11996 - J. Neurosd., October 31, 2007 - 27(44):11991-11998

Fujiyoshi et al. ® DTT for Spinal Cord Injury in Marmosets

Figure5. A-H, Invivo pathway-spedific DTT of intact and injured spinal cords in live common marmosets. MRl and tract-specific DTT of the intact spinal cord (A-D) and hemisected spinal cord
2 weeks after injury (E-H). DTTs of the (ST (B, F), spinothalamic tract (C, 6), and dorsal column-medial lemniscus pathway (D, i) were conducted in bath groups, revealing tract disruption at the
hemisection site (C5/6 level) in all pathways. Although there are some limitations, pathway-specific in vivo DT conducted in live animals yielded results similar to those observed in postmortem
animals, espedially in respect to major tract morphology.

conditions in SCI and to confirm the accuracy of DTT by com-
paring DTT images with histological findings, an injury with less
complexity and ambiguousness was desired. With the convincing
images obtained in this study, it would be interesting to examine
contusion injury models in the future.

With the ability to visualize axonal projections in three-
dimensions, DTT has tremendous potential as a tool to diagnose
and evaluate CNS disease and trauma. In fact, DTT is already
being clinically applied to visualize cerebral long tracts in cerebral
surgery (Kamada et al., 2005b; Okada et al.,, 2006). Although
there have been several preliminary studies of spinal cord DTI
and DTT, they have not fully explored the potential of DTI tech-
nology. One reason DTI of the spinal cord has been less studied
compared with the brain is the technical difficulty involved in
conducting imaging of the spinal cord. DTI of the spinal cord
requires high spatial resolution, is easily affected by magnetic
susceptibility, and is obscured by in vive bulk motion brought
about by the beating of the heart, respiration, and the flow of CSF
(Basser and Jones, 2002; Maier and Mamata, 2005; Kharbanda et
al., 2006). In the present study, a 7.0 tesla MRI was used to obtain
images with high resolution and a spin echo protocol was used to
minimize magnetic susceptibility. To eliminate the effect of in
vivo bulk motion, we first conducted our study using postmor-
tem animals. Because a previous study demonstrated a degrada-
tion of diffusion anisotropy in the postmortem spinal cord (Mat-
suzawa et al., 1995; Madi et al., 2005), we performed all imaging
immediately after animals were killed. By using postmortem an-
imals it was possible to conduct scans of long duration (an aver-
age scan time of 10 h), resulting in images with high spatial
resolution.

In our study using live animals, all animals were maintained
under general anesthesia and cardiac-gated imaging was incor-
porated to minimize the effects of bulk motion. Under general
anesthesia, marmosets were immobilized on an acrylic bed with a
specially designed head positioner. Because the total scan dura-
tion was limited by anesthetic considerations, scan time (average
1.5 h) and, therefore, scan area and spatial resolution were lim-
ited compared with postmortem animal studies. However, it is of
enormous importance that DTT of a live animal was able to
visualize intact neural pathways and also the disrupted pathways
in an injured animal, because this is the only method currently
available or in development that can reveal in vivo axonal
pathways.

In this study, we focused mainly on the CST to conduct
pathway-specific DTT because it is the most important pathway
in terms of motor function and often becomes the subject of
scrutiny in studies of spinal cord injury treatment protocols.
CST-specific DTT accurately depicted the course of the CST from
the medulla to the cervical spinal cord and succeeded in imaging
the “pyramidal decussation,” which has been considered difficult
to visualize. Furthermore, CST-specific DTT of the hemisected
animal revealed the disruption of the CST at the site of injury. By
using the dTV DTT software (Kunimatsu et al., 2003; Masutani et
al., 2003), it is also possible to set the ROI at any point of interest
and to perform voxel unit fiber tracking from that position
within the threshold limit set for diffusion anisotropy. This al-
lowed us to conduct DTT of the afferent pathways in both intact
and injured spinal cords, illustrating the enormous value of this
method. This capability to visualize specific projections can be
applied to various studies of the spinal cord. For example, an
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interesting study would be a study of ascending projections and
its involvement in allodynia, using functional MRI to assess sen-
sory dysfunction (Hofstetter et al., 2005; Lilja et al., 2006).

DTT is a new technique that traces white matter fiber trajec-
tories by tracking the direction of faster diffusion, which is as-
sumed to correspond to the longitudinal axis of the tract. How-
ever it is important to keep in mind that the tracking is conducted
in units called voxels, which, in this study, is 0.215 mm in size,
considerably larger than any one individual axonal tract. There-
fore, what is actually being tracked is a group of axonal fibers with
perhaps some tissue other than the intended fibers at times in-
cluded in the same voxel (Mori and van Zijl, 2002; Mori and
Zhang, 2006). When tissues other than the targeted axonal tract
are present within the same voxel, their diffusion anisotropy in-
terferes destructively in a phenomenon referred to as partial vol-
ume effect (Alexander et al., 2001). For example, if multiple ax-
onal fiber tracts with different trajectories cross within the same
voxel, their diffusion anisotropy becomes merged and may be-
come more isotropic, losing directional information. The track-
ing procedure is often terminated because the path comes to a
voxel that has lost directional orientation (anisotropy) as a result
of this partial volume effect (Fig. 3A-E). Partial volume effect can
also result in a misleading redirection of anisotropy, leading to
incorrect fiber tracking. It is also important to understand that
the number of tracts traced by DTT does not necessarily reflect
the actual volume of white matter fiber trajectories (Fig. 3A-E).

