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Fic. 7. Immunostaining of PADI4 and citrulline in OA synovial tissue. (a) Double immunofiuorescent labelling shows CD68
macrophages (green in aA) and PADI4 signal (red in aB). Expression of PADI4 is relatively weak in macrophages of OA
synovial tissue. Scale bar, 40 pm. (b) No significant immunosignals for citrullinated peptide in OA synovial tissues. Original

magnification, 100x.

whereas the PADI4 Iprotein level remains unchanged [19]. Because
PADI4 transcripts with single-nucleotide polymorphisms confer-
ring RA susceptibility have a longer half-life than non-susceptible

mRNA [14], we postulate that mRNA with an RA susceptible--

haplotype accumulates and becomes translated into more protein
products in the RA inflamed synovium. Therefore, the high
abundance of PADI4 in the synovial membrane is a prominent
feature of RA pathogenesis.

Excessive fibrin formation is a prominent event of the inflamed
RA joint 5, 23-25]. Amorphous fibrin deposits have been detected
in the lining and deep layer of RA synovial membrane [23]. Based
on our observations, fibrin aggregates appeared in the RA
synovium as a solid block or as a loose tissue structure, and both
forms were considerably citrullinated. However, only the loose
fibrin structure expressed intracellular and extracellular PADI4. In
these structures, PADI4-positive cells co-located with protein that
contained citrulline, apoptotic cells that contained fragmented
DNA and CK18 cleaved by caspase. Furthermore, most-apoptotic
cells of the RA synovium were localized in the spongiform fibrin
mass. The co-localization of PADI4 and apoptotic cells in
citrullinated fibrin with a loose tissue structure supports the notion
that PADI4 plays a role in apoptosis and locally citrullinates fibrin,
possibly by initiating apoptosis as described by Vossenaar er al.
[19). Then, the enzyme might leak from dead cells and continually
catalyse extracellular fibrin protein. As a result, the spongy fibrin
develops into a solid block after citrullination and the PADI4

enzyme is degraded extracellularly. This could explain why PADI4
expression was essentially undetectable in the solid fibrin block.
in the rabbit model of antigen-induced arthritis, Sanchez-Pernaute
et al. observed meshed fibrin at the initial stage of joint
inflammation. They postulated that citrullination facilitates pro-
teolytic fibrin cleavage and that fibrin after structural transforma-
tion activates the autoimmune reaction of RA [5, 25].

In most of the RA synovial tissue samples we tested, an antibody
against IgA rather than other immunoglobulins recognized
citrullinated fibrin, although some fibrin clots were also mildly
immunostained with anti-IgM antibody. The IgA autoantibody
has been broadly identified in rheumatoid disease. Among diverse
types of RF, IgA RF is more frequently detected than IgM RF or
IgG RF in the sera of individuals before a diagnosis of RA [26].
Berthelot ¢r al. found the IgA class of APF in RA sera, though
IgA APF was less sensitive than its classical 1gG isotype [27].
Therefore, RA patients might develop an IgA class of anti-
citrullinated protein antibody in response to a high concentration
of citrullinated fibrin protein in the synovium. In fact, Masson-
Bessiere et al. have reported that some fibrin in the RA synovial
membrane is citrullinated and that the o and 8 chains of fibrin
are the major targets of AFA [23]. The present study supports
the notion that citrullinated fibrin triggers citrulline-specific
B-cell maturation and thereby leads to RA autoimmunity [5. 23].

Although PADI4 was widely distributed in the lining and
sublining of the RA synovial membrane, only a few cells of the
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tissue expressed citrullinated protein. Baeten et al. obtained similar
results using two commercially available anti-citrulline antibodies
(Upstate and Biogenesis) [28]. This observation implies that the
PADI4 enzyme is inactive in most RA synovial cells as well as
in peripheral blood. The activation of PADI requires a high
concentration of Ca®* (10™>mol/l) [29). Under normal physio-
logical conditions, the cytosolic and nucleoplasmic Ca* concen-
tration of 10™7 mol/l is too low to trigger PADI enzymatic activity
[19, 29]. Vossenaar er al. recently found that a high concentration
of calcium ions induced by ionomycin could stimulate PADI
and the subsequent citrullination of intracellular protein in RA
synovial macrophages [191. lonomycin is a calcium ionophore that
facilitates a sustained Ca®* influx [30]. Thus, an altered level of
calcium ions should explain the disparate expression of PADI4
enzyme and citrullinated peptides. However, exactly how Ca®*
leads to apoptosis involving PADI4 and subsequent fibrin
citrullination remains unknown.

In summary, we demonstrated extensive PADI4 expression in
diverse leucocyte subtypes of RA synovial tissue. We also observed
significant citrullination of fibrin, as well as the co-location of
PADIA4, citrullinated protein and apoptosis in some fibrin deposits
of the tissue. These findings might be helpful in understanding
the close association of the PADI4 haplotype with RA and the
important role of PADI4 in RA pathogenesis.
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CUL1, a component of E3 ubiquitin ligase, alters
lymphocyte signal transduct/on with possible effect on
rheumatoid arthritis

R Kawaida'?, R Yamada', K Kobayashi', S Tokuhiro'?, A Suzuki’, Y Kochi'?, X Chang', A Sekine’,

T Tsunoda!, T Sawada?, H Furukawa?Y Nakamura' and K Yamamoto'?
'SNP Research Center, RIKEN, Yokohama, Kanagawa, Japan; *Graduate School of Medicine, University of Tokyo, Tokyo, Japan;
*Biomedical Research Laboratories, Sankyo Co., Ltd, Tokyo, Japan

Ubiquitination affects various immune processes and E3 ubiquitin ligases (E3) play an important role in determining substrate
specificity. We identified 11 human E3 ligase genes of potential importance in pathogenesis of autoimmune diseases by search
of public databases and screened them for candidacy of biological investigation with case—control linkage disequilibrium tests
on multiple SNPs in the genes using rheumatoid arthritis (RA) as a model! of autoimmune diseases. Significant association with
RA was observed in an SNP in intron 3 of Cullin 1 (CUL1) that affected transcriptional efficiency of the promoter activity in
lymphocytic cell lines. Quantitative expression analysis revealed that CUL1T mRNA was highly detected in lymphoid tissues. .
including spleen and tonsil, and was specifically expressed in T and B lymphocytes in fractionated peripheral leukocytes.
Histological evaluation of tonsils indicated that CUL1 protein expression was relatively specific for maturing germinal centers.
Suppression of CUL 1 expression had influence on the phenotype of T-cell line, that is, it inhibited IL-8 induction, which is known
to play an important role in the migration of inflammatory cells into the affected area seen in RA. Our data suggest that the
regulation of CUL1 expression in immunological tissues may affect the susceptibility of RA via altering lymphocyte signal

transduction.
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Introduction

The ubiquitin system contributes to many aspects of
cellular activities. The length of the ubiquitin chain is
generally related to different processes. Whereas at least
four units of the ubiquitin chain seem necessary for
proteasomal degradation,' mono-ubiquitination is in-
volved in endocytosis.> The ubiquitin-proteasome sys-
tem degrades polyubiquitinated proteins via the 265
protein complex, the proteasome. The machinery con-
tributes to a variety of cellular processes, including cell-
cycle control, signal transduction, transcriptional regula-
tion, DNA repair, antigen presentation and apoptosis.” In
addition to physiologically normal proteins, misfolded
proteins could be substrates in the cellular stress
response, through which E3s constitute a protein quality
control system.* However, other regulatory roles such as
internalization of the receptor protein,>*” transcription
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stimulation®” and protein processing'*'' via ubiquitina-
tion have recently been suggested.

Ubiquitin is a small peptide of 76 amino acids that is
highly conserved in all eukaryotes. The ubiquitin path-
way proceeds through a three-step enzymatic cascade
involving ubiquitin-activating enzyme (E1), ubiquitin-
conjugating enzyme (E2) and ubiquitin ligase (E3). While
there are only dozens of E2s, E3s are highly hetero-
geneous. This feature allows these enzymes to determine
specific ubiquitin interactions with its target proteins'”
that control cell processes such as activation, prolifera-
tion and differentiation.

