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Fig. 1. Fundus photograph of both eyes of Suzuki Monkey showing accumulation of drusen (white
spot) around the macular region.

macular degeneration sporadically found in older monkeys and also with human
drusen (Umeda, Ayyagari, Allikmets, Suzuki, Karoukis, Ambasudhan, Zernant,
Okamoto, Ono, Terao, Mizota, Yoshikawa, Tanaka, and Iwata 2005; Umeda, Suzuki,
Okamoto, Ono, Mizota, Terao, Yoshikawa, Tanaka, and Iwata 2005; Ambati, Anand,
Fernandez, Sakurai, Lynn, Kuziel, Rollins, and Ambati 2003). These observations
have shown that the Suzuki Monkeys produce drusen that are biochemically similar to
those in human AMD patients, but the development of the drusen occurs at an
accelerated rate. More than 240 loci are being investigated to try to identify the
disease causing gene and to understand the biological pathways leading to
complement activation. Simultaneously, we have been studying a colony of aged
monkeys which develop drusen after 15 years of birth.

Drusen components of these sporadically found affected monkeys were
compared with human and Suzuki Monkeys by classical immunohistochemical
techniques and by proteome analysis using mass spectrometer. Significant finding
was that drusen contained protein molecules that mediate inflammatory and immune
processes. These include immunoglobulins, components of complement pathway, and
modulators for complement activation (e.g., vitronectin, clusterin, membrane cofactor
protein, and complement receptor-1), molecules involved in the acute-phase response
to inflammation (e.g., amyloid P component, al-antitrypsin, and apolipoprotein E),
major histocompatibility complex class II antigens, and HLA-DR antigens (Umeda
et al. 2005). Cellular components have also been identified in drusen, including RPE
debris, lipofuscin, and melanin, as well as processes of choroidal dendritic cells,
which are felt to contribute to the inflammatory response. In addition to immune
components, a number of other proteins were found in drusen. These appear to be
vitronectin, clusterin, TIMP-3, serum amyloid P component, apolipoprotein E, IgG,
Factor X, crystallins, EEFMP1, and amyloid-beta. The presence of immunoreactive
proteins and oxidative modified proteins implicate both oxidation and immune
functions in the pathogenesis of AMD.
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Fig. 2. Retinal histological section of affected Suzuki Monkey showing the accumulation of drusen
between the retinal pigment epithelium and Bruch’s membrane.

~ The eyes of monkey are structurally similar to human eyes which make them
extremely valuable for AMD studies. However, there are limitations in using this
species over other laboratory animals. Monkeys have a relatively longer life span,
have a longer gestation period, have a lower birth numbers resulting in a slower
expansion of the pedigree, more difficult to genetically manipulate, and the
maintenance cost is high. In the other laboratory animals, the differences in the eye
structure, lack of a fovea, and a low cone/rod ratio compared to humans have been
considered to be a disadvantage for using them as AMD models. However, they are
easier to manipulate genetically and easier and less expensive to maintain. This has
made the development of a mouse model of AMD very attractive, and a number of
mouse AMD models have been reported recently. :

6 Mouse Model for AMD

The mouse model described by Ambati et al is deficient either in monocyte
chemoattractant protein-1 or its cognate C-C chemokine receptor-2. These mice were
found to develop the cardinal features of AMD including accumulation of lipofuscin
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in drusen beneath the RPE, photoreceptor atrophy, and CNV (Ambati et al. 2003). An
impairment of macrophage recruitment allowed the accumulation of C5a and IgG,
which leads to the production of vascular endothelial growth factor by the RPE cells
and the development of CNVs. Another mouse model that has three known AMD risk
factors: age, high fat cholesterol rich diet, and expression of human apolipoprotein E
(apoE2, apoE3, apoE4) has been developed (Malek, Johnson, Mace, Saloupis,
Schmechel, Rickman, Toth, Sullivan, and Bowes Rickman 2005). ApoE4-deficient
mice are severely affected showing diffuse subretinal pigment epithelial deposits,
drusen, thickened Bruch’s membrane, and atrophy, hypopigmentation, and
hyperpigmentation of the RPE.