With the convincing images obtained in this study, the possi-
bilities and the limitations of spinal cord DTT need to be further
explored. For example, the next step would be DTT of contusion
SCI models. Another significant point that needs to be studied, is
whether DTT has the sensitivity to detect regenerating axons. If
confirmed, DTT would allow tracing studies at multiple time
points in the same animal/patient, becoming an indispensable
tool to monitor and evaluate the effectiveness of any treatment
protocol for spinal cord injury. Whatever the results reveal, DTT
of the spinal cord is a powerful tool with tremendous potential if
its properties and limitations are fully understood and correctly

applied.
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Heat-shock protein 105 interacts with and suppresses aggregation
of mutant Cu/Zn superoxide dismutase: clues to a possible strategy
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Abstract

A dominant mutation in the gene for copper-zinc superoxide
dismutase (SOD1) is the most frequent cause of the inherited
form of amyotrophic lateral scierosis. Mutant SOD1 provokes
progressive degeneration of motor neurons by an unidentified
acquired toxicity. Exploiting both affinity purification and mass
spectrometry, we identified a novel interaction between heat-
shock protein 105 (Hsp105) and mutant SOD1. We detected
this interaction both in spinal cord extracts of mutant SOD16934
transgenic mice and in cuiltured neuroblastoma cells.
Expression of Hsp105, which is found in mouse motor neu-

rons, was depressed in the spinal cords of SOD1%%* mice as
disease progressed, while levels of expression of two other
heat-shock proteins, Hsp70 and Hsp27, were elevated.
Moreover, Hsp105 suppressed the formation of mutant
SOD1-containing aggregates in cultured cells. These results
suggest that techniques that raise levels of Hsp105 might be
promising tools for alleviation of the mutant SOD1 toxicity.
Keywords: amyotrophic lateral sclerosis, Cu/Zn superoxide
dismutase (or superoxide dismutase 1), heat-shock protein
105.

J. Neurochem. (2007) 102, 1497-1505.

Amyotrophic lateral sclerosis (ALS) is an adult-onset neu-
rodegenerative disease causing the selective loss of motor
neurons, which results in progressive and ultimately fatal
paralysis of skeletal muscles. Death usually occurs within 2—
S years after onset of the disease and is related to respiratory-
muscle weakness. Ten percent of cases of ALS are inherited,
and the most frequent cause of inherited ALS is dominant
mutations in the gene for Cu/Zn superoxide dismutase
(SOD1). More than 100 different mutations in SOD1 have
been identified, all of which provoke uniform disease
phenotype that is similar to the phenotype of the sporadic
disease. Transgenic mice and rats expressing a mutant human
gene for SOD1 develop an ALS phenotype, although deletion
of SODI1 from mice does not cause motor neuron disease,
providing evidence for acquired toxicity due to mutant SOD1
(Bendotti and Carri 2004; Bruijn et al. 2004).

Several hypotheses have been proposed to explain the
mechanism of mutant SOD1-mediated toxicity, including

© 2007 The Authors

formation of protein aggregates due to reduced conforma-
tional stability, mitochondrial dysfunction, excitotoxicity,
abnormal axonal transport, mutant-derived oxidative dam-
age, lack of growth factors, and inflammation. However, the
exact mechanism responsible for motor neuron degeneration
remains unknown. One plausible hypothesis is linked to the
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impairment of protein-quality control. Accumulation of
mutant SOD1 might result in (i) saturation of the protein-
folding and protein-degradation machinery that handles
mutant proteins and/or (ii) disruption of vital intracellular
processes by misfolded, oligomeric species of SOD1. In such
cases, it is likely that mutant SOD1 might provoke toxicity
through abnormal interactions between mutant SOD1 and
other proteins. In this context, identification of proteins that
interact with mutant SOD1 might provide clues to the toxic
effects of the mutant protein. Mutant but not wild-type (WT)
SOD1 has been found to interact with proteins that are
involved in protein-quality control, for example, several heat-
shock proteins such as Hsp70 (Shinder et al. 2001; Okado-
Matsumoto and Fridovich 2002), Hsp40, oB-crystallin
(Shinder et al. 2001), and Hsp27 (Okado-Matsumoto and
Fridovich 2002) and E3 ligases such as dorfin (Niwa ef al.
2002), NEDL1 (Miyazaki et al. 2004), and carboxy terminus
of the Hsc70-interacting protein (Choi et al. 2004; Urushitani
et al. 2004).

Abnormal expression of heat-shock proteins has been
detected in mutant SOD1 mouse models. Increased expres-
sion of Hsp70 in mutant SODIl-expressing fibroblasts
(Bruening et al. 1999) and of Hsp27 (also referred to as
Hsp25) in spinal cord lysates of symptomatic SOD19%34
mice (Vleminckx et al. 2002) has been reported, but
decreased expression of Hsp27 has also been found in motor
neurons from symptomatic SOD19%** mice (Maatkamp
et al. 2004). Hsp70/Hsc70 were found in aggregates of
mutant SOD1 in the motor neurons of symptomatic mutant
SOD1 mice (Watanabe et al. 2001; Liu et al. 2005). These
findings support the hypothesis that depletion of chaperone
proteins might be responsible for the toxicity of mutant
SODI. Over-expression of Hsp70 in mutant SOD1 mice did
not reverse the disease process (Liu et al. 2005), whereas
activation of heat shock factor (HSF)-1, a transcription factor
for heat-shock proteins, by administration of arimoclomol
extended the life span of mutant SOD1 mice (Kieran et al.
2004). Such observations suggest that modulation of heat-
shock responses might be an attractive strategy for treatment
of motor neuron disease. Thus, it seems appropriate to
elucidate the mechanism(s) of misregulation of heat-shock
proteins that is linked to mutant SODI-mediated toxicity,
which remains poorly understood.

