between-block differences have been accounted for by a fixed technical effect affecting all
samples within the block, for most of the genes studied. In the example of 201 AnCg chips, the
median proportion of variance explained by the "block" factor, across all 12,734 genes, is 2.5%
of the total variance. Because the 2.5% between-block variance has one degree of freedom,
while the 97.5% within-block variance has 199 degrees of freedom, the F test showed that more
than half of the genes had significant between-block differences. In this case, 56% of the genes

satisfy P < 0.05 (one-way ANOVA) for the Block factor.

Biological variation across samples

Previously we showed that most of the brain samples in our study can be classified into two main
types of expression patterns [6]: those from individuals who died quickly and had normal tissue
pH, and those from individuals who suffered prolonged death, typically with medical
complications, and exhibited low tissue pH. The threshold value between low and normal pH is
around 6.6 in our samples, but it varied among different studies and different tissue collections
[24]. Figure 2a shows the correlation heatmap for the 201 AnCg samples obtained by using
expression values already adjusted for the block effect as described above. This is the same plot
as in Figure 1b, but with the samples re-ordered so that the previously designated Type 1
samples are grouped to the lower left side of the graph. While the distinction between the two
classes can be clearly seen, there are still samples of intermediate patterns that may correspond to

varying degrees of agonal stress that do not readily belong to the two opposing prototypes.

Because pH/agonal stress acts as an exceedingly strong confounder in gene expression studies, a
dichotomous classification may not be sufficient to ensure that cases and controls are well-
stratified, or balanced within each stratus. In addition, different brain regions may carry different

stress outcomes; whereas this aspect of data heterogeneity is not well informed by pH values
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measured in one brain region, nor by the clinical indicators. One possible approach for dealing
with residual heterogeneity is to subdivide the main classes further, such as into Types 1A, 1B,
2A, 2B, etc, effectively classifying samples in multiple tiers to establish nested subsets, within
each of which the cases and controls are more homogeneous and better balanced. Figure 2b
shows an example of three-type classification; however, even finer subdivisions are clearly
possible. In practice, it is difficult to decide the number of clusters or layers of clusters needed,
and the samples often show genuinely graduated differences of expression patterns. A natural
alternative to a finer-grained classification approach, therefore, is to rate samples on one or
several continuous scales. Toward this goal, we first carried out a Principal Component Analysis.
We re-ordered the 201 AnCg sample by their first principal component (PC1) scores, and the
resulting heatmap (Figure 2c) shows a gradual transition from one end of the spectrum to the
other. Similarly smooth progressions are also observed for the other five regions (not shown).
Importantly, the PC1 scores are highly correlated with pH (r = 0.59 for AnCg, P < 1073), the
clinical agonal factors, as well as with the previously determined Type 1-Type 2 designations;
whereas PC2 and PC3 scores have almost no correlation. For example, in AnCg, r is 0.04 (P >
0.35) and 0.07 (P > 0.25) for pH-PC2 and pH-PC3, respectively. Note that with n = 126, r needs
only to be approximately 0.18 to be significantly non-zero at p = 0.05). This result not only
confers a biological meaping to PC1, but also suggests that a single continuous variable is likely
to be sufficient to capture most of the gradual progression of expression patterns from the low-

pH prototype to the normal-pH prototype.

Not all genes contributed equally to the placement of individual samples along the gradient of
membership. We selected the 20% strongest Type 1-like samples (on the lower left corner of
Figure 2¢) and the 20% strongest Type 2-like samples (on the upper right corner), and calculated