The ubiquitination system is also involved in many
aspects of the immune system. For example, antigens
processed by polyubiquitination are presented on the
surfaces of antigen-presenting cells (APCs) that are
recognized by MHC class T molecules of cytotoxic T
cells. Proteasome and tripeptidyl aminopeptidase Il
(TPPII) might cooperate to produce peptides bound by
MHC class [ proteins.'**

E3 ubiquitin ligases are also involved in the NF-xB
signaling pathway that regulates the expression of
various genes during inflammation, immunity, differ-
entiation and apoptosis. The activation cascade is
also modulated by the multiple ubiquitination system
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executed by E3s. In response to proinflammatory
cytokines, TRAF6 modified by polyubiquitin chains is
essential for TAK1 kinase activation, which leads to IkB
kinase (IKK) phosphorylation.'*'* The activation of IKK
causes the phosphorylation and degradation of IxBa,
followed by NF-kB activation. The SCF (Skp1-Cullinl-
Fbox)* ™" E3 complex participates in IkBa degrada-
tion.'”'* Furthermore, another ubiquitin ligase might
execute the proteolysis of NF-kB pl05 into active
subunits to translocate into the nucleus and regulate
target gene transcription.’ Recently it has been found
that adaptor protein Bcl10, which is essential for NF-xB
activation by T- and B-cell receptors, promotes NF-kB
activation through the paracaspase- and UBC13-depen-
dent ubiquitination of NEMO (IKK-y).2

Some E3s play regulatory roles in T-cell anergy. For
example, GRAIL suppresses and limits activation-in-
duced IL-2 and IL-4 production in T-cell hybridomas.?!
The constitutive expression of GRAIL renders naive
CDA4T cells anergic.* T cells derived from E3 Itch—/~ mice
are activated and their proliferation is enhanced, which
results in severe immune and inflammatory disorders
and constant itching of the skin.?* Furthermore, c-Cbl and
Cbl-b negatively regulate T-cell activation by promoting
the clearance of engaged TCR from the cell surface by
ubiquitination,* and Cbl-b negatively regulates BCR
signaling by targeting Syk for ubiquitination.2®

As shown above, E3s are involved in immune
processes. We identified CUL1 among E3s as a candidate
of autoimmunity-related gene by screening association
between SNPs and rheumatoid arthritis (RA). RA is a
widespread autoimmune disease that affects 0.5-1.0% of
the worldwide population. It is characterized by chronic
inflammation of the synovial joints due to the infiltration
of lymphocytes, macrophages and plasma cells, accom-
panied by hyperplasia of the synovial fibroblasts. The
pathology of RA is generally defined by the activities of
many inflammatory cytokines. The ubiquitin system
might be involved in RA because the overexpression of
the E3 ubiquitin ligase, Synoviolin/Hrd1, causes the
excessive growth of synoviocytes in mice, which leads to
spontaneous arthropathy* One risk factor for RA is
genetic contribution. The susceptibility of siblings of
affected individuals and of monozygotic twins is higher
than that of the general population. Genetic studies of
RA using SNPs have revealed RA-susceptible SNPs such
as PADI4> RUNX1 and SLC22A4,%* and PTPN22.2
Therefore, to identify the E3s involved in autoimmune
diseases, we performed a case~control linkage disequili-
brium study of the Japanese RA population. We
discovered an SNP associated with RA in CULI, a
component of the SCF E3 complex.

CUL1 is highly conserved from nematodes to hu-
mans,” and it is indispensable for mouse embryogen-
esis.* CUL1 binds to the Skpl-F-box protein complex
and to ROC1 through its N- and C-terminal region,
respectively. F-box is a member of a large family of
substrate-targeting proteins that determine the specifi-
city of E3 activity. ROC1, on the other hand, recruits an
E2 enzyme and functions as a ubiquitin ligase on its
substrate.® A structural characteristic of the E3 ligase is
the RING finger motif in ROC1.** Besides IxBa,!”'* SCF
complex has several targets, including B-catenin,'¢ p27,
CyclinE1** and IFNa receptor 1. Thus, SCF has been
studied as an inflammation or/and cell cycle modulator.

CUL1 as a susceptible gene in rheumatoid arthritis
R Kawaida et af

Here, we analyze the expression and function of CUL1 in
the context of the immune system in autoimmunity.

Results

Analysis of RA-related SNPs in E3 ubiquitin ligase
Screening of E3 ubiquitin ligase genes for association with RA
with SNPs. A total of 11 E3 ubiquitin ligase genes were
selected as described in Materials and methods. Table 1
lists the SNPs and the genotyping results. All the SNPs
were polymorphic in Japanese population, with a minor
allele frequency more than 0.08% except for #31 in
GRAIL. Among 33 SNPs in the 11 selected genes, only
one SNP (#8) in intron 3 of the CULI gene was
significantly associated with RA, with P<0.0005 (cor-
rected P <0.05 by Bonfferoni correction). Based on these
results, we selected CUL1 for further analysis for
function and mechanism in immune system.

SNP mapping in CULI locus. To investigate the region
around CULI, we analyzed the LD and haplotype
structure with the genotype data of 40 SNPs for 94 case
samples (Figure 1). SNPs with a moderately strong LD
(A>0.5) to #8 were distributed in both CULI and its
neighboring gene EZH2. We then searched for SNPs in
this region using the JSNP database, which mainly
focuses on SNPs in the 5UTR, 3'UTR and the coding
region® We also directly sequenced 2kb of the 5'-
flanking region and exon 1, in 48 genomic samples from
RA patients to find functional SNPs in the promoter
region. Thus, among 40 genotyped SNPs, only intron 3 of
CULI contained SNPs with a P-value of <0.001.
Furthermore, no SNPs were associated with RA in the
CULT coding, or 5 and 3’ flanking regions (Figure 1).
Therefore, SNP #8 in intron 3 of CUL1 could affect
susceptibility to RA. We therefore examined the func-
tional differences of associated SNP #8.

Reporter assay of RA-associated SNP in CUL1. Reporter
constructs containing one, five or nine concatenated
copies of the 24 nucleotides around the associated SNP
#8 were connected to the SV40 promoter (Figure 2a). The
constructs were transiently transfected into both the
Jurkat T-cell (Figure 2b) and Raji B-cell (Figure 2c) lines.
The susceptible C allele had more enhancer activity than
the nonsusceptible A allele in both cell lines, with
statistical significance P <0.005 for five and nine con-
catenated constructs.

Expression of CUL1

Quantitative RT-PCR. To elucidate the role of CUL1 in
inflammatory disease, we analyzed the mRNA expres-
sion level using quantitative real-time PCR. The expres-
sion levels of CULT mRNA in a human tissue panel were
high in the spleen, tonsils and in whole blood, and
moderate in the brain, thymus, bone marrow and
liver. The kidneys and heart expressed low levels of
CULT mRNA (Figure 3a). Synovial fibroblast cells from
RA patients also expressed moderate levels of CLILI.
Mononuclear cells in the peripheral blood expressed
more CULT mRNA than polynuclear cells and lympho-
cyte-dominant expression of CUL1 was further ascer-
tained with expression evaluation of fractionated cells
stratified with cell surface markers CD4, 8, 14 and 19
(Figure 3b).
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Figure 1 LD map and genomic structure of CULI. Location of genes, exons, SNPs and —log P values of SNP in CUL1 and EZH2 regions.
Arrow indicates the direction of gene. Arrowhead indicates the location of #8, which has the strongest association in this region. Pairwise LD
between SNPs in NT_007914.13, as measured by A in 94 case samples was shown.
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Immunohistochemistry. To further investigate subtypes
of lymphocytes expressing CUL1, we examined tonsil
sections using immunohistochemical staining (Figure
3c-g). Well-structured germinal centers were observed in
the sections with hematoxylin-eosin staining (data not
shown) and anti-CD20 and anti-CD3 antibody staining
(Figure 3c and d respectively). Germinal centers were
immunohistologically divided into two types. One type