To uncover the properties of mutant SOD1 as they relate to
protein-quality control, we investigated the proteins that
interact with mutant SOD1 by immunoprecipitation (IP) and
subsequent mass spectrometric (MS) analysis. We identified
heat-shock protein 105 (Hspl05) as a novel mutant SODI-
interacting protein, and we detected this interaction in spinal
cord extracts of mutant SOD19%*# transgenic mice. Levels of
expression of Hspl05, which is detected in mouse motor
neurons, were depressed in the spinal cords of SOD19%4
mice during disease progression, although levels of expres-
sion of other heat-shock protein rose. In addition, Hsp105
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suppressed the aggregation of mutant SOD1 in cultured cells.
Together, our findings indicate that raising levels of Hsp105
may alleviate the mutant SOD1-mediated toxicity.

Materials and methods

Plasmids

The coding region of human WT SOD1 ¢cDNA was cloned into the
expression vector pcDNA3.1(+) (Invitrogen, Carisbad, CA, USA)
and various mutations in SOD1 were generated (Oeda et al. 2001)
by site-directed mutagenesis using a Mutan™-Super Express Km
kit (Takara, Otsu, Japan), in accordance with the manufacturer’s
instruction. Then a FLAG tag was introduced at the carboxyl
terminus of SOD1 and its mutant derivatives by PCR. A fragment of
c¢DNA encoding mouse Hspl05 (Yasuda et al. 1995) was cloned
into the pcDNA4/TO vector (Invitrogen).

Antibodies

The primary antibodies used for immunoblots or IP included anti-
SODI1 antibody (Stressgen Biotechnologies, Victoria, BC, Canada),
anti-FLAG antibody (M2; Sigma, St Louis, MO, USA), anti-B-actin
antibody (Sigma), mouse anti-Hspl05 antibody (BD Biosciences,
San Jose, CA, USA), anti-Hsp70 antibody (Santa Cruz Biotechno-
logy, Santa Cruz, CA, USA), anti-Hsp27 antibody (Santa Cruz
Biotechnology), and anti-B-galactosidase antibody (Chemicon,
Temecula, CA, USA). For immunofluorescence staining, we used
rabbit anti-Hsp1035 antibody (Stressgen Biotechnologies) and SMI32
antibody (Sternberger Monoclonals, Baltimore, MA, USA). Secon-
dary antibodies for immunoblots were anti-rabbit IgG conjugated
with horseradish peroxidase (HRP; GE Healthcare, Piscataway, NJ,
USA), anti-mouse IgG conjugated with HRP (GE Healthcare), and
anti-goat IgG conjugated with HRP (Santa Cruz Biotechnology).

Culture and transfection of cells

Neuro2A and human embryonic kidney (HEK)293T cells were
maintained in Dulbecco’s modified Eagle’s medium, supplemented
with 10% fetal bovine serum, 100 IU/mL penicillin, 100 pg/mL
streptomycin, and 2 mmol/L glutamine. Cells were transiently
transfected with Lipofectamine™ 2000 (Invitrogen) according to
the manufacturer’s instruction. After 24 h, cells were harvested and
cellular proteins were subjected to IP or immunoblotting.

Transgenic mice

Mutant (B6SJL-TgN [SODI1-G93A] 1Gur) and WT (B6SJL-Tg
[SOD1] 2Gur/J) SODI transgenic mice were obtained from the
Jackson Laboratory (Bar Harbor, ME, USA). Mice were genotyped
by PCR with the following sense and antisense primers: 5’
CATCAGCCCTAATCCATCTGA-3’ and 5-CGCGACTAACAAT-
CAAAGTGA-3’, respectively. Mice were housed and treated in
compliance with the ‘Guidelines for Animal Experiments’ of Kyoto
University, Japan.

Preparation of lysates and IP of proteins

Lysates were prepared, on ice, from cells or tissue in lysis buffer
(10 mmol/L Tris—HCI, pH 7.8, 1% Nonidet P-40, 0.15 mol/L NaCl,
1 mmol/L EDTA, and 10 pg/mL aprotinin). After centrifugation
(21 600 g, 30 min, 4°C), the clarified supematants were used for
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subsequent analysis unless specified. Protein concentrations were
determined by Bradford’s assay (Bio-Rad, Hercules, CA, USA). For
IP, aliquots of 600 pg of protein in 1000 puL of lysis buffer were
incubated for 12 h at 4°C with protein G-Sepharose (GE Health-
care). Then they were incubated with rabbit anti-SOD1 (3 pg) or
mouse anti-FLAG antibodies (8.8 pg) or normal IgG for 1 h. The
antibody—antigen complexes were then incubated with 10 pL of
protein G-Sepharose for another hour. After immunoprecipitates had
been washed five times with 1000 pL of lysis buffer, protein
complexes were eluted with 15 pL of sample buffer for sodium
dodecyl sulfate—polyacrylamide gel electrophoresis (SDS~PAGE)
(0.125 mol/L Tris—HCl, pH 6.8, 4% SDS, 20% glycerol, 20 mmol/L
dithiothreitol, and 0.002% bromo phenol blue) and immediately
boiled for 5 min. Supernatants, after clarification by centrifugation,
were loaded on a 2-15% polyacrylamide gradient gel (PAGmini;
Daiichi Pure Chemicals, Tokyo, Japan) for SDS-PAGE.