the Student's t scores that contrasted the group means between these two canonical groups. This
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allowed us to rank genes by their Type 1- Type 2 absolute t scores, with the "top genes" being
those that are most strongly affected by pH/agonal stress. When we re-plot Figure 2c by using
the 25% strongest pH-sensitive genes (instead of all 12,734 genes), a strong gradient is clearly
seen (Figure 3, upper left panel).\ The gradient between samples becomes much dampened when
the second 25% of ranked genes (upper right of Figure 3) is used, and fades away almost entirely
with the use of the third and last 25% of ranked genes (lower panels of Figure 3). This result
indicates that the top 50% of genes are likely to be informative for membership inference, with
the top 25% and top 5% of genes carrying increasingly greater discriminating power, as one
would expect. In Additional file 2 we showed a heatmap of expression levels of the top 25% of
transcripts across 201 AnCg samples. These genes have been used to calculate the sample-
sample correlations shown in Figure 3, upper left panel. The genes are ordered from left to right
by their coefficients in the first principal component (i.e., the first eigenvector), whereas the
samples are ordered from top to bottom by their first principal component scores. The actual
expression levels are provided in Additional file 3, which is a .cdt file that can be opened in Java
Treeview for flexible browsing. To estimate the number of genes significantly affected by the
pH effect, we used the Nearest Shrunken Centroids classifier [25] to calculate the cross-
validation errors in a two-class classification analysis, and examined gene panels containing
varying numbers of most discriminating genes. Panels having as few as 297 (2.3% of the total of
12,734 probe sets) and as many as 4,720 (37.1%) genes resulted in eight or fewer cross-
validation errors out of 201 samples, and formed a plateau of error curve [see Additional file 4],
indicating a broad range of the number of informative genes. Similarly, in genetic association
studieé, some DNA polymorphisms are more informative for distinguishing different populations
[26]. In our procedure to construct an Agonal Stress Rating for individual samples (described
below), we used 25% or 5% of "top genes", and always found that with the 5% top genes the

intermediate ratings are more "stretched out” than with 25% of top gene (not shown), as one
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would expect, because the strongest pH-sensitive genes are more powerful in distinguishing
subtle differences in intermediate grades of membership. We ran the Principal Component
Analysis for six regions separately and defined the strongest Type 1/2-like samples for each
region. When we subsequently compared the strongest Type-1 against the strongest Type-2
samples and ranked genes by their t scores, the top 5% or 25% genes are similar across the six
regions as their t scores are highly correlated across regions [see Additional file 5]. On average,
a top (or bottom) 10% gene in one region has a 57% chance to be among the top (or bottom)
10% in another region. We ranked genes by their average t score ranks in five regions (all
except CB, as cerebellum is an outlier region for gene expression due to its unique anatomical
and physiological properties), and listed the 1000 most strongly up-regulated and 1000 most
sh‘ongly down-regulated genes in Additional file 6. Genes in these lists can be used as most

informative genes in future, independent studies.

Agonal Stress Ratings

Because the PC1 scores successfully arrange the samples into a smooth gradient, these scores by
themselves could serve as a measure of agonal stress in individual samples. However, we found
that PC1 may be strongly influenced by the scale of variance in individual chips and sometimes
by a small number of "outlier" samples, whereas our method of using PC1 as a crude criteria to
pre-select the strongest ~20% Type 1- and Type 2-like samples is more robust to these outliers.
In addition, the interpretation of the Principal Component scores requires the notion of
decomposition of the observed gene expression patterns into the linear combination of multiple
components. This interpretation is most natural in cases where each sample represents the actual
mixing of multiple cell types, each having its own canonical expression patterns. The meaning
of PC scores is also complicated by the process of analyzing log-transformed signal values,

while actual transcript levels are "mixed" on the linear scale. Alternative indices, such as the
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probability of classification [25], or the prediction strength such as the "margin-of-victory"
measures adopted in Golub et al. [27], are most appropriate when there are multiple genuinely
discrete outcomes, for which what is uncertain is the strength of evidence for class assignment.
In our case, gene expression in the brain is most likely affected by agonal stress in a graded
(albeit non-linear) fashion. Although many of the samples belong to the two extreme states--one
is minimally affected by stress, the other for samples that have converged to the quasi-steady
state of "thoroughly affected"--some tissues in our collection are apparently sampled at an
intermediate physiological state, and can best be characterized by the sample's relative distance
to the two ends of the spectrum, that is, the distance to the prototypical normal-pH pattern minus
the distance to the prototypical low-pH pattern, where "distance" can be the Pearson's correlation,
Euclidean Distance, Spearman’s rank correlation, or a number of other metrics. The Agonal
Stress Rating is thus defined as the difference between each sample's distances to the two
prototypical patterns, and can be calculated by using different sets of most informative genes,
which in turn can be defined by comparing the most extreme samples (see Methods). Although
ASR is formally neither a probability of classification nor a mixing ratio, it is actually quite

similar to these other measures as most of them are variants of the linear discriminant function.