Oxidative stress has long been linked to the pathogenesis of AMD. Imamura et al
reported a Cu, Zn-superoxide dismutase (SOD1)-deficient mice that had features
typical of AMD in human. Senescent Sod1 (-/-) mice had drusen, thickened Bruch’s
membrane, and choroidal neovascularization (Imamura, Noda, Hashizume, Shinoda,
Yamaguchi, Uchiyama, Shimizu, Mizushima, Shirasawa, and Tsubota 2006). The
number of drusen increased with age and also after exposure of young Sod1 (-/-) mice
to excess light. The retinal pigment epithelial cells of Sodl (-/-) mice showed
oxidative damage, and their beta-catenin-mediated cellular integrity was disrupted.
These findings suggested that oxidative stress may affect the junctional proteins
necessary for the barrier integrity of the RPE. These observations strongly suggested
that oxidative stress may play a major role in AMD.

The complement components, C3a and CS5a, are present in drusen, and were
observed in Bruch’s membrane of a laser-induced CNV mice model. Neutralization
of C3a or C5a by antibody or by blockade of their receptors by a complement
inhibitor significantly reduced the CNV (Nozaki, Raisler, Sakurai, Sarma, Barnum,
Lambris, Chen, Zhang, Ambati, Baffi, and Ambati 2006). These observations
revealed a role for immunological mechanisms for the angiogenesis and provided
evidence for future therapeutic strategies for AMD. Although the pathology of AMD
is pronounced in the macula area, it is not confined to this region. Characteristics of
human AMD such as thickening of Bruch’s membrane, accumulation of drusen, and
CNV have been observed in mouse models. Nevertheless, the primate model will still
be the choice for AMD studies, especially at the stage when new therapeutic methods
are tested and evaluated for the first time. However, it would be wise and more
productive to study both primate and mouse models in AMD research. This will be
necessary to learn the mechanisms underlying the disease and to identify clinical and
molecular markers for the early stages of AMD. The findings from these studies will
provide critical information needed to develop therapies for AMD.
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Proteomic and Transcriptomic Analyses of Retinal
Pigment Epithelial Cells Exposed to REF-1/TFPI-2

Masabiko Shibuya,'* Haru Okamoto,' Takebiro Nozawa,?® Jun Utsumi,*
Venkat N. Reddy,® Hirotoshi Echizen,® Yasubiko Tanaka,® and Takesbi Iwata'

Purrose. The authors previously reported a growth-promoting
factor, REF-1/TFPI-2, that is specific to retinal pigment epithe-
lial (RPE) cells. The purpose of this study was to determine the
genes and proteins of human RPE celils that are altered by
exposure to TFPI-2.

MeTHops. Human primary RPE cells were cultured with or
without TFPI-2. Cell extracts and isolated RNA were subjected
to protcomic and transcriptomic analyscs, respectively. Pro-
teins were separated by two-dimensional gel electrophoresis
followed by gel staining and ion spray tandem mass spectrom-
etry analyses. Transcriptomic analysis was performed using a
DNA microarray to detect 27,868 gene expressions.

Resurts. Proteomic analysis revealed ¢-Myc binding proteins
and ribosomal proteins L11 preferentially induced by TFPL-2 in
human RPE cells. Transcriptomic analysis detected 10,773 of
33,096 probes in the TFPI-2 treated samples, whereas only
2186 probes were detected in the nontreated samples. Among
the genes up-regulated by TFPL-2 at the protein level were
c-myc, Mdm2, transcription factor E2F3, retinoblastoma bind-
ing protein, and the p271 gene, which is associated with the
c-myc binding protein and ribosomal protein L11.