Immunoblotting

Lysates prepared in lysis buffer or the whole tissue homogenates,
which were prepared by homogenization of spinal cord with the
equal volume of SDS sample buffer, were fractionated with SDS—
PAGE, then transferred to a polyvinylidene difluoride membrane
(Millipore Corporation, Bedford, MA, USA). Membranes were
incubated with primary antibodies and appropriate HRP-conjugated
secondary antibodies. Immunoreactive proteins on membranes were
visualized with the enhanced chemiluminescence western blotting
detection reagents (GE Healthcare).

MS

Proteins were identified by MS as described previously (Jensen
et al. 1996). In brief, after SDS-PAGE, proteins were visualized by
silver staining (PlusOne; GE Healthcare) and bands of proteins were
excised from gels. After overnight in-gel digestions at 37°C of
proteins with trypsin in a buffer that contained 50 mmol/L
ammonium bicarbonate (pH 8.0) and 2% acetonitrile, molecular-
mass analysis of tryptic peptides was performed by matrix-assisted
laser desorption/ionization time-of-flight MS (MALDI-TOF/MS)
with an Ultraflex MALDI-TOF/TOF system (Bruker Daltonics,
Billerica, MA, USA). The acquired mass spectral data were queried
against the National Center for Biotechnology Information non-
redundant database using the Mascot (Matrix Science, London, UK)
search engine with a peptide mass tolerance of 0.15 Da and
allowance for up to two trypsin miscleavages.

Filter trap assay

Filtration of lysates through a cellulose acetate membrane (0.2-pum
pores; Advantec, Dublin, CA, USA) was performed with a 96-well
dot-blot apparatus (Bio-Rad) as described previously (Wang ef al.
2002a) with minor modifications. In brief, HEK293T cells were
cultured on 35-mm dishes to 70-80% confluence. Cells were co-
transfected with 0.6 pg of empty vector or of plasmids encoding
LacZ or Hspl05, together with 1 ug of plasmid encoding
SOD1%”A.FLAG. After incubation for 48 h, cells were harvested
with phosphate-buffered saline (PBS) and briefly sonicated. Lysates
were centrifuged at 800 g for 10 min at 4°C and the concentrations
of proteins in the supernatants were determined. Aliquots of 200 pg
of protein in 400 pL of lysis buffer (PBS, 1% SDS) were gently
vacuum-filtered through a membrane. Membranes were washed
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twice with tris-buffered saline-0.05% Tween20 and analyzed by
immunoblotting.

Immunofluorescence staining

For immunofiuorescence staining, mice were deeply anesthetized
with pentobarbital and perfused transcardially with 4% p-formalde-
hyde in PBS. The lumbar spinal cord was dissected out, fixed
overnight in 4% p-formaldehyde in PBS, and cryoprotected with 30%
sucrose in PBS before freezing. Ten-micron cryosections were
mounted on slides. After blocking with blocking buffer (5% normal
goat serum and 0.3% Triton X-100 in PBS) for half an hour at 25°C,
the sections were incubated ovemight at 4°C with a mixture of mouse
SMI32 antibody (1 :4000) and rabbit anti-Hspl05 antibody
(1 : 100). Bound antibodies were detected with Alexa Fluor 488-
conjugated anti-rabbit IgG and Alexa Fluor 594-conjugated anti-
mouse IgG antibodies (1 : 1000; Molecular Probes, Eugene, OR,
USA). Double-immunostained fluorescent images were recorded
with a Leica DMRXA2 confocal microscope (Leica, Wetzlar,
Germany).

Statistical analysis

Signals on films were quantified with NIH image software (National
Institutes of Health, Bethesda, MD, USA). Statistical significance
was assessed by one-way aNova followed by Scheffe’s post hoc test
using the KaleidaGraph program (Synergy Software, Reading, PA,
USA). Statistical significance was set at a probability value of less
than 0.05.

Results

Identification of proteins that interact with mutant SOD1
in Neuro2A cells by MALDI-TOF/MS

We attempted to identify proteins that interact specifically
with ALS-associated mutant SOD1 proteins by IP and
subsequent MS analysis, as illustrated in Fig. la. We
transfected Neuro2A cells transiently with plasmids that
encoded SOD1"Y'-FLAG, SOD1°***-FLAG, or SOD1°*A.
FLAG. After 24 h, proteins in lysates from transfected
Neuro2A cells were immunoprecipitated with anti-FLAG
antibody or control mouse IgG. The immunoprecipitates
were fractionated by SDS-PAGE, which was followed by
silver staining (Figs 1b and c). We considered all bands in
lanes 1, 5, and 6 to represent non-specifically interacting
proteins, as they were generated in the absence of mutant
SOD1 (lane 1), in the presence of control IgG (lane 5), or in
the absence of antibody for IP (lane 6). We detected bands of
a protein of ~19 kDa in lanes 2 and 4 and of a protein of
~18 kDa in lane 3, each of which was confirmed to be
exogenous SODI-FLAG by immunoblotting (data not
shown). We identified two specific bands of proteins of
approximately 70 kDa (p70) and 105 kDa (p105), respect-
ively, that were visualized exclusively in both lanes 3 and 4
(Figs 1b and c). These two bands were excised and subjected
to MALDI-TOF/MS analysis. A search for a protein similar
to p70 gave 28 matches (m/z; 1081.53, 1197.57, 1199.59,
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Fig. 1 Identification of amyotrophic lateral sclerosis-associated mu-