A comparison of the median ASR values (for each subject, across regions and sites) with tissue
pH (Figure 4) reveals two features. First, there is a general correlation, i.e., low pH samples tend
to have low ASRs. Secondly, there is considerable local discrepancy, i.e., among the normal pH
samples, the ASR-pH correlation is weak. These discrepancies imply that the ASR values,
which are derived directly from the gene expression data, are sometimes at odds with the
measured brain pH. In the face of such discrepancies, we need to determine which index is a
more accurate surrogate for the actual degrees of stress experienced by the individual subjects in

specific brain regions, and therefore provides a safer control of the agonal stress confounder. We
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examined a test case: from a set of 55 AnCg samples previously "included” in an intermediate-
stage analysis, we selected all of the thirteen Control samples with ASR > 0.8, and divided all of
the fourteen Major Depression samples into two groups (Figure 5a): one that was matched with
the 13 Controls in pH (6.91 +/- 0.13 in controls, 6.87 +/- 0.11 in cases, p = 0.45, t test) but not in
ASR (1.25 +/- 0.27 in controls, 0.18 +/- 0.44 in cases, p = 0.0003), another matched to the
Controls in ASR (1.25 +/- 0.27 in controls, 1.14 +/- 0.18 in cases, p = 0.28) but not in pH (6.91
+/- 0.13 in controls, 7.13 +/- 0.08 in cases, p = 0.00015). We carried out MDD-Control
comparisons for the two MDD groups separately, and analyzed the top and bottom 4,000 genes
in EASE (the Expression Analysis Systematic Explorer) [28] for significantly enriched Gene
Ontology terms. Figure 5b shows that the pH-matched comparison yields the gene families and
pathways associated with agonal stress that we and others previously discovered, whereas the
ASR-matched group significantly reduces the effect. This result is not surprising, as by the
definition of ASRs, we effectively have balanced the key stress-related pathways when we match
samples by ASR. iThis test case, however, shows that matching by pH is not always safe for
guarding against the agonal stress confounder, whereas the empirically derived ASR values
provide a more accurate assessment of the regulatory responses to near-death stress in individual
samples, and allow a more stringent control. In a section below we will describe the robustness
ASRs, particularly the finding that deriving ASRs by using only the control samples did not

substantially change the result.

Between-region differences

After calculating ASR for all six regions and for two sites in each region, we obtained twelve
series of ASR values. As AMY and CB had larger numbers of missing chips (samples not
analyzed on microarrays), we plotted the eight ASR series for the four remaining brain regions in

color codes along with pH values and AFS (in two levels) (Figure 6, see figure legend for color
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codes), with the samples sorted by pH (high pH on the top of the figure), and missing data in
white. This figure has several broadly recognizable features. First, ASR results from the two
sites tend to agree, although not always so. Secondly, ASRs in most samples tend to be
correlated across the four regions, reflecting brain-wide patterns. Thirdly, the ASR scores show
a coarse correlation with pH and the clinical AFS scores, as samples at the bottom of the figure
are generally those with both low pH and low ASR (this can also be seen in Figure 4, where pH
is plotted against the median ASR across the six brain regions). The correlations between pH
and ASR, across all 126 samples, range from 0.3 to 0.6 among the twelve ASR series (from 0.57
to 0.63 in AnCg, DLPFC, CB, and NACC, 0.47 in HC, and 0.3 in AMY, which has the smallest
sample size: 66 out of 126 total samples. Note that pH was measured in CB). But these
correlations are much smaller when using only the 90 pH>6.61 samples, indicating that much of
the correlation was driven by the large differences between the high-pH and the low-pH samples.
Finally, some of the subjects who had normal pH yet low ASR can be explained by having

clinically recorded agonal stress (AFS=1 or higher).

However, beyond these large trends, there remain striking between-region differences in many
individual subjects. For example, the first subject from the top, indicated by the first arrow on
the right, has low ASRs (in green) in AnCg, and normal to high ASRs in the other regions. The
third and sixth subjects, indicated by the next two arrows, have unusually low ASRs in DLPFC
and HC, respectively. These strong region-region differences in ASRs are robustly observed
(see the next section) and suggest genuine differences in stress outcome across different parts of
the brain. Such differences may arise due to inter-individual variabilities in local structure or
function, resulting in region-specific vulnerability to agonal stress. An additional possibility is
that the nature of the illness that caused the death, such as hepatic, renal, or cardiac failures, may

have triggered a region-specific brain response. These results underscore the value