PCR was performed using the ABI Prism 7700 sequencer detection
system (Applied Biosystems, Foster, CA) with TagMan Gene
Expression Assay kits (Applied Biosystems) for mouse ¢-Myc

Primer

Sequence

loxHB-EGF (forward)
loxHB-EGF (reverse)

Mouse Hb-egf (forward)
Mouse Hb-egf (reverse)
Mouse Tgfor (forward)
Mouse Tgf-a (reverse)
Mouse Amphiregulin (forward)
Mouse Amphiregulin (reverse)
Mouse Epiregulin (forward)
Mouse Epiregulin (reverse)
Mouse Plizf (forward)
Mouse Pizf (reverse)

Mouse GAPDH (forward)
Mouse GAPDH (reverse)
Region | (forward)

Region | (reverse)

Region ! (forward)

Region |l (reverse)

Region |l (forward)

Region |ll (reverse)

Region [V (forward)

Region IV (reverse)
2f5-binding region (forward)
2f5-binding region (reverse)

5'-CGGACAGTGCCTTAGTGGAACCTC-3’
5.GCTTCTTCTTAGGAGGGAATCTTGGC-3’

5. TGCCGTCGGTGATGCTGAACT-3’

5 -GGTTCAGATCTGTCCCTTCCAAGTC-3'
5'-GGAATTCCTAGCGCTGGGTATCCTGTTA-3'
5'.CAAGCTTACCACCACCAGGGCAGTGATG-3'
5'-GCAATTGTCATCAAGATTACTTTGG-3’

S TCTGTTTCTCCTTCATATTCCCTG-3’
5"-GGAATTCTGACGCTGCTTTGTCTAGGTT-3'
5'-CAAGCTTTATGCATCCAGCGGTTATGAT-3'
5 TCAAGAGCCACAAGCGCATCCACA-3’
5'.CGAGGCACCGTTGTGTGTTCTCA-3'
5'-CGTATTGGGCGCCTGGTCACCAG-3’

5. TCGCTCCTGGAAGATGGTGATGGG-3’
5'-GTGCAATGAGCTCGATGAAGGAAG-3'
S".GTCTTCTTATTCCGGACTCCTCG-3’

5" TTACTGGACTGCGCAGGGAG-3’
5'-CCACGTATACTTGGAGAGCCACTT-3'
5'-GGTAAGCACAGATCTGGTGGTCTT-3’
5'-AAGTCAGAAGCTACGGAGCCTTCT-3’
5'.GACGGCGCGAATAGGGAC-3’
5'-CTACTATCAGTGACGCTCGTCG-3’

5 - TATTGTGTGGAGCGAGGCAGCT-3’
5'-GTGTAAACAGTAATAGCGCAGCATGAATTAAC-3"
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mRNA. The values (means 4 SD) were determined based on
results in at least three independent experiments. P-values were
obtained from Student’s t-test.

Cell cycle analysis

Cell cycle analysis was performed as described previously (Nanba
et al,, 2003), using a FACScan instrument (Becton & Dickinson,
Franklin Lakes, NJ).

Chromatin immunoprecipitation (ChIP) assay

Mock-treated or EGF-stimulated cells were formaldehyde
crosslinked, harvested, and disrupted by Bioruptor (COSMOBIO,
Tokyo, Japan), following the method in the EZ ChIP manual
(Upstate). immunoprecipitation was performed with
anti-acetylated histone H3 (Upstate), anti-PLZF (Calbiochem, San
Diego, CA), or anti-FLAG antibodies (SIGMA). The primers used in
this assay are shown in Table |.

Results
Effect of cell growth factors on proHB-EGF shedding

Shedding of proHB-EGF occurs following stimulation by injury,
UV, oxidants, phorbol esters, GPCR agonists, etc. (Takenobu
et al., 2003; Higashiyama and Nanba, 2005). To investigate
whether stimulation of growth factors such as EGF and bFGF
induces shedding of proHB-EGF, we performed an AP-tagged
assay with HT 1080 cells that were stably transfected with
AP-tagged proHB-EGF (Tokumaru et al,, 2000). Increasing AP
activity in the medium, indicating release of HB-EGF, was
detected after stimulation of both EGF and bFGF (Fig. |A). We
also confirmed the production of HB-EGF-CTF after
stimulation with these growth factors (Fig. B).

A metalloprotease inhibitor, KB-R7785, effectively blocked
growth factor-induced proHB-EGF shedding, indicating
involvement of metalloproteases in the shedding mechanism, as
reported previously (Tokumaru et al., 2000; Nanba et al., 2003;
Shirakata et al.,, 2005) (Fig. 1A). Moreover, we examined the
localization of endogenous HB-EGF-CTF in human
keratinocytes. Accumulation of endogenous HB-EGF-CTF in
nuclei (Nanba et al., 2003) was markedly enhanced by the
addition of bFGF, and this was inhibited by KB-R7785 (Fig. 2).