‘was clearly structured with CD23-positive cells, and the

other was not. We counted 30 CD23-positive germinal
centers and 14 CD23-negative germinal centers
(Figure 3e). Although expression of CUL1 was princi-
paily detected in germinal centers, where B-cells domi-
nated (Figure 3f), not all germinal centers were positive
with anti-CUL1 antibody signal. CUL1-positive fraction
among germinal centers was 77% (34 out of 44) and the
ratio was different between CD23-positive and -negative
germinal centers. CUL1-positive germinal centers were
more likely to be CD23-positive (28 out of 30) than CD23-
negatives (six out of 14). The difference seemed to
indicate that CUL1 expression was regulated along with
germinal center maturation. :

CUL1 siRNA inhibits 1L-8 production in Jurkat cells

To investigate the role of CUL1 in lymphocytic cells, we
interrupted CULI expression by siRNA transfection.
Transfection of siRNA into Jurkat cells induced decrease
of CUL1 protein with dose dependency and the decrease
was observed 24 h after transfection, and it persisted up
to 72h after the transfection. Suppression of ubiquitina-
tion activity of the SCF complex was measured by
accumulation of p27, which was a known substrate of the
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Roc1-Skp1-CUL1-F-box (Skp2) complex (Figure 4a). As
a control to evaluate substrate specificity, we used the
CDK2 protein that interacts with p27 in the G1 to S
transition state and is not degraded by the complex.* In
contrast to p27, CDK2 kept a steady level in spite of
CUL1 siRNA transfection. The specificity of the siRNA
was confirmed by lack of change in the amount of CUL1
and p27 protein by transfection of a control siRNA
against the luciferase gene. 1L-8 is one of the cytokines
that are known to be induced in T cells by various
stimulations. As shown in Figure 4b, CUL1 siRNA
significantly suppressed IL-8 mRNA induction in Jurkat
cells stimulated with PMA and PHA in a dose-
dependent manner (Figure 4b) (P <0.05).

Discussion

The present study showed that the regulation of E3
ubiquitin ligase CUL1 expression in immunological
tissues might affect susceptibility to autoimmune RA
via an associated SNP in intron 3 of CULI. We searched
the databases for SNP in the CULI gene and its
regulatory region from the promoter and from the first
to the last exon including the intron.*® However, we
found SNPs only in the intron region. As CUL1T is highly
conserved among organisms and plays an important role
in mice embryogenesis,* the molecular functions of
CUL1 as a component of the E3 ligase complex should be
strictly regulated both qualitatively and quantitatively
in vivo. We evaluated a sequence from 2kb upstream
from the transcription initiation site and exon 1 for the
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presence of SNPs in the region with regulatory elements.
However, a functional SNP which had association with
RA was never found in the coding or promoter regions of
CULT (Figure 1). The associated SNP in intron 3 is
probably involved in the subtle control of expression and
might affect common disease susceptibility.

Expression profiling revealed high levels of CULI
expression in the spleen and tonsils, as well as in the
T- and B-cell fraction of whole blood (Figure 3a and b).
Therefore, CULT might function as a modulator in the
development and activation status of hematological cells.
In addition, since CUL1 is involved in the regulation of
centrosome replication in Drosophila neuroblasts,” mod-
erate expression in the brain and liver might contribute
to appropriate cell division in these tissues. From the
viewpoint of lymphoid tissue, introducing the dominant-
negative form of CUL! into T-lineage cells causes
lymphoid organ hypoplasia and reduced proliferation,
followed by abnormal cell division.* Therefore, CULI1
contributes to T-lymphocyte division and proliferation.
The relatively low level of CULI expression in CD14-
positive monocytic cells suggests that another factor(s)
plays a role in cell proliferation and /or NF-kB activation
in addition to CUL1. We showed how CULI1 protein is
expressed in human tonsils. In such secondary lymphoid
tissues, germinal centers are specialized for the selection
of antigen-specific B cells that leads to extensive
expansion, isotype switching, somatic hypermutation
and differentiation into plasma cells and memory cells.
Germinal centers arise when B cells accumulate among

the processes of follicular dendritic cells and undergo
intense proliferation, apoptosis and hypermutation. B
cells that produce high-affinity antibodies in response to
antigen presented by T cells are selected to survive, while
B cells that do not recognize antigen enter apoptosis.* In
this structure, CD23 is an early-activation antigen marker
of normal and activated B cells of the mantle zone, and
follicular dendritic reticulum cells can be visualized by
intense staining. The expression of CUL1 protein over-
lapped with CD20-positive B cells rather than CD3-
positive T cells in the CD23-positive germinal center
structure (Figure 3c—f). Germinal center structures are
ectopically generated in RA synovium tissue.*® There-
fore, CUL1 must play a role in B cells of mature,
differentiated germinal centers during autoimmune
status. This might help not only immature B cells to
rapidly divide and cause B-cell expansion, but also
mature B cells to survive through NF-kB activation.

The intron region in addition to SNPs in the promoter
region might be involved in regulating the expression
level of the gene. For example, SNPs in intron 1 of
LGALS2* and LT-u*' cause changes in transcriptional
activity. A relationship between a sequence in the intron
region and a ligand-responsive element has also been
indicated in the ATP-binding cassette transporter G1.4
We searched the promoter and exon region of CULI, but
did not detect any SNPs. As CULT is highly conserved,
subtle changes in the intron region should affect expres-
sion levels of the gene. Therefore, we investigated the
influence of SNP in intron 3 of CULI on transcriptional
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efficiency in lymphocytic cell lines. Allelic differences in
SNP #8 in intron 3 influenced the enhancer-like activity
in both T- and B-cell lines (Figure 2). These results from
reporter assays and expression profiling indicate that #8
can affect the expression level of CULI in immunological
tissues. Changing one nucleotide within the site from A
(nonsusceptible allele) to C (susceptible allele) in #8
generated a score indicating that the binding probability
to Ets-1 in the TRANSFAC databases** would increase
from 71.1 to 87.0, respectively. Ets-1 might regulate T-cell
survival and activation, as well as B-cell differentiation
status.***> Enhanced CULI expression due to Ets-1
binding in intron 3 might alter T- and B-cell behavior
in immunological tissue and/or blood that would cause
a change to autoimmune status as described above.

To investigate the role of CUL1 in lymphoid cells, we
suppressed CULI mRNA transcription by transfecting
siRNA into a Jurkat T-cell line. This partially decreased
the induction of IL-8 mRNA by PMA and PHA (Figure 4).
IL-8 is a cytokine with both chemotactic and angiogenic
effects produced by T lymphocytes following activation.
Transcription factor-binding sites have been identified in
the promoter of the IL-8 gene. The sequence contains
binding sequences for AP-1, C/EBP and NF-kB and
confers an IL-8 promoter response to IL-1, TNF and
PMA.* In addition, enhanced IL-8 production in RA
synovial fibroblasts stimulated with IL-17 is transduced
both via NF-xB and PI3-kinase/Akt.*” The expression of
IL-8 was partially inhibited probably due to accumula-
tion of the CUL1 substrate IkBa, which leads to NF-xB
inactivation. However, IL-2 and TNFa were not inhibited
by siRNA (data not shown). The regulation of these
cytokine levels might depend more on factors other than
NF-xB when stimulated with PMA and PHA. These data
suggest that CUL1 positively regulates chemokine IL-8
production by T cells in immunological tissues. Although
B-cell lines were not functionally analyzed due to
transfection difficulties, B-cell signaling might also be
affected and altered by changes in CUL1 expression
levels in structures like germinal centers during auto-
immune status. B cells expressing higher levels of CULI1
probably tend to escape apoptosis through NF-xB
hyperactivation.

In conclusion, we found that CULI is an E3 ubiquitin
ligase  that is predominantly expressed in T and B
lymphocytes and its expression seems to be regulated
by functional differentiation of lymphocytes. It might be
responsible for susceptibility to RA through altering
lymphocyte signal transduction. Comparisons of CUL1
expression between individuals with susceptible and
nonsusceptible alleles and the generation of tissue-
specific CUL1 knockdown and/or transgenic mice
should help to define the role of CUL1 in autoimmune
diseases.