tant superoxide dismutase 1 (SOD1) -interacting proteins by sodium
dodecy! sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) and
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF/MS) analysis. (a) Scheme for the experi-
ments designed to identify proteins that interact with mutant SOD1. (b
and ¢) Mutant SOD1-interacting proteins, as visualized by silver
staining. Arrows indicate interacting proteins (p70 and p105 in lanes 3
and 4), IgG heavy chain (HC), IgG light chain (LC), and FLAG-tagged
human SOD1 (lanes 2—4). The G85R mutant form of SOD1 migrates
faster than the wild type (lane 3). Asterisks (* and **) denote non-
specific bands. Figure 1c shows an enlarged view of the region of the
photograph that includes proteins of 50—150 kDa proteins in Fig. 1b.
Two proteins that interacted specifically with mutant SOD1 are
apparent (p70 and p105; lanes 3 and 4). The mobilities of these cor-
respond to molecular masses of ~70 kDa (p70) and ~105 kDa (p105),
respectively. These two bands were excised and were prepared for
MS analysis. (d) MS analysis of the excised proteins in Fig. 1c. Per-
centage sequence coverage of each protein is shown.

1228.55, 1235.54, 1252.59, 1253.56, 1391.67, 1410.62,
1480.71, 1481.77, 1487.67, 1616.76, 1649.78, 1653.81,
1659.84, 1691.73, 1787.97, 1805.86, 1837.97, 1952.04,
1981.99, 2206.09, 2260.13, 2514.34, 2774.37, 2911.63, and
2997.52) with Hsc70 (heat-shock cognate protein 70) with
56.9% sequence coverage. In the analysis of p105, although
the sequence coverage (13.7%) was lower than that of p70,
10 peaks of the theoretical mass fingerprint of Hsp105 (heat-
shock protein 105) matched with the mass observed (m/z;
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1133.56, 1321.62, 1388.67, 1479.70, 1481.75, 1487.75,
1562.77, 1637.78, 2035.13, and 2111.03) (Fig. 1d).

Those data highly suggested Hsc70 was interacted with
mutant SOD1 proteins as previously reported (Shinder et al.
2001). More interestingly, the MS analysis also suggested a
novel interaction between Hsp105 and mutant SOD1, which
required further confirmation.

Interaction of mutant SOD1 with Hsp105 both in
cultured neuroblastoma cells and in mouse spinal cord
Having identified a possible novel interaction between
Hspl05 and mutant SODI1, we decided to investigate the
role of Hspl05 in the toxicity of mutant SOD1. We first
confirmed the interaction between different mutant forms of
SOD1 and endogenous Hspl05 in Neuro2A cells. We
transiently transfected Neuro2A cells with plasmids that
expressed FLAG-tagged SODI1 (WT) and its mutant deriv-
atives (D96N, D90A, G85R, and G93A). Then we immu-
noprecipitated proteins in lysates with anti-FLAG antibody.
Immunoprecipitated proteins were examined by immuno-
blotting for the presence of Hspl05 (Fig. 2a, upper panel)
and SOD1-FLAG (Fig. 2a, second panel). Only G85R and
G93A mutant forms of SOD1, which cause motor neuron
disecase as a dominant trait, interacted with Hsp105; WT
SODI1, D96N, and D90A mutant forms of SOD1 did not.
The lack of interaction of SOD1°**4 and SOD1”*®N with
Hsp105 suggested the lower toxicity of those mutants. This
observation reflects the facts that SOD1°%* causes motor
neuron disease as a mainly recessive trait (Andersen et al.
1996) and that the D96N mutation has been reported as a
non-disease-associated mutation, though controversial (Hand
et al. 2001; Parton et al. 2001).

Next, we used mouse tissue to examine whether the
interaction between mutant SOD1 and Hspl105 might occur
in vivo. Lysates of spinal cord and of liver cells from non-
transgenic, SOD1™7 and SOD1°%** mice were treated with
anti-SOD1 antibody and immunoprecipitates were examined
for the presence of Hsp105 (Fig. 2b, upper panel) and SOD1
(Fig. 2b, second panel). In spinal cord extracts, SOD19%%4
co-immunoprecipitated with Hspl05 (lane 3), while
SODI1™T interacted with Hsp105 at a lower level (lane 2).
No evident interaction between SODI1 and HsplO5 was
detected in liver, a tissue that is not affected in ALS.

Although it has been reported that Hsp105 is expressed in
brain at higher levels (Lee-Yoon ef al. 1995; Yasuda et al.
1995), the cell type(s) that expresses Hspl05 in the spinal
cord is unknown. We examined whether Hsp105 is expressed
in motor neurons by immunofluorescence staining of spinal
cord from non-transgenic mice. Motor neurons that were
immunostained with the SMI32 antibody were immunoposi-
tive for Hsp105 (Fig. 2c, arrowheads), whereas non-motor
neurons were also stained with anti-Hspl0S antibody
(Fig. 2c, arrows). Within the motor neurons, Hspl05 was
mainly localized in the cytoplasm, as is SOD1.
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Fig. 2 Hsp105 interacts with mutant superoxide dismutase 1 (SOD1)
both in neuroblastoma cells in culture and in mouse spinal cord. (a)
Lysates of Neuro2A cells that had been transiently transfected with
FLAG-tagged wild-type (WT, lane 1) or mutant SOD1 expression
vector (lanes 2—6) were immunoprecipitated with anti-FLAG antibody
(lanes 1-5) or normal IgG (lane 6). Immunoprecipitates were analyzed
by immunoblotting specific for Hsp105 (top panel) or FLAG (second
panel). The arrowhead and the asterisk indicate Hsp105 and non-
specific bands, respectively. Ten micrograms (as protein) of each ly-
sate that was subjected to immunoprecipitation were analyzed by
immunoblotting (third and fourth panels). (b) Proteins in extracts of
spinal cord and of liver from non-transgenic, SOD"', and SOD®%*
mice were immunoprecipitated with anti-SOD1 antibody. Blots were
probed for Hsp105 (top panel) or SOD1 (second panel). Eight micro-
grams (as protein) of the lysate used for immunoprecipitation were
immunoblotted with indicated antibodies (third and fourth panels). The
arrowhead and the asterisk indicate human SOD1 and endogenous
mouse SOD1, respectively. (c) Confocal fluorescence micrographs of
lumbar spinal cord from a non-transgenic mouse after double staining
with SMI32 antibody (left panel) and anti-Hsp105 antibody (middle
.panel), and the merged image (right panel). Arrowheads indicate
motor neurons that immunoreacted with both antibodies. Arrows
indicate non-motor neurons that immunoreacted with only anti-Hsp105
antibody. Hsp105 was mainly localized in the cytoplasm of motor
neurons. Scale bars: 50 um.

Decreased expression of Hsp105 during disease
progression in SOD1%*A mice

Heat-shock responses such as increased levels of Hsp27,
Hsp70, and Hsp90 have been reported in the spinal cords of
mutant SOD1 transgenic mice (Vleminckx ef al. 2002; Liu
et al. 2005). To examine changes in levels of heat-shock
proteins, including Hsp105, we performed immunoblotting
analyses of Hsp105, Hsp70, and Hsp27 in the brain, spinal
cord, and liver of SODY" mice at 5 months of age and in
SOD19%*# mice at two different ages. By contrast to levels
of other heat-shock proteins, the level of Hspl105 was lower
in the spinal cord of symptomatic SOD1°** mice (4-months
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Fig. 3 Decreases in the levels of expression of Hsp105 in the
spinal cord during disease progression in superoxide dismutase 1
(SOD1%%34) mice. (a) Immunoblotting analysis of Hsp105, Hsp70, and
Hsp27 in the brain, spinal cord, and liver of SOD1Y" and SOD1%%34
mice at two different ages, as indicated. A total of 15 ug of protein was
loaded in each lane. The level of Hsp105 was lower in the spinal cord
of symptomatic SOD15%* mice (4 months; lane 6) than in pre-
symptomatic SOD1%%*A mice (2.5 months; lane 5) (upper panel). The
same membrane was immunoprobed for Hsp70 (second panel),
Hsp27 (third panel), hSOD1 (fourth panel), and B-actin as a loading
control (fifth panel). (b) Immunoblotting analysis of Hsp105, Hsp70,
and Hsp27 in the spinal cord of early pre-symptomatic (40-day old),
late pre-symptomatic (72-day old), symptomatic (117-day old), and
end-stage (135-day old) SOD1%%A mice (n = 3 at each time point). A
total of 15 pug of protein was loaded in each lane. Membranes were
blotted with the indicated antibodies. (c) Densitometric analysis of the
immunoblots shown in Fig. 3b. Results are expressed relative to the
intensity of signals for 40-day-old mice, which were normalized to
100%. Values are expressed as means + SE. Asterisks indicate sig-
nificant difference (p < 0.05). (d) iImmunoblotting analysis of Hsp105
using whole homogenates from the spinal cord of SOD1%%%A mice at
pre-symptomatic (40-day old) and end-stage (135-day old). A total of
40 ug of protein was ioaded in each lane. Membranes were blotted
with the indicated antibodies.

old) than in that of pre-symptomatic SOD19%** mice (2.5-
months old) (Fig. 3a, upper panel, lanes 5 and 6).

To investigate the level of expression of heat-shock
proteins in SOD1%%** mouse spinal cord in grater detail,
we performed immunoblotting analysis of Hsp105, Hsp70,
and Hsp27 in spinal cords from early pre-symptomatic (40-
day old), late pre-symptomatic (72-day old), symptomatic
(117-day old), and end-stage (135-day old) SOD1%%** mice
(Fig. 3b). Decreased levels of Hsp105 were apparent as early
as late pre-symptomatic stage (72 days). However, the
decrease did not reach statistical significance. The expression
of Hspl05 was significantly depressed as the disease
progressed, whereas the levels of expression of both Hsp70
and Hsp27 were elevated at the symptomatic stage and the
end-stage (Figs 3b and ¢). Semi-quantitative immunoblotting
confirmed =~50% decrease of level of Hspl05 in the spinal
cord lysates from end-stage SOD19%** mice (135-day old)
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compared with ones from pre-symptomatic mice (40-day
old) (Fig. S1).

To investigate whether the decrease in Hsp105 level was
associated with the recruitment of Hspl05 to NP-40-insol-
uble fraction, we performed immunoblotting analysis using
whole homogenates from the spinal cord of SOD19%** mice
at pre-symptomatic and end-stage. Whole homogenates were
prepared by homogenizing mouse spinal cords with sample
buffer for SDS-PAGE and analyzed by immunobloting. The
significant decrease in Hsp105 level at end-stage was still
observed (Fig. 3d), suggesting that the decrease of Hsp105
was unlikely to be due to the sequestration of Hspl05 into
the insoluble fraction.

Inhibition by Hsp105 of the formation of mutant SOD1-
containing aggregates in cultured cells

Intracellular inclusions that are strongly immunopositive for
SODI are found in the motor neurons of mutant SOD1
transgenic mice and in human ALS patients with a mutation
in SOD! (Bruijn et al. 1998). These misfolded, detergent-
resistant protein aggregates are considered to be relevant to
progression of the disease as increased accumulation of these
aggregates has been observed in symptomatic mutant SODI
mice (Bruijn et al. 1997; Johnston et al. 2000; Wang et al.
2002b). To determine whether Hspl05 can suppress the
formation of mutant SOD1-containing aggregates, we stud-
ied the effects of over-expression of Hspl05 on the
aggregation of mutant SODI1 in a filter trap assay. We co-
transfected HEK293T cells with an SODI®**-FLAG
expression vector together with the empty vector, a vector
that encoded B-galactosidase or a vector that encoded
Hspl05. After 48 h, we harvested the cells and processed
them for the filter trap assay. We examined the SDS-insoluble

GI3A-FLAG + + +

Vector + - -

LacZ EEE

Hsp105 - -+
st ruac soon[ & ¢ =]

1 2 3

Blot: LacZ
Blot: Hsp105 5
Blot: FLAG (SOD1) s
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Fig. 4 Hsp105 suppressed the aggregation of mutant superoxide
dismutase 1 (SOD1) in cultured cells. HEK293T cells were co-trans-
fected with an SOD1%%A.FLAG expression vector together with the
empty vector, an expression vector for f-galactosidase (LacZ), or an
expression vector for Hsp105, as indicated. Lysates were analyzed by
the filter trap assay with subsequent immunoblotting with anti-FLAG
antibody, as described in the text (upper panel). The experiment was
repeated three times with essentially the same results. Lower panels
show the results of analysis of input in the filter trap assay.
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SOD1 aggregates that were retained on cellulose acetate
membranes by immunoblotting. Hsp105 significantly sup-
pressed the aggregation of mutant SOD1 (Fig. 4, upper
panel). Moreover, the level of expression of SOD1%%4 in
HEK293T cells was very similar in all the samples examined.
Taken together, the results indicate that Hsp105 reduced the
level of mutant SOD1-containing aggfegates by inhibiting
the formation of aggregates rather than by facilitating their

degradation.

Discussion

In the present study, we have identified a novel interaction
between Hsp105 and mutant SOD1 both in cultured cells and
in a mouse model. Although the involvement of other heat-
shock proteins has been demonstrated in mutant SODI-
mediated toxicity, we demonstrated, for the first time to our
knowledge, a decrease in the level of expression of Hsp105,
specifically, from the symptomatic to the end-stage of disease
in the mutant SOD1 mouse model unlike other heat-shock
proteins (Fig. 3). This result might be explained by several
properties of Hsp105, which make it uniquely different from
Hsp70, a major molecular chaperone that is involved in the
folding of newly synthesized and misfolded proteins, even
though these heat-shock proteins are structurally similar.
Hspl05, which is a constitutively expressed 105-kDa
protein whose synthesis is enhanced by the various stress
stimuli, is concentrated in the brain, which suggests a specific
role for Hspl05 in stress responses within the nervous
system (Lee-Yoon et al. 1995; Yasuda et al. 1995). Hsp105
exhibits significant homology at the amino acid level to
Hsp70, in particular in the amino-terminal ATPase domain.
The chaperone activity of Hsp70/Hsc70 (Hsp70s) is con-
trolled by a series of ATP-dependent reaction cycles that
consist of the binding of ATP, hydrolysis of ATP, and
nucleotide exchange (Buchberger ez al. 1995; McCarty et al.
1995; Rudiger et al. 1997). By contrast, Hsp105 does not
require ATP to prevent the aggregation of denatured proteins
(Yamagishi et al. 2003), but it does act as a nucleotide-
exchange factor for Hsp70s, which suggests a role for
Hspl05 in supporting the functions of Hsp70s (Dragovic
et al. 2006; Raviol et al. 2006). Hsp105 binds to denatured
proteins in vitro and maintains these proteins in a folding-
competent state rather than refolding them itself (Oh er al
1997, 1999; Yamagishi ef al. 2003). Thus, Hsp105 might
function not only in collaboration with Hsp70s but also as a
substitute for Hsp70s under severe stress condition, when
cellular supplies of ATP have been markedly depleted. In
motor neurons that express mutant SOD1, Hsp70s might not
be functional, since the level of cellular ATP is likely to be
low as a result of consumption by Hsp70s and the ubiquitin-
proteasome system. This scenario might explain the failure of
over-expression of Hsp70 to mitigate the toxicity of mutant
SOD!1 in mice (Liu et al. 2005). Therefore, rather than
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Hsp70, Hspl05 might be a promising candidate for a
suppressor of mutant SOD1 toxicity.

We observed the decreased level of Hsp105 in spinal cord
of SOD19%4 mice as disease progressed (Fig. 3b) and
further confirmed =~=50% decrease in Hspl10S levels at end-
stage by semi-quantitative immunoblotting analysis
(Fig. S1). This result might partly reflect the loss of motor
neurons, which contain abundant Hsp105 proteins. However,
considering the facts that lumbar spinal cord sections of
SOD1%%*A mice at the end-stage show approximately 50%
loss of motor neurons (Kostic et al. 1997; Bendotti and Carri
2004) and that HsplOS is expressed not only in motor
neurons but also in non-motor neurons (Fig. 2¢), it is less
likely that Hsp105 was decreased as a consequence of only
motor neuronal loss. Immunoblotting analysis of whole
spinal cord homogenates also revealed the decreased level of
Hsp105 in spinal cord of SOD1°** mice (Fig. 3d). There-
fore, although a fraction of Hspl05 might be lost in
aggregates, a significant part of Hspl05 is likely to be
consumed or degraded by interacting with mutant SOD1.

Consistent with the reports of the ability of Hspl05 to
maintain denatured proteins in a folding-competent state (Oh
et al. 1997, 1999; Yamagishi et al. 2003), we have shown
that Hsp105 is able to suppress the formation of aggregates
of mutant SOD]1 in cultured cells. Mutant SOD1-containing
aggregates immunoreact strongly with antibodies raised
against ubiquitin, and this phenomenon is common to all
mutant SOD1-expressing mouse models (Bruijn et al. 1998;
Wang et al. 2003; Jonsson et al. 2004) and human patients
(Bruijn et al. 1998; Kato et al. 2000; Watanabe et al. 2001).
These findings, together with decreased expression of
Hspl05 in symptomatic SOD19%*2 mice, suggest that
depletion of Hspl05 might contribute to the process of
motor neuron degeneration through the accumulation of
aggregates of misfolded mutant SOD1.

Hspl05 is essential for cell survival in eukaryotes.
Combined deletion in yeast cells of the SSE/ and SSE2
genes, which encode members of the Hsp105/110 family, is
lethal (Raviol et al. 2006). Moreover, recessive mutations in
the SIL! gene, whose product functions as a nucleotide-
exchange factor for the protein of the Hsp70 family, Bip
(GRP78), are responsible for Marinesco-Sjogren syndrome,
which is characterized by cerebellar atrophy with degener-
ation of Purkinje and granule cells (Anttonen ef al. 2005;
Senderek et al. 2005). Combined with recent reports that
Hspl05 is a nucleotide-exchange factor for Hsp70s, these
findings provide a link between a functional deficit in a
nucleotide-exchange factor for the proteins of the Hsp70
family and neurodegeneration. With respect to neuronal
survival, over-expression of Hspl05 has an anti-apoptotic
effect in cultured neuronal PC12 cells (Hatayama ef al.
2001). Hspl05 suppresses apoptosis in a cell culture model
of polyglutamine disease, a neurodegenerative disease
caused by the toxicity that is derived from a misfolded
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mutant protein (Ishihara et al. 2003). Moreover, we observed
Hspl105 prevented caspase-activation induced by proteasom-
al inhibition with lactacystin in neuroblastoma cell line
(Yamashita et al., unpublished data). These results suggest
that enhanced expression of Hspl05 might contribute to
prevention of motor neuron degeneration through its anti-
apoptotic property.

Increased expression of Hsp70s in spinal cord lysates from
our SOD1°%*4 mice and from SOD1%**® mice (Liu et al.
2005), together with the impaired heat-shock response of
Hsp70 in mutant SOD1-expressing motor neurons (Batulan
et al. 2003), suggests the enhanced expression of Hsp70s in
glial cells. In accordance with this hypothesis, elevated levels
of Hsp27 were also observed in the glial cells of SOD19%4
mice (Vleminckx et al. 2002). However, this scenario does
not apply to Hspl035, because (i) continuous decreases in
levels of Hsp105 were observed throughout the course of the
disease and (i) Hsp105 is concentrated in neurons and not in
glial cells (Hylander et al. 2000). Absence of the induction of
expression of Hspl05 in non-neuronal glial cells might
exacerbate the toxicity of mutant SOD1 as the toxicity of the
mutant protein to motor neurons is non-cell autonomous
(Clement et al. 2003; Boillee et al. 2006).

Over-expression of Hsp70 did not ameliorate the condition
of mutant SOD1 mice (Liu ez al. 2005). By contrast, the
pharmacological activation of HSF-1, a transcription factor
for heat-shock proteins, extended the life span of mutant
SOD1 mice by enhancing the expression of Hsp70s and
Hsp90. In the cited study, the level of Hspl05 was not
measured (Kieran et al. 2004). In spinal and bulbar muscular
atrophy mouse model, in which accumulation of misfolded
polyglutamine protein causes motor neuron degeneration,
pharmacological induction of the expression of HSF-1 by
geranylgeranylacetone alleviated polyglutamine-mediated
motor neuron disease and activation of HSF-1 was shown
to induce the expression of Hsp70, Hsp90, and Hspl105 but
not of Hsp27, Hsp40, and Hsp60 (Katsuno ef al. 2005). In
view of our observation of depleted supplies of Hspl105 in
SOD1¢%34 mice, a requirement for enhanced synthesis of
Hsp70s, Hsp90, and Hsp105 in both neuronal cells and non-
neuronal neighboring cells might be crucial for the mitigation
of mutant SOD1-mediated toxicity.
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