Effects of an inhibitor of proHB-EGF shedding
on ¢-Myc expression induced by EGF

We have previously shown that HB-EGF-CTF, which is
produced after shedding, regulates the expression of cyclin A2
by inhibition of the PLZF repressor protein (Nanba etal., 2003).
PLZF has also been known to inhibit the expression of human
¢Myc (McConnell et al., 2003). Therefore, we suspected that
shedding of proHB-EGF and subsequent production of
HB-EGF-CTF may control human ¢-Myc gene expression by
abrogation of PLZF function. To examine the involvement of
proHB-EGF shedding in EGF-induced c-Myc expression, we first
performed an RPA with human primary cultured keratinocytes
with intrinsic expression of HB-EGF, EGFR, and PLZF.
Treatment with KB-R7785, a potent proHB-EGF shedding
inhibitor (Asakura et al., 2002), resulted in a decreased
expression of c-Myc mRNA under growth medium conditions
(MDCBI53 medium supplemented with insulin and bovine
hypothalamic extract) to close to the basal level (Fig. 3A),
whereas KB-R7785 did not affect phosphorylation of EGFR and
Erkl/2, even when recombinant EGF was present (Fig. 3B).
Treatment with a combination of KB-R7785 and anti-EGF
receptor antibodies appeared to lead to even greater
suppression of the c-Myc gene. These results imply that the
activation of EGFR signaling brought about full induction of
¢-Myc expression with shedding of proHB-EGF.
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Fig. 1. Induction of proHB-EGF shedding by stimulation of EGF and
bFGF. AP-tagged proHB-EGF was stably expressed in HT 1080
fibrosarcoma celis. A: These cells were treated with various
concentrations of EGF or bFGF for | h, and the AP activity was
analyzed in each medium. Open bars, no stimulation; closed bars,

| ngiml; dotted bars, 10 ng/mt; shaded bars, 50 ng/ml; slashed bars,
50 ng/ml of growth factor and 10 nM of KB-R7785. Al experiments
were performed independently in triplicate. B: The lysates were
collected from the above cells after each stimulation, and
immunoprecipitated with anti-HB-EGF-CTF antibodies. After that,
SDS-PAGE and immunoblotting with the above antibodies (upper
part) were performed. §}-actin in each cell lysate was detected with
anti-B-actin antibodies as an indicator of protein loading (lower part).

To evaluate whether this event is species specific, we also
examined expression of ¢-Myc in MEFs. mRNA of c-Myc was
induced by stimulation of EGF and treatment with KB-R7785
partially suppressed c-Myc expression (Fig. 3C), but had no
remarkable effect on phosphorylation of EGFR and Erk1/2
under treatment of KB-R7785 in MEFs (Fig. 3D). TPA is one of
the strongest inducers of proHB-EGF shedding. To confirm the
blocking effect of shedding by the metalloproteases inhibitor,
KB-R7785, in MEFs, we performed proHB-EGF-AP shedding
assay with adenovirus infection system (Fig. 3E). KB-R7785
even blocked the induction of proHB-EGF shedding by TPA.

Reduction of EGF-induced c-Myc gene expression in
proHB-EGF-depleted mouse embryonic fibroblasts

To define the transcriptional regulation of c-Myc by HB-EGF
more precisely, we generated Hb-egf-deficient MEFs using Cre/
loxP technology (Fig. 4A). MEFs were isolated from loxHB-EGF

—173—

AL



NANBA ET AL.

control IgG B «HB-EGF-CTF

no treatment no treatment bFGF bFGF+ KB-R7785

signal intensity ﬁ !

Fig. 2. Intracellular localization of endogenous HB-EGF-CTF in human keratinocytes, determined by fluorescent microscopy. Human
keratinocytes were stimulated with 10 ng/m! bFGF for 30 min, after which they were fixed and stained with normal rabbit IgG or anti-HB-EGF-CTF
antibodies. A, B, E, and F are images taken before stimulation; (C) and (G) areimages collected after stimulation; and (D) and (H) show the effect of
KB-R7785 treatment before stimulation with bFGF. A and E, normal rabbit IgG; B-D and F-H, anti-HB-EGF-CTF antibodies. Parts E~H show
analytical data for A-D, respectively, determined using Scion Image.
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Fig. 3. Involvement of shedding of proHB-EGF in c-Myc transcription by human primary cultured keratinocytes and mouse embryonic
fibroblasts. A: Analysis of c-Myc mRNA expressioninkeratinocytesby RPA. Theintensities of the bands for c-Myc and Gapdh mRNA were measured
by densitometry. In some cases, the keratinocytes were pretreated with 10 1M of KB-R7785 and/or 10 pg/ml of EGFR-neutralizing antibody forl h.
Some of the cultures were further treated with 10 ng/mi of EGF for | h. Expression of Gapdh mRNA was examined as a control. *P <0.05 versus
non-treated keratinocytes (lane 1) and **P <0.05 versus EGF-treated keratinocytes (lane 5). B: Phosphorylation of EGFR (middle parts) and
Erk-1/-2 (lower parts)inkeratinocytes was observed ina Westernblotassay. C: Analysis of c-Myc mRNA expressioninMEFsby RPA. Theintensities
of the bands for c-Myc and Gapdh mRNA were measured by densitometry. D : Detection of EGF signaling through the EGF receptor by

an IP-Western assay. All experiments were performed independently in triplicate. E: Effect of KB-R7785 on shedding of proHB-EGF in MEFs. MEFs
transiently expressed with AP-proHB-EGF were stimulated with 160 nMof | 2-o-tetradecanoylphorbol- 1 3-acetate (TPA). Before stimulation with
TPA, the cells were treated with 20 pM of KB-R7785. *P<0.05 versus EGF-treated MEFs. A and C, The expression level of c-Myc was normalized
using the level of Gapdh, and the fold induction is shown on the basis of the expression ratio relative to no treatment.
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