Materials and methods

SNPs and genotyping E3 ubiquitin ligase genes

We screened E3 ubiquitin ligases as follows. Firstly, we
searched NCBI Entrez Nucleotide database with key-
words ‘E3 ubiquitin ligase’, ‘Homo sapiens’ (organism),
‘biomol_mrna’ (PROP) and ‘srcdb_refseq” (PROP) and
identified 91 human transcript nucleotide sequences.
Among the 91 hits, we selected only 24 genes whose
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encoding proteins were previously reported to have E3
ubiquitin ligase activity by manually inspecting refer-
ence reports. We then scrutinized the genes using the
SAGE Anatomic Viewer in the NCI Gene Finder
Database. We finally selected 11 genes that express more
than four clones per 200000 clones from either lymph
node or white blood cells. We selected 88 SNPs in these
genes both by JSNP* and NCBI dbSNP databases. We
recruited Japanese individuals with and without RA as
described.?” Using 94 case samples, we genotyped 88
SNPs and analyzed linkage disequilibrium (LD). Based
on the results, we finally selected three SNPs per gene,
which were mutually as independent as possible from -
the LD standpoint. We genotyped the selected 33 SNPs in
11 genes for 846 cases and 658 controls by Invader* or
TagMan®” assays with probe sets designed and synthe-
sized by Third Wave Technologies and by Applied
Biosystems, respectively. Association was tested with
%2 test or Fisher’s exact test.

Cell culture

Jurkat E6-1 and Raji cells in RPMI1640 (Life Technolo-
gies) supplemented with 10% heat-inactivated (56°C for
30 min) FCS (JRH Biosciences) were maintained at 37°C
in a humidified 5% CO, atmosphere. Both cell lines were
purchased from ATCC.

Reagents

We purchased Human Blood Fractions from the MTC
Panel, human total RNA from Clontech, and PMA and
PHA from Sigma.

Antibodies

A polyclonal antibody against human CUL1 and horse-
radish peroxidase-linked anti-rabbit IgG were purchased
from Lab Vision and Amersham Pharmacia Biotech,
respectively. Anti-CD23 mAb was obtained from MBL.
Anti-CD3 and anti-CD20 mAbs were obtained from
Zymed. Isotype control rabbit IgG and anti-CDK2 mAb
were purchased from Santa Cruz and anti-p27 mAb was
from BD Biosciences.

Immunohistochemistry

Human tonsil sections {Genomics Collaborative Global
Repository) were deparaffinized and then rehydrated in
xylene and a graded ethanol series. After heating in
Target Retrieval Solution (Dako Cytomation) for 40 min
at 95°C, endogenous peroxidase was quenched in 0.3%
peroxide in PBS for 1 h and then nonspecific binding was
blocked with Fc Receptor Blocker (Innovex). The sections
were then stained using the Universal Elite ABC kit and
a DAB substrate kit (Vector Laboratories) according to
the manufacturer’s instructions. Nuclei were counter-
stained with hematoxylin. .
Western blotting

To prepare whole cell extracts, cells were washed with
phosphate-buffered saline, lysed in RIPA buffer (1% NP-
40, 0.5% deoxycholic acid and 0.1% SDS in phosphate-
buffered saline) supplemented with complete protease
inhibitor cocktail (Roche Diagnostics), and then sedi-
mented by centrifugation. Equal amounts of protein
(10-15 pg) from the supernatant were separated in 5-20%
gradient SDS-polyacrylamide gels and then electro-
blotted onto a polyvinylidene difluoride membrane
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(Bio-Rad). Proteins of interest were visualized using the
ECL Plus Western blotting detection system (Amersham
Pharmacia Biotech) according to the manufacturer’s
instructions.

Luciferase assay

Luciferase reporter plasmids were constructed by clon-
ing single, five or nine concatenated copies of the
adjacent 24 nucleotides of the SNP #8 nucleotide into
the pGL3-promoter vector (Promega) upstream of the
5V40 promoter. We also introduced Kpnl or Nhel sites at
the 5 ends of sense or antisense oligonucleotides,
respectively. The fidelity of the constructs was verified
by nucleotide sequencing. Jurkat cells were transfected
with 2 pg of either of the constructs and with 0.2 pg of the
PRL-TK Renilla luciferase vector (Promega) to normalize
transfection efficiency using DMRIE-C reagent (Invitro-
gen). After 5h, the cells were incubated with PHA and
PMA at final concentrations of 1pg/ml and 50ng/ml,
respectively, for 16 h. Raji cells were transfected with the
same plasmids described above using the A-23 program
of Amaxa Nucleofector™ (Amaxa) according to the
manufacturer’s instructions. The cells were incubated
on the following day for 5h with the same concentration
of PHA and PMA as the Jurkat cells, and then cell
extracts were prepared using Passive Lysis Buffer
(Promega). Firefly and Renilla luciferase activities in the
cell lysates were determined using a Dual-luciferase
assay system (Promega) according to the supplier’s
instructions.

RNA interference assay

An RNA consisting of 21 nucleotides was chemically
synthesized (TaKaRa) and the various amounts of siRNA
was transiently transfected with C-16 program using the
Amaxa Nucleofector™ (Amaxa) according to the manu-
facturer’s instructions. Cells were incubated on the
following day with PHA and PMA at final concentra-
tions of 1 ug/ml and 50 ng/ml, respectively, for 5h. Total
RNA was then extracted using the RNeasy Mini kit and
an RNase-Free DNase set (QIAGEN) according to the
instruction manual provided. First-strand cDNA was
synthesized using oligo d(T),s primers and TagMan
Reverse Transcription Reagents (Applied Biosystems).

Quantitative real-time PCR

TagMan PCR proceeded using an ABI PRISM 7900
Sequence Detection System (Applied Biosystems) ac-
cording to the manufacturer’s instructions. TagMan
probes and primers were Assays-on-Demand gene
expression products (Applied Biosystems). Preparation
of rheumatoid synovial fibroblasts has been described.*
The relative expression of CUL1 and IL-8 mRNA -was
normalized to the amount of GAPDH in the same cDNA
using a standard curve or the AA method according to
the manufacturer’s instructions.
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Angiotensin Receptor Blockers Suppress
Antigen-Specific T Cell Responses and Ameliorate
Collagen-Induced Arthritis in Mice

Kayo Sagawa, Katsuya Nagatani, Yoshinori Komagata, and Kazuhiko Yamamoto

Objective. The renin—-angiotensin system plays an
important role in the regulation of cardiovascular,
renal, and endocrine functions. Recent studies have
demonstrated that angiotensin II has proinflammatory
effects that may contribute to the pathogenesis of
immune-mediated diseases. We used the collagen-
induced arthritis (CIA) model to investigate the influ-
ence of angiotensin II receptor blockers (ARBs) on
antigen-specific immune responses and determine
whether ARBs have preventive or therapeutic effects on
the development of arthritis.

Methods. We administered ARBs (olmesartan,
candesartan, and telmisartan) to mice and evaluated
antigen-specific T cell proliferation and cytokine pro-
duction following immunization with ovalbumin (OVA)
or type II collagen in Freund’s complete adjuvant (CFA)
or aluminum hydroxide (alum). Next, we induced CIA in
DBA/1 mice and administered olmesartan. The severity
and incidence of arthritis were scored according to
clinical manifestations, and joint tissue sections were
examined histopathologically.

Results. ARBs severely suppressed lymphocyte
proliferation and interferon-y production in mice im-
munized with OVA or type II collagen in CFA. Olme-
sartan also suppressed lymphocyte proliferation in mice
immunized with ovalbumin in alum. In the CIA model,
olmesartan reduced the mean arthritis score and the
incidence of severe arthritis, even when it was adminis-
tered only after disease onset. Histopatholegic findings
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for joint destruction were improved in olmesartan-
treated mice.