ConcLusions. The mechanisms by which TFPI-2 promotes the

proliferation of RPE cells may be associated with augmented
c-myc synthesis and the activation of E2F in the retinoblastoma
protein (Rb)/E2F pathway at the G1 phase of the RPE cells.
Activation of ribosomal protein L11 and the Mdm2 complex of
the p53 pathway may be counterbalanced by the hyperprolif-
erative conditions. (Invest Opbthalmol Vis Sci. 2007;48:
516-521) DOIL:10.1167/i0vs.06-0434

ctinal pigment epithelial (RPE) cells play important roles in
maintaining the homeostasis of the retina. RPE cells, lo-
cated between the sensory retina and the choroidal blood
supply, form a diffusion barrier controlling access to the sub-
retinal space, with the RPE membrane regulating the transport
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of proteins and controlling the hydration and ionic composi-
tion of the subretinal space. The sensitivity and viability of the
photoreceptors thus depend on RPE-catalyzed transport activ-
ity. Proteins in the RPE cells that function in ionic, sugar,
peptide, and water transport have been identified.! Damage to
RPE celis generally leads to degeneration of the neural retina,
as occurs in retinitis pigmentosa and age-related macular de-
generation. Transplantation of the healthy retinal pigment cells
or embryonic stem cclls differentiating into RPE cells would be
an ideal therapeutic approach to treat such diseases, and such
attempts have been made.?

An alternative approach to treat these retinal diseases would
be the use of a growth factor that promotes proliferation of the
remaining RPE cells in a damaged retina or one that stimulates
the regeneration of damaged RPE cells. To find such factor(s),
the proteins expressed in human fibroblast cells were fraction-
ated and assayed, leading to the isolation of RPE cell factor-1
(REF-1), which selectively promoted the proliferation of pri-
mary human RPE cells.?

Subsequently, the cDNA of REF-1 was cloned using infor-
mation from the N-terminal amino acid sequences, which was
identical with the tissue factor pathway inhibitor-2 (TFPL-2).2
Earlier studies have shown that TFPI-2 is a Kunitz-type serine
protease inhibitor*~® involved in the regulation of extrinsic
blood coagulation"7 and in the proliferation, invasion, and
metastasis of various types of malignant cells.**~'* Extensive
studies on the physiological roles of TEPI-2 have revealed that
the ERK/MAPK pathway'® may be associated with the up-
regulation of the TFPI-2 gene and that DNA methylation®'? in
certain tumor cell lines may be related to the downregulation
of the TEPI-2 gene. When TFPI-2 is added to the culture
medium of vascular smooth muscle cells, it promotes cell
proliferation."*

Our initial finding that TFPI-2 enhanced RPE proliferation
prompted us to question how this was achieved. We applied
proteomic and transcriptomic analyses to screen the changes
in the expression of the RNAs and proteins in RPE cells and will
show that the proliferation promoting activity of TFPI-2 on RPE
cells is associated with the regulation of an oncogene product,
c-myc, and representative cancer repressor proteins retinoblas-
toma protein (Rb)/E2F and p53.

MATERIALS AND METHODS

TFPI-2 Treatment of Human RPE Cell Culture

Human primary RPE cells (passage 5) were seeded at a density of 2.5 X
104 cells/0.5 mL per well in 24-well plastic plates (BD Bioscicnces,
Franklin Lakes, N]) with Dulbecco madified MEM (DMEM; Invitrogen
Japan, Tokyo, Japan) containing 15% fetal calf serum (FCS, Invitrogen).
TFPI-2 was added to 20 wells with the RPE cells at 10 ng/mL concen-
trations and was incubated at 37°C for 24 hours for the proteomic
samples, and for 6 hours, 12 hours, and 24 hours for the transcriptomic
samples. An equal amount of saline was added to 20 weclls containing
RPE cells for controls. TFPI-2 was donated by Toray Industries, Inc.,
Tokyo, Japan.
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Protein Sample Preparation

To isolate whole cellular protein extracts from cultured RPE cells, the
cells were rinsed 3 times with 1X PBS (pH 7.4) and were lysed in a
denaturing lysis buffer containing 7 M urea, 2 M thiourea, 4% CHAPS,
40 mM Tris, 0.2% purifier (Bin-Lyte, pH range 3-10; Bio-Rad, Hercules,
CA), and 50 mM dithiothrcitol (DTT). The collected lysate was then
centrifuged at 14,000g for 15 minutes at 4°C. Proteins in the superna-
tant were repeatedly concentrated and precipitated and finally desali-
nated (Readyprep 2-D Cleanup kit; Bio-Rad). The protein concentration
in the RPE samples was determined by a modified Lowry method
adapted for use with the lysis buffer.

Two-Dimensional Electrophoresis

Protein samples were separated by a two-dimensional electrophoresis
method. A 300-ug protein sample was loaded on immobilized pH
gradient APG) strips (pH 3-10, 7 cm; pH 4 -7, 17 c¢m; Bio-Rad) by in-gel
rehydration at 20°C overnight. For the 7-cm strip, isoelectric focusing
(TEF) was uscd for the first dimension at an initial voltage of 250 V for
15 minutes, increased to 4000 V for 2 hours, and held until 20,000 V/h
was reached. For the 17-cm strip, the initial voltage was set at 250V,
as for the 7-cm strip. Then the voltage was increased to 10,000 V for 3
hours and was held until 60,000 V/h was reached. Immediately after
1EF, the IPG strips were equilibrated for 20 minutes in buffer contain-
ing 6 M urea, 2% SDS, 0.375 M Tris (pH 8.8), and 20% glycerol under
a reduced condition with 2% DTT (Bio-Rad), followed by another
incubation for 10 minutes in the same buffer under alkylating condi-
tions with 2.5% iodoacetamide (Bio-Rad).'®

Equilibrated IPG strips were then electophoresed by SDS-PAGE for
the second dimension, Images of the chemiluminescent signals were
captured and merged with those of protein spots made visible by
protein gel stain (Sypro Ruby; Bio-Rad), and the spots corresponding to
the immunoreactivity were cut out. To test reproducibility, the exper-
iment was performed twice.

Protein Identification by Mass Spectrometry

Excised gel picces were rinsed with water and then with acetonitrile
and were completely dried for the reduction-alkylation step. They
were incubated with 10 mM DTT in 100 mM ammonium bicarbonate
for 45 minutes at 56°C, then with 55 mM iodoacetamide in 100 mM
ammonium bicarbonate for 30 minutes at room temperature in the
dark. The supcrnatant was removed, and the washing proccdurc was
repeated three times. Finally, the gel pieces were again completely
dried before trypsin digestion and were rehydrated in a solution of
teypsin (12.5 ng/ul; Promega, Madison, WI) in 50 mM ammonium
bicarbonate. The digestion was continued for 16 hours at 37°C, and the
extraction step was performed once with 25 mM ammonium bicar-
bonate, then twice with 5% formic acid, and finally with water. After
resuspension in 40 pL solution of aqueous 0.1% trifluoroacetic acid/2%
acetonitrile, the samples were analyzed by liquid chromatography
coupled to tandem mass spectrometry (LC-MS/MS). For analysis by
LC-MS/MS, the tryptic digests were injected by an automatic sampler
(HTS-PAL, CTC Analytics, Zwingen, Switzerland) onto a 0.2 X 50-mm
capillary reversed-phase column (Magic C18, 3 um; Michrom BioRe-
sourccs, Inc., Auburn, CA) using an HPLC (Paradigm MS4: Michrom
BioResources). Peptides were cluted with a gradient (95% solvent A
‘consisting of 98% H,0/2% acetonitrile/0.1% formic acid)/5% solvent B
(10% H,0/90% acctonitrile/0.1% formic acid; 0 minute)/35% solvent
A/65% solvent B (20 minutes)/5% solvent A/95% solvent B (21 min-
utes)/5% solvent A/95% solvent B (23 minutes)/95% solvent A/5%
solvent B (30 minutes) for 30 minutes at a flow rate of 1.5 pL/min.
Peptides were eluted directly into an ion trap mass spectrometer (ESI;
Finnigan LTQ; Thermo Electron Corporation, Waltham, MA) capable of
data-dependent acquisition. Each full MS scan was followed by an
MS/MS scan of the most intense peak in the full MS spectrum with the
dynamic exclusion enabled to allow detection of less-abundant peptide
ions. Mass spectrometric scan events and HPLC solvent gradients were
controlled with the usc of a computer program (Paradigm Homc;
Michrom BioResources).
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Total RNA Isolation from RPE Cells

Total RNA was isolated from the cultured RPE cells after 6 hours, 12
hours, and 24 hours with TFPI-2 using a total RNA isolation kit (RNA-
Bee-RNA Isolation Reagent; TelTest, Friendswood, TX). Total RNA
samples were treated with RNase-frec DNase (Roche Diagnostics Ja-
pan) to minimize genomic DNA contamination.

DNA Microarray Analysis

DNA microarray analysis was performed (AB1700 Chemiluminescent
Microarray Analyzer; Applied Biosystems, Foster City, CA). The survey
array used (Human Genome Survey Array; Applied Biosystems) con-
tained 33,096 60-mer oligonucleotide probes representing a set of
27,868 individual human genes and more than 1000 control probes.
Sequences used for the microarray probe were obtained from curated
transcripts (Celera Genomics Human Genome Database), RefSeq tran-
scripts that had been steucturally curated from the Locuslink public
database, high-quality cDNA sequences from the Mammalian Gene
Collection (MGC; http://mgc.nci.nih.gov), and transcripts that werc
experimentally validated (Applied Biosystems). The 60-mer oligo
probes were synthesized using standard phosphoramidite chemistry
and solid-phase synthesis and underwent quality control by mass spec-
trometry. The probes were deposited and covalently bound to a deri-
vatized nylon substrate (2.5 X 3 inchcs) that was backed by a glass
slide by contact spotting with a feature diameter of 180 um and more
than 45 um between each feature. A 24-mer oligo internal control
probe (ICP) was cospotted at every feature with 60-mer gene expres-
sion probe on the microarray. Digoxigenin-UTP labeled cRNA was
generated and linearly amplified from 1 ug total RNA (Chemilumines-
cent RTIVT Labeling Kit, version 2.0; Applied Biosystems) according
to the manufacturer’s protocol. Array hybridization (two arrays per
samplc), chemiluminescence detection, image acquisition, and analysis
were performed (Chemiluminescence Detection Kit and AB1700
Chemiluminescent Microarray Analyzer; Applied Biosystems) accord-
ing to the manufacturer’s protocol.

Briefly, each microarray was first prehybridized at 55°C for 1 hour
in hybridization buffer with blocking reagent. Sixteen micrograms
labeled cRNA targets were first fragmented into 100 to 400 bases by
incubation with fragmentation buffer at 60°C for 30 minutes, mixed
with internal control target (ICT; 24-mer oligo labeled with LIZR
fluorescent dye), and hybridized to each prehybrid microarray in 1.5
mL vol at 55°C for 16 hours. After hybridization, the arrays were
washed with hybridization wash buffer and chemiluminescence rinse
buffer. Enhanced chemiluminescent signals were generated by first
incubating the arrays with anti- digoxigenin alkaline phosphatase and
enhanced with chemiluminescence enhancing solution and chemilu-
minescence substrate.

Images were collected from cach microarray using the 1700 ana-
Iyzer equipped with a high-resolution, large-format CCD camera, in-
cluding 2 “short” chemiluminescent images (5-second exposurc length
each) and 2 “long” chemiluminescent images (25-second exposure
length each) for gene expression analysis, two fluorescent images for
feature finding and spot normalization, and two quality control images
for spectrum cross-talk correction. Images were quantified. corrected
for background and spot, and spatially normalizcd.

Data Analysis

MS data were identified with the use of a protein scarch program
(BioWorks 3.2; Thermo Electron Corporation, Waltham, MA). For pro-
tein database searches, the same program was used to create centroid
peak lists from the raw spectra. These peak lists were then submitted
for database searching (BioWorks). The identity of the samples was
searched from databases (ntNCBI [www.ncbi.nlm.nih.gov]) that ex-
tracted proteins and were restructured; search terms included human
and Homo sapiens. Differentially expressed proteins were further
analyzed for related genes and proteins using natural language process-
ing software (Pubgene database; PubGene Inc., Boston, MA) and data
mining softwarc of genc cxpression (OmniViz; OmniViz, Inc.. May-’
nard, MA).
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FIGURE 1. Two-dimensional gel elec-
trophoresis of human RPE cells cul
ture with (A) and without (B) TFPI-2.
Spots corresponding  to  proteins
whose expression is dependent on

RESULTS

Proteome Analysis of RPE Cells Treated
with TFPI-2

To determine the mechanisms responsible for the prolifera-
tion-promoting activity of TFPI-2 on RPE cells, protein synthe-
sis and RNA expression were determined before and after
TFPL-2 exposure. Differentially expressed proteins in the pri-
mary human RPE cells in response to TFPI-2 were identified by
two-dimensional electrophoresis (Fig. 1). Samples were ini-
tially separated using IPG at a pH range of 3 to 10 to observe
the full distribution of protein spots. The pH range was then
narrowed to 4 to 7 to obtain higher resolution for spot picking.
Consequently, approximately 480 spots were identified in the
whole gel. We then focused on molecular weight Icss than 25
kDa, which is easy to check for changes. Ten spots considered
differentially expressed in the two-dimensional gel were col-
lected and subjected to LC-MS/MS analysis. Among the identi-
fied proteins, ribosomal protein L11 (RPL11; Fig. 1-1) and
c-Myc binding protein (MYCBP; Fig. 1-3), known for regulating
cell proliferation, were identified.’® These two proteins, iden-
tified by LC-MS/MS analysis and data analysis software (Bio-
works 3.2), were consistent with those estimated from the
results of two-dimensional electrophoresis (Table 1).

Transcriptomic Analysis of RPE Cells Treated
with TFPI-2

The expression of 8134 genes in RPE cells was analyzed using
DNA microarray with and without TFPI-2 exposure for 6 hours,
12 hours, and 24 hours. Signal normalization was performed
for six independent DNA microarray chips according to the
manufacturer’'s protocol. Genes differentially expressed by

Tasie 1. Two-Dimensional Gel Spots Identified by Mass Spectrometry

the presence of TFPI-2 in the culture
medium are indicated by the arrows
(énsets). Prowcins were detected by
SYPRO Ruby staining. Spots corre-
sponding to thc diffcrentially cx-
pressed proteins indicated by arrows
(1.vs.-2 and 3 vs. 4) were subse-
quently subject to the LC-MS/MS
analysis so that proteins could be
identified.

morc than threefold were considered significant and were
selected for further analysis. Among the 33,096 possible
probes, 10,773 probes were detected in the RPE cells incu-
bated with TFPI-2, whereas only 2186 probes were detected
without TFPI-2. Based on expression levels at the three time
points (6 hours, 12 hours, and 24 hours), the time-dependent
expression pattern of each gene was calculated and clustered
with other genes with similar expression patterns using data
mining software (OmniViz). Data analysis resulted in 38 clus-
ters of genes that either increased or decreased their expres-
sion levels by more than twofold after TFPI-2 (Fig. 2). Nineteen
genes were upregulated in 5 clusters, 108 genes in 16 clusters,
and 717 genes in 22 clusters at 6 hours, 12 hours, and 24 hours,
respectively. For downregulated genes, 30 genes in 16 clusters,
119 genes in 19 clusters, and 3 genes in 19 clusters were
obscrved after 6 hours, 12 hours, and 24 hours, respectively.
Transcriptomic analysis revealed significantly more genes dif-
ferentially expressed at the transcriptional level than at the
protcome level.

DiscussioN

Proteins and gencs whose expression was upregulated or
downregulated after exposure to TFPI-2 were analyzed in hu-
man RPE cells to study the proteomic and transcriptomic
changes. Protein and gene expression profiles for human RPE
cells have been reported by West et al.,'” who identified 278
proteins, and Cai et al.,'® who reported 5580 * 84 genes
expressed in adult human RPE and ARPE19 cell lines using a
DNA chip with 12,600 probes (Human U95Av2; Affymetrix,
Santa Clara, CA). Our study showed changes in the expression
of 8134 of 27,868 genes. DNA microarray analyses were simul-

Number Peptide Identified Peptide Accession

Protein of AA Residues from Database MW Score Number

c-Myc binding protein 167 108-117 ~ TAEDAKDFFK 18642.6 10.13 1731809
Ribosomal protein L11 177 88-94 VREYELR 20125.1 20.21 14719845
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FiGure 2. Differentially  expressed \au - e 2N -?#4:
genes detected by DNA array are ,,::_f"" - —
plotted as clusters. Differentially ex-
pressed  genes whose  expression
level was increased by more than : 2
twofold (A-C) or was reduced by - s " a
more than 0.5-fold (D-F) in RPE cells '-J L o ik
treated with TFPI-2 at incubation _h - = re i " F
times of 6 hours. 12 hours, and 24 24 h r — C — a
hours compared with the control 's"_ = ""_‘_’_ . ".
cells are shown. Expression profile o - \:’:“""" -
analysis revealed different gene ex- o S g,
pression patterns at cach incubation e N
time.
taneously performed at three time points (6 hours, 12 hours, % TFPI-2
. ) i . 2 -
and 24 hours) to monitor the course of expression of the A P
possible 27.868 genes in human RPE cells exposed and not 2 2
exposed to TFPI-2. This study was conducted at the transla- g
tional and the transcriptional levels to complement the disad- 2 ; PN
vantages of cach method. : 1r ——
Raw gene expression data were further analyzed with data '-;—:'
mining software (OmniViz) to obtain an overall picture of the ° 1 1
transcriptional changes induced by TFPI-2 in human primary « 0
RPE cells. Genes whose cxpressions were changed by more 6 12 24 (h)
than twofold were clustered into 38 groups showing a change
of expression at each time point (Fig. 2). The number of genes
upregulated at each time point was considerably higher than =
the number that was downregulated. A small number of genes B % c-myc binding protein
was triggered by TFPI-2 treatment at 6 hours, before the major E 2
changes occurred at 24 hours. Among the initially upregulated 3
genes were reticulon 4 interacting protein 1, phospholipase C, g .\_k’__/-.
delta 1, granzyme M (Ilymphocyte met-ase 1; GZMM), and 1F
mitochondrial ribosomal protein L41 (MRPL4T). 2
Proteomics analysis simultancously performed at 24 hours ®
s s y : rours 5 1 1 1
identified two differentially expressed proteins, the c-myc g0
binding protein (MYCBP) and the ribosomal protein L11 6 12 24 (h)

(RPL11). MYCBP and RPL11 (Fig. 3) are well known to regulate
cell cycling through the Rb/E2F pathway and the p53 pathway,
respectively. MYCBP stimulates c-myc transcription through
the retinoblastoma protein (Rb)/E2F pathway (sce Fig. 5). Sears
et al.'? reported that activation of Myc increased the signal
transduction of the cyclin D/cdk4 and cyclin E/cdk2 pathways.
Activation of these pathways inactivates Rb after phosphoryla-
tion and E2F dissociation, which then promotes RPE cells to go
into the S-phase of the cell cycle. The twofold transcriptional
increase of Rb and E2F3 in TFPI-2 exposed cells compared
with control at 24 hours supports this hypothesis (Figs. 4C.
4F).

Concomitantly, the expressions of Rb and Mdm2 were up-
regulated twofold in growth-stimulated cells compared with
control cells. Because Rb is associated with the negative regu-
lation of the G,-phase of the cell cycle, the enhanced expres-

1 1 L
12 24 (h)

FIGURE 3. Time course of gene expression for TFPI-2 (A). c-myc
binding protein (B), and ribosomal protcin L11 (C) in the cultured
human RPE cells after exposure to TFPI-2.
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sion of Mdm2 might have been involved in the augmented
degradation of Rb through the ubiquitin/proteasome-depen-
dent pathway. Recently, Uchida et al.*® suggested that Mdm2
regulates the function of RB through the ubiquitin-dependent
degradation of RB.

The Rb gene was the first identified tumor-suppressor
gene,?' and it was recognized as a central component of a
signaling pathway that controlled cell proliferation. Specifi-
cally, the D-type G, cyclins, together with their associated
cyclin-dependent kinases (CKDs) Cdk4 and Cdk®6, initiated the
phosphorylation of Rb and Rb family members, inactivating
their capacity to interact with the E2F transcription factors
(Fig. 5).!? This phosphorylation leads to an accumulation of
E2F1, E2F2, and E2F3a, which activate the transcription of a
large number of genes essential for DNA replication and fur-
ther cell cycle progression.”>"?® Among the E2F targets are
genes encoding a second class of G, cyclins, cyclin E, and the
associated kinase Cdk2 (Fig. 5).'” The activation of cyclin

TFPI-2

c-mye binding protein @ ‘

phosphorylation

: H
M

Ribosomal _Protein L11
ublquitin-dependent pS3 degradation

®

"ﬁcﬁwﬂo‘n

E2F3 in the cultured human RPE cells

12 24 (h)  after exposure to TFPI-2.

E/Cdk2 kinase activity by E2F leads to further phosphorylation
and inactivation of Rb, further enhancing E2F activity and
increasing the accumulation of cyclin E/Cdk2 (Fig. 5).'” This
feedback loop, which leads to a continual inactivation of Rb
independent of the action of cyclin D/Cdk4 —defined as a
junction in cell proliferation response when passaged through
the cell cycle— becomes growth factor independent.?>2 The
activity of the G, Cdks is negatively regulated by a family of
cyclin-dependent kinase inhibitors (CKIs), including p21™%*/,
p27¥%7 and the pl16™¥*'? family.*’ The three upregulated
E2Fs associate exclusively with Rb and appear to play a posi-
tive role in cell cycle progression.'?

RPL11 binds the mouse double-minute 2 (Mdm2 is the
mouse homologue of Hdm2 in humans) protein with other
ribosomal proteins (123 and L5) to form a complex to inhibit
ubiquitin-dependent degradation of p53.°®° The RPL11 pro-
tein is expressed in ARPE-19 cells.®’ Inhibition of p53 degra-
dation leads to p21 signaling, which participates in the G,

‘phiosphorylation:
Cyclin E/Cdk2
\_j

FiGURE 5. Hypothetical network of
various genes and proteins associ-

| Cell cycle Giphase arrest |

[ Gi/Sphase progression |

ated with the growth-promoting ef

p53 pathway.

Rb/E2F pathway

fect of TFPI-2 on the human RPE
cells. Arrows: stimulatory signals.
Straight and dotted Iines: inhibitory
effects. :
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arrest of the cell cycle but also negatively regulates cell prolif-
eration (Fig. 5).**** ™ In support of this hypothesis, p21
transcription was increased by twofold after 24 hours by
TFPI-2.

The p53 gene mediates a major tumor-suppression pathway
in mammalian cclls and is frequently altered in human tu-
mors.?° Its function is kept at a low level during normal cell
growth and is activated in response to various cellular stresses
by acting as a sequence-specific transcription factor.> The p53
protein induces cell cycle arrest or apoptosis.3°

Shinoda et al."* reported cell growth proliferation of vascu-
lar smooth muscle endothelial cells by a purified mitogenic
substance from human umbilical vein endothelial cells, later
identified as TFPI-2. These authors showed the rapid activation
of mitogen-activated protein kinase (MAPK) by TFPI-2 and the
induced activation of proto-oncogene c¢-fos mRNA in smooth
muscle cells.!4 They concluded that c/fos activation was initi-
ated by MAPK based on MAPK inhibitor PD098059 suppres-
sion.

In conclusion, the results of proteomic and transcriptomic
analyses suggest that the proliferation of RPE cells induced by
TFPI-2 is rcgulated through the Rb/E2F, p53, and Ras/Raf/
MAPK pathways. We and others®>° have reported a transcript
of TFPI-2 in the mRNA of RPE cells. It is now reasonable to
expect that RPE cells are able to self-proliferate by generating
TFPI-2. Additional studies are needed to determine whether
TFPI-2 can act as such an autocrine factor and can be modified
for future treatment of the dry-type age-related macular degen-
cration and of rctinitis pigmentosa.
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