Conclusion. ARBs suppressed antigen-specific
immune responses for Thl and Th2 in vivo. Further-
more, olmesartan suppressed the development of severe
arthritis and joint destruction in the CIA model. These
findings suggest that ARBs may have therapeutic poten-
tial in rheumatoid arthritis.

The renin-angiotensin system (RAS) plays an
important role in the regulation of blood pressure and
fluid homeostasis. Two distinct subclasses of the angio-
tensin II (Ang II) receptors, AT, and AT,, have been
described (1,2). Ang II, the major biologically active
peptide produced by the RAS, causes cell proliferation
and fibrosis via the AT, receptor and is a factor in
various diseases such as hypertension, glomerular dis-
ease, and congestive heart failure (3,4). _

Emerging evidence suggests that the RAS, in
addition to promoting cell growth and proliferation, may
also have potent proinflammatory effects that contribute
to disease pathogenesis. For example, Shao et al (5)
showed that levels of the Thl cytokine interferon-y
(IFNv) increased and those of the Th2 cytokine
interleukin-4 (IL-4) decreased in Ang II-infused hyper-
tensive rats with kidney injury, and that the administra-
tion of olmesartan, an Ang II receptor blocker (ARB),
corrected this imbalance of Th subsets. Ruiz-Ortega
et al (6-8) showed that Ang II activated NF-«B and
up-regulated NF-kB-related genes both in vivo and
in vitro.

Moreover, several recent studies demonstrated
the protective effect of RAS antagonists in immunolog-
ically mediated diseases. For example, some groups of
investigators demonstrated that ARBs significantly ame-
liorated kidney injury in rat models of chronic renal
allograft rejection (9-11). In a model of chronic rejec-
tion of cardiac allografts, ARBs significantly amelio-
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rated intimal proliferation of coronary arteries, which is
a pathologic finding in the setting of chronic rejection
(12). Furthermore, it was reported that captopril, an
angiotensin-converting enzyme (ACE) inhibitor, im-
proved arthritis symptoms, clinical scores, plasma viscos-
ity, and the C-reactive protein level in patients with
active rheumatoid arthritis (RA) (13). In addition, God-
sel et al (14) recently reported that captopril amelio-
rated experimental autoimmune myocarditis. These
studies identified potent effects of the RAS in modulat-
ing the immune system.

Nataraj et al (15) reported that the actions of
Ang Il in stimulating lymphocyte proliferation played a
role in modulating immune responses, and that the
stimulation of AT, receptors on lymphocytes led to an
increase in the intracellular calcium concentration. Fur-
thermore, those investigators observed that this AT,-
mediated calcium signal triggered the activation of cal-
cineurin and nuclear factor of activated T cells, and that
cyclosporine, a specific inhibitor of calcineurin phospha-
tase, completely blocked the ability of Ang II to induce
proliferation of cultured splenic lymphocytes. However,
the mechanism underlying the beneficial actions of RAS
inhibitors in preventing immune system injury has not
been completely elucidated. :

ARBs have been approved for use in treating
hypertension, and this clinical practice has spread to
many countries. In the present study, we demonstrate
that ARBs have additional properties of suppressing
antigen-specific Thl responses in vivo. We evaluated
olmesartan for its ability to ameliorate arthritis in the
murine collagen-induced arthritis (CIA) model, which is
an experimental animal model for human RA. To our
knowledge, this is the first study to show antigen-specific
immunosuppressive effects of the Thl response of
ARB:s in vivo and to demonstrate the protective effects
of ARBs in an arthritis model. Our findings suggest
that ARBs may be a beneficial treatment for patients
with RA.

MATERIALS AND METHODS

Mice. Female BALB/c mice (7 weeks of age) and male
DBA/1 mice (67 weeks of age) were purchased from Japan
SLC (Shizuoka, Japan). All of the animal experiments per-
formed in this study were approved by the Animal Research
Ethics Board of the Department of Allergy and Rheumatology
at the University of Tokyo. The animals were maintained
under specific pathogen—free conditions.

Immunization with ovalbumin (OVA) or bovine type 11
collagen (CII). OVA (grade V; Sigma, St. Louis, MO) or
bovine CII (Chondrex, Seattle, WA) was solubilized to a

concentration of 2 mg/ml in 0.05M acetic acid at 4°C, with
constant overnight mixing. Mice were immunized in the foot-
pads by subcutaneous injection of OVA or CII in Freund’s
complete adjuvant (CFA) emulsion (1 mg/ml; 0.1 ml/mouse).
In some experiments, mice were immunized intraperitoneally
with 2 ug/mt of OVA in 2 mg of aluminum hydroxide (alum).
Immunizations were performed on day 0 and day 10.

Administration of ARBs. Olmesartan medoxomil (the
prodrug of olmesartan), candesartan cilexetil, and telmisartan
were kindly provided by Sankyo (Tokyo, Japan), Takeda
Chemical Industries (Osaka, Japan), and Boehringer In-
gelheim (Ingelheim, Germany), respectively. Olmesartan (10
or 15 mg/kg body weight), candesartan (10 mg/kg body weight),
or telmisartan (10 mg/kg body weight) was administered orally
in 0.5-ml suspensions every day or every other day, depending
on the experiment, using a 2.25-mm feeding needle. In order to
make uniform suspensions, olmesartan was suspended in car-
boxylmethyl cellulose sodium (CMC; Sigma), candesartan was
suspended in methyl cellulose (Wako, Osaka, Japan), and
telmisartan was suspended in hydroxyethyl cellulose (Roche
Laboratories, Basel, Switzerland).

Cytokine analysis. Popliteal lymph node cells or
splenocytes were isolated from the mice that had received
olmesartan, candesartan, telmisartan, or vehicle only. After
preparation of a single-cell suspension and red blood cell lysis,
the cells were washed in Hanks’ balanced salt solution (Sigma)
and resuspended in X-VIVO 20 serum-free medium (Cam-
brex, Walkersville, MD). The cells were cultured in 96-well
culture plates (Becton Dickinson, Franklin Lakes, NJ) at a
concentration of 4 X 10° cells/ml with 3, 10, 30, 100, or 300
ug/ml of OVA or CII and medium (X-VIVO 20) alone. The
cells were incubated at 37°C in a humidified atmosphere
containing 5% CO,. After 48 hours of incubation, the culture
supernatants were collected, and the levels of IL-4, IL-10, and
IFNy were measured. These cytokines were determined by
enzyme-linked immunosorbent assay (ELISA) using paired
antibodies (PharMingen, San Diego, CA) for the correspond-
ing cytokines, according to the manufacturer’s protocol.

Proliferation assays. For the lymphocyte proliferation
assay, popliteal lymph node cells or splenocytes were cultured
in 96-well culture plates at a concentration of 3-4 X 10°
cells/ml with 3, 10, 30, 100, or 300 ug/ml of OVA, 10 or 100
ug/ml of denatured CII, or medium (X-VIVO 20) alone. The
cells were incubated at 37°C in a humidified atmosphere
containing 5% CO,. After 72 hours of culture, 1 uCi of
3H-thymidine was added to each well, and the cells were
incubated for an additional 16 hours at 37°C. After culturing,
*H-thymidine uptake was detected using a microplate scintil-
lation counter. Results are expressed as the mean = SEM
results of triplicate assays.

ELISA. For the measurement of OVA-specific IgG2a,
IgG1, and IgE, blood samples were obtained from the inferior
vena cava with a 25-gauge needle on day 7 and day 18 after the
OVA/CFA immunization. After the samples had fully coagu-
lated, they were centrifuged, and the sera were collected and
stored at —80°C until used. Levels of OVA-specific 1gG2a,
IgG1, and IgE were determined by ELISA using biotinylated
anti-mouse IgG2a, IgG1, and IgE antibodies for capture and
biotinylated goat anti-mouse 1gG2a, IgG1, and IgE antibodies
for detection. For the measurement of ClI-specific [gG1 and
1gG2a, serum was collected on day 88, as described above.
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Figure 1. Olmesartan suppresses antigen-specific Thl responses in BALB/c mice.
BALB/c mice were immunized with ovalbumin (OVA) in Freund’s complete
adjuvant (CFA). Olmesartan (15 mg/kg body weight) or vehicle only (control) was
administered every other day, beginning 5 days before immunization. Seven days
after immunization, popliteal lymph node cells were obtained and cultured with
OVA. A, After 72 hours of culture, *H-thymidine was added, and H-thymidine
incorporation was measured 16 hours later. * = P < 0.05 versus control; ** = P <
0.0005 versus control. B, After 48 hours of culture, supernatants were tested for
interferon-y (IFNvy) concentration by enzyme-linked immunosorbent assay (ELISA).
* = P < 0.05; ** = P < 0.001. C, Seven days after mice were immunized with OVA
in CFA, blood samples were obtained from the inferior vena cava. The levels of
OVA-specific IgG2a were determined by ELISA. Values are the mean = SEM.

Induction of CIA. CII (Chondrex) was solubilized to a
concentration of 2 mg/ml in 0.05M acetic acid at 4°C, with
constant overnight mixing. For the induction of CIA, CII was
emulsified with an equal volume (1:1) of CFA (4 mg/ml;
Chondrex). Mice were injected subcutaneously ~1-2 c¢cm from
the base of the tail with 100 pl of the emulsion (day 0). On day
21, the mice received a booster injection, for which the
collagen was emulsified with Freund’s incomplete adjuvant
(IFA; Difco, Detroit, MI) instead of CFA; the mice were
injected with 100 ul of the emulsion near the base of the tail at
a location different from that used for the first injection.
Development of arthritis was assessed by inspection 3 times
weekly. The clinical severity of arthritis in each paw was
quantified according to a graded scale from 0 to 4, as follows:
0 = no swelling, 1 = swelling in one digit or mild edema, 2 =
moderate swelling affecting several digits, 3 = severe swelling
affecting most digits, and 4 = the most severe swelling and/or
ankylosis. A mean arthritis score was determined by summing
the scores of all joints of all mice and dividing the result by the
total number of mice in the group. The mean = SEM values
were determined.

Histopathology. All mice were killed on day 74, and the
joints of the left hind paw were fixed in 10% phosphate
buffered formaldehyde solution and decalcified in Parengy
decaicification solution overnight. The tissue was then pro-
cessed and embedded in paraffin. Tissue sections were stained
with hematoxylin and eosin (H&E), using standard methodol-
ogy. The joints were studied by 2 blinded examiners from the
Sapporo General Pathology Institute (Sapporo, Japan). The
pathologic condition was scored in 5 categories, as follows:
cartilage, cellularity, pannus, bone erosion, and ankylosis.
Each category was graded from 0 to 4 as follows: 0 = normal,
1 = minimal, 2 = mild, 3 = moderate, and 4 = marked.

Statistical anmalysis. Results are expressed as the
mean = SEM. The Mann-Whitney U test was used to analyze
the clinical scores, the incidence of severe arthritis, and

histologic findings. The unpaired ¢-test was used to analyze the
results of cytokine and proliferation assays and serum antibody
levels. P values less than 0.05 were considered significant.

RESULTS

Suppression of OVA-specific Thl response by
ARBs. To examine the immunomodulatory effects of
ARBs, we administered olmesartan in vivo and checked
OVA-specific T cell proliferation and cytokine produc-
tion following immunization with OVA. BALB/c mice
received either olmesartan (15 mg/kg) suspended in
CMC or CMC only, every day beginning 5 days before
immunization until the day on which the mice were
killed. Seven days after immunization, we obtained
blood samples and popliteal lymph nodes from the mice
and performed cytokine analyses and proliferation as-
says. As shown in Figure 1A, in the mice that received
olmesartan, OVA-specific proliferation was significantly
suppressed compared with that in the control group.
IFNy production (Figure 1B) was also reduced in the
olmesartan-treated mice. In contrast, no production of
either IL-4 or IL-10 was detected in either group (results
not shown). Furthermore, there were no significant
differences between groups in the serum levels of OVA-
specific IgG2a (Figure 1C).

To examine whether the immunosuppressive ef-
fect of Thl is olmesartan-specific, we examined the
effects of the 2 other ARBs, candesartan and telmisar-
tan, using the same method. In the candesartan-treated
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Figure 2. Candesartan reduces OVA-specific Thl responses in vivo.
BALB/c mice were immunized with OVA in CFA. Either candesartan
(10 mg/kg) suspended in methylcellulose or methylceltulose only
(control) was administered every day, beginning 5 days before immu-
nization. The mice were killed, and the popliteal lymph node cells were
cultured as described in Figure 1. A, OVA-specific proliferation of the
lymphocytes was measured by *H-thymidine incorporation. * = P <
0.05 versus control; #* = P < 0.005 versus control; #+* = P < (.01
versus control. B, Production of IFNy was measured by ELISA. * =
P < 0.05. Values are the mean = SEM. See Figure 1 for definitions.

group, proliferation and IFN+y production (Figures 2A
and B) were suppressed significantly, to the same extent
as in the olmesartan-treated group (P < 0.005 to P <
0.05). In the telmisartan-treated group, proliferation and
IFNy production were also reduced compared with that
in the control group, but the immune suppression of the
Th1 response was milder than that observed with the
other ARBs (results not shown). Serum levels of OVA-
specific IgG2a also were not significantly different be-
tween the control and the telmisartan-treated groups
(results not shown). These results suggested that ARBs
suppress OV A-specific Thl responses in vivo.
Suppression of Cll-specific Thl response by
ARBs. To confirm that the immunosuppressive effect of
ARBs is antigen-specific, we examined whether olme-
sartan suppressed the response to CII or mitogen after
immunization with CII in CFA. DBA/1 mice received
olmesartan, 10 mg/kg, every day beginning 5 days before
being immunized with CII in CFA. Nine days after
immunization, we obtained blood samples and popliteal
lymph nodes from the mice. The lymphocytes were
cultured with CIH or concanavalin A in vitro, and
cytokine analyses and proliferation assays were carried
out. As shown in Figures 3A and B, CllI-specific prolif-
eration was significantly suppressed in the olmesartan-
treated group, in which IFNy production was also
suppressed. Th2 cytokines, such as IL-4 and IL-10, were
not detected (results not shown). Moreover, there were
no statistically significant differences between the serum
levels of CllI-specific IgGl and IgG2a (results not
shown). These results suggested that olmesartan influ-
enced only the antigen-specific response in vivo, because

concanavalin A-induced proliferation and production of
IFNy were not affected (Figures 3A and B).
Suppression of OVA-specific Th2 cell prolifera-
tion by ARBs. We also studied the influence of olmesar-
tan on Th2 responses. BALB/c mice received intraperi-
toneal injections of OVA/alum on day 0 and day 10.
Beginning on day —9 until the day on which the mice
were killed, the mice received either olmesartan (10
mg/kg) suspended in CMC or CMC only (control) every
other day. On day 18, spienocytes were obtained, and
cytokine production and proliferation were analyzed. At
the same time, OV A-specific IgG1 and IgE levels in sera
were measured. As shown in Figure 4, proliferative
responses of spleen cells isolated from olmesartan-
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Figure 3. Administration of olmesartan to DBA/1 mice inhibits the
Th1 response induced by immunization with type II collagen (CII) in
CFA. Beginning 5 days before immunization, olmesartan (10 mg/kg)
or vehicle only (control) was administered every day until the mice
were killed. On day 9, popliteal lymph node cells were obtained and
cultured with CII (10 ug/ml or 100 pg/ml), concanavalin A (Con A; 0.5
pg/mlor 1.0 pg/mi), or medium alone. A, Proliferation of lymphocytes
was measured by >H-thymidine incorporation, * = P < 0.05. B,
Production of IFNy was measured by ELISA. * = P < 0.0005. Values
are the mean and SEM. See Figure 1 for other definitions.
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Figure 4. Olmesartan suppresses ovalbumin (OVA)-specific Th2
proliferation. BALB/c mice were immunized intraperitoneally with
2 pg of OVA in 2 mg of aluminum hydroxide on days 0 and 10.
Beginning 9 days before immunization, olmesartan (10 mg/kg) sus-
pended in carboxylmethyl cellulose sodium (CMC) or CMC only
(control) was administered every day until the mice were kitled. On
day 18, spleen cells and blood samples were obtained. Spleen cells
were cultured with OVA or medium alone. Proliferation of the cells
was measured by the method described in Figure 1. Values are the
mean * SEM.

treated mice were lower than those of cells isolated from
controls, but the differences between groups were not
statistically significant. Serum OVA-specific IgG1 and
IgE levels were not statistically significantly different
between the olmesartan-treated group and the control
group (results not shown). Concentrations of IL-4, IL-
10, and IFNY in the culture supernatants were below the
detection limit of the ELISA (data not shown). These
results suggested that although the suppression level of
the Th2 response was considerably weaker than that of
the Th1 response, ARBs reduced OV A-specific prolif-
eration of Th2 cells without shifting from the Thl
response to the Th2 response.

Blockade of the development and progression of
CIA by ARBs. CIA is a commonly used mouse model of
human RA. Because CllI-specific immune responses by
draining lymph node cells were suppressed in vitro
(Figure 3), we next administered olmesartan to mice
with CIA in order to examine immunosuppression of
Thl responses by ARBs in this disease model. Mice
received immunizations with CII in CFA on day 0 and
with CII in IFA on day 21. Beginning on day —9, each
mouse received olmesartan (10 mg/kg) suspended in
CMC or CMC only (control); administration continued
every other day until day 70. The severity of arthritis in
the mice was scored on a scale of 0-4 for each limb. The

SAGAWA ET AL

mean arthritis score was determined by summing the
scores of all joints of the mice and dividing the resulting
value by the total number of mice in the group. The
incidence of. severe arthritis was determined by the
percentage of mice that had at least 1 joint with a score
of 4. Progression of arthritis was evaluated until day 70
after immunization, and the number of paws affected
and the mean clinical scores were recorded.

In the control group, severe arthritis began to
appear beginning ~35 days after immunization and
peaked on day 70 after immunization (Figure 5A).
Olmesartan-treated mice had milder arthritis compared
with control mice (mean = SEM arthritis score 10.9 *
0.57 versus 13.9 + 1.0), and their scores were statistically
significantly lower than those of controls on days 51, 56,
66, and 70 as well as at the end of the experiment (Figure
5A). Thirty-nine days after immunization, the incidence
of arthritis was 100% in ‘both the control and
olmesartan-treated groups, and this incidence remained
unchanged for the rest of the experiment (Figure 5B).
The incidence of severe arthritis (defined as a score of 4)
was lower in the olmesartan-treated group than in the
control group treated with CMC alone (Figure 5C), but
there was no statistically significant difference between
these groups. ‘

To determine whether olmesartan administration
prevented articular destruction, histologic sections ob-
tained from the hind paws of the mice were examined.
The left hind paws of all mice in each group (n = 10 per
group) were analyzed grossly and histopathologically by
staining with H&E on day 74 after immunization. The
histopathologic arthritis score was assessed according to
findings of cartilage destruction, synovial hypertrophy,
pannus formation, bone erosion, and ankylosis. Results
of the histopathologic examinations are summarized in
Table 1. Histopathology revealed statistically significant
reductions in cartilage loss, cellular infiltrates, pannus
formation, bone erosion, and ankylosis. Thus, suppres-
sion of the clinical scores correlated with the reduction
in histopathologic findings. These results suggest that
ARB:s blocked the development and progression of CIA
by suppressing Thl responses to CII and local inflam-
mation.

It was important to determine whether similar
effects can be obtained by administering olmesartan
after the onset of CIA. Therefore, we next administered
olmesartan to DBA/1 mice before and after CIA became
clinically detectable. For this experiment, olmesartan
was administered every day. According to the prophy-
lactic protocol, olmesartan (10 mg/kg) or vehicle only
was administered, beginning 5 days before immunization
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Figure 5. Administration of olmesartan blocks development of collagen-induced arthritis (CIA). Arthritis was induced in DBA/1 mice by
immunization with type II collagen (CII) in Freund’s complete adjuvant on day 0. On day 21, mice were injected subcutaneously with CII in Freund's
incomplete adjuvant. A-C, Administration of olmesartan before immunization. Beginning 9 days before immunization and continuing until day 70,
mice received olmesartan (10 mg/kg) suspended in carboxylmethyl cellulose sodium (CMC) or CMC only (control) every other day. Clinical scores
were determined as described in Materials and Methods. A, Mean *+ SEM arthritis scores in the 2 groups. * = P < 0.05 versus control; ** = P <
0.01 versus control; *##* = P < 0.005 versus control. B, Incidence of arthritis in the 2 groups. C, Percentage of mice with severe arthritis (arthritis
score = 4). Representative results of 2 independent experiments are shown (n = 10 mice/group). D-F, Administration of olmesartan after disease
onset. Mice received olmesartan (10 mg/kg) every day, beginning on the day after clinically evident onset of arthritis and continuing until day 87 after
onset. D, Mean *+ SEM arthritis scores in mice that received CMC alone (control; n = 10), mice that received olmesartan 5 days before immunization
(pre-onset; n = 10), and mice that received olmesartan beginning on the day after onset of clinically evident arthritis (post-onset; n = 10). * = P <
0.05 versus control; «* = P < 0.01 versus control; *** = P < 0.005 versus control. E, Incidence of arthritis. F, Percentage of mice with severe arthritis
(arthritis score = 4). * = P < 0.05 versus control; +* = P < 0.01 versus control.

and continuing until day 87; according to the therapeutic
protocol, olmesartan (10 mg/kg) or vehicle only was
administered, beginning on day 25 and continuing until
day 87 (Figures SD-F).

Control mice that were treated with vehicle only
according to the prophylactic protocol showed signs of

Table 1. Impact of ARB treatment in the murine CIA model*
Pathology category Control ARB-treated Pt
Cartilage 2.9+ 1.20 1.0 = 141 0.008
Cellularity 29*1.20 1.0 =133 0.006
Pannus 2.7*1.25 1.1 £1.52 0.028
Bone erosion 29+1.20 09 =120 0.003
Ankylosis 26x1.0 1.0+ 1.33 0.013
* Values are the mean = SEM pathology score (0 = normal, 1 =

minimal, 2 = mild, 3 = moderate, 4 = marked). ARB = angiotinsin I
receptor blocker; CIA = collagen-induced arthritis.
T By Mann-Whitney U test.

arthritis beginning ~21 days after immunization and
peaking on day 80 after immunization (Figure 5D).
Compared with daily administration of CMC only, ad-
ministration of olmesartan according to the prophylactic
protocol effectively suppressed disease. Among mice
treated according to the prophylactic protocol, the
mean * SEM arthritis score at the end of the experi-
ment was 12.2 = 1.14 in the control group versus 6.7 =
1.69 (P = 0.029) in the olmesartan-treated group (Figure
5D). In contrast, among mice treated with olmesartan
according to the therapeutic protocol, the mean = SEM
arthritis score at the end of the experiment was 9.6 *
0.62 (P = 0.014) (Figure 5D). Among mice treated
according to the prophylactic protocol, the mean arthri-
tis score (Figure 5D), incidence of arthritis (Figure 5E),
and incidence of severe arthritis (Figure 5F) in the
olmesartan-treated group were suppressed compared
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Figure 6. Measurement of type II collagen (ClII)-specific IgG2a. In
the experiment referred to in Figure 5D, blood samples were obtained
from the inferior vena cava on day 88. Levels of anti-CII IgG2a in the
3 groups (control, pre-onset, and post-onset [n = 10 per group]) were
determined by enzyme-linked immunosorbent assay. Values are the
mean and SEM. « = P < 0.05.

with the control group. Among mice treated according
to the therapeutic protocol, the incidence of severe
arthritis was reduced compared with that in the control
group (Figure 5F), but 48 days after immunization the
incidence of arthritis was 100% in both the control and
olmesartan-treated mice and remained unchanged for
the duration of the experiment (Figure SE). Finally, on
day 88 after immunization, serum ClI-specific levels of
IgG1 and IgG2a were reduced in the olmesartan-treated
group (Figure 6), and the reduction in CllI-specific
IgG2a levels was significant (P = 0.049). These data
indicated that olmesartan suppressed CIA both before
and after disease onset.

DISCUSSION

In this study, we examined the influence of ARBs
on antigen-specific Thl and Th2 responses in vivo.
Furthermore, we assessed the immunosuppressive ef-
fects of ARBs on the development of the murine CIA
model, which is a Thl-driven animal model of human
RA. Naive CD4+ T cells differentiate into 2 distinct
subpopulations, Thl cells and Th2 cells, each of which
produces its own panel of cytokines and mediates sepa-
rate functions (16). Thl cells secrete IFNvy, IL-2, and
tumor necrosis factor a (16), thereby activating macro-
phages, inducing delayed-type hypersensitivity re-
sponses, and helping in the immunoglobulin isotype
switch from IgM to IgG2a (17). In contrast, Th2 cells
secrete IL-4, IL-5, and IL-10 in response to extracellular
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bacterial pathogens and help in the immunoglobulin
isotype switch from IgM to IgG1 and IgE (16,17).

In our study, the proliferation of antigen-specific
Thl cells and the production of IFNy in vitro were
suppressed by ARB administration in vivo (Figures 1
and 2), although the suppressive effect of telmisartan
was smaller than that of the other ARBs, olmesartan and
candesartan (data not shown). However, production of
the Thl-dependent IgG antibody (IgG2a) was not sup-
pressed (Figure 1C). In addition, ARBs also reduced
antigen-specific Th2 cell proliferation, although the level
of suppression of Th2 responses was lower than that of
Thl responses (Figure 4). As in the case of Thl,
production of Th2-dependent IgG antibody (IgG1) was
not significantly different between ARB-treated mice
and controls (data not shown). Generally, the prolifera-
tion of Thl cells prevents the generation of Th2 cells,
whereas the proliferation of Th2 cells prevents the
generation of Thl cells (18). In a continuous Ang II
infusion model of rats, Shao et al (5) showed that Ang II
polarized CD4+ T cells into Thl lymphocytes, and that
the polarization was normalized by ARBs. Interestingly,
in our study ARBs suppressed not only Th1 responses
but also Th2 responses in vivo without enhancing the
production of Th2 or Thl cytokines. It is possible that
ARBs suppress both Thl and Th2 responses in cases in
which CD4+ T cells are extremely polarized into Thl or
Th2 cells.

Several recent studies have demonstrated the
protective effects of RAS antagonists in immunologi-
cally mediated conditions such as myocarditis, chronic
allograft rejection, and antiglomerular basement mem-
brane nephritis (9-12,14,19-21). However, the mecha-
nism underlying the beneficial actions of RAS inhibitors
in preventing immunologic injury in these models is still
unclear. To analyze the immunosuppressive effect of
ARBs on Thl responses in a disecase model, we admin-
istered olmesartan orally in a murine CIA model. We
chose olmesartan from among the ARBs because it
suppressed Th1 responses in vivo more potently than did

. the other ARBs tested. There were no signs that blood

pressure was reduced in any of the mice throughout this
study. In our study, the development and progression of
CIA appeared to be blocked in the olmesartan-treated
group (Figure 5). Furthermore, not only the clinical
scores but also results of the histologic analysis of
olmesartan-treated mice revealed that their joints had
much milder inflammation compared with control mice
(Table 1). Importantly, olmesartan was effective even
when it was introduced after the onset of arthritis
(Figures 5D-F). These data suggest that ARBs may be
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useful therapeutically in RA, and that Ang IT may be
involved in the development of CIA.

CIA is associated with a Thl-polarized immune
response, rendering it an excellent model in which to
explore the etfect of olmesartan in vivo. To confirm the
relationship between the Cll-specific immune responses
in vitro and CIA in vivo, we examined Cll-specific
proliferation and cytokine production by draining lymph
node cells obtained from mice belonging to the same
strain, DBA/1 (Figure 3). According to our data, CII-
specific proliferation and IFN+y production were sup-
pressed in vitro (Figures 3A and B). Moreover, in order
to make sure that the suppressive effects of olmesartan
were antigen-specific, we examined the response of
lymphocytes to a mitogen (Figures 3A and B). Con-
canavalin A~induced proliferation and IFNvy production
were similar between the olmesartan-treated and control
groups, indicating that olmesartan suppresses only
antigen-specific responses. During the acute phase (day
9), the levels of CllI-specific 1gG2a were also similar
between the olmesartan and control groups, but during a
later phase (day 88) the levels in the olmesartan group
were significantly suppressed (Figure 6). These data
suggest that olmesartan can effectively suppress anti-

collagen B cell responses during a later phase of CIA.

It has been reported that immunocompetent
cells, including T cells, macrophages, and dendritic cells,
are equipped with components of the RAS, and that
they can participate in the production of Ang II (22-24).
It has also been reported that AT, receptors are ex-
pressed in human synovium (25), and that ACE activity
in synovial fluid is increased in patients with arthritis
(26-28). It has been demonstrated that both AT, and
AT, receptors activate the NF-«xB pathway and up-
regulate the NF-«B gene (6-8,29-32). The constitutive
activation of the NF-«B pathway is often associated with
inflammatory diseases such as RA, inflammatory bowel
diseases, multiple sclerosis, and asthma (33). In our
study, ARB administration attenuated the development
of CIA clinically and pathologically, suggesting that Ang
IL, which in the CIA model is locally generated in the
synovium, exacerbates inflammation of the synovium in
articular muscle via the up-regulation of NF-«B. Alter-
natively, it has been speculated that another mechanism
allows ARBs to directly suppress Th1 responses, because
the AT, receptor is present on T cells (34-36). _

Ang II acts via AT, and/or AT, receptors. AT;
receptors are involved in cell proliferation as well as in
the production of cytokines and extracellular matrix
proteins by cultured cells (4,32,37,38). AT, receptors
regulate blood pressure control and renal natriuresis,

and, after vascular injury, inhibit both cell proliferation
and neointimal formation. Because Ang II activates
NF-kB via both AT, and AT, receptors, and because
Esteban et al (31) showed that only combined treatment
with AT, and AT, antagonists completely blocked renal
inflammatory infiltration and NF-«B activation in Ang
II-infused mice, therapy combining AT, and AT, antag-
onists may be more cffective than therapy using AT,
antagonist alone in reducing the inflammation of arthri-
tis. In this study, we administered a relatively high dose
of olmesartan to mice. This approach was used because
Shao et al demonstrated an increase in the level of IFNy
and a decrease in the level of IL-4 in Ang II-infused rats
and showed that this imbalance in T cell subsets was
reversed by olmesartan, in a dose-dependent manner
(5). Furthermore, in the CIA model, mean arthritis
scores were only slightly improved when olmesartan was
administered every other day but were extremely im-
proved when olmesartan was administered daily. Thus,
for more effective suppression, the means of adminis-
tration and the doses of ARB need to be modified.

In conclusion, our findings suggest that ARBs
restrain exacerbation of arthritis in the CIA model. It
was previously reported that the ACE inhibitor captopril
improved arthritis symptoms and laboratory values in
patients with active arthritis (13). However, it has never
been reported that ARBs may be of therapeutic benefit
to patients with arthritis. It has become clear that several
serine proteases, including kallikrein, cathepsin G, and
chymase, are related to ACE-independent Ang II for-
mation in vivo (39,40); in particular, chymase is respon-
sible for most Ang II formation in humans (41). The
ARBs have much greater potential than ACE inhibitors
for blocking angiotensin II production, and they may be
better drugs for patients with arthritis and hypertension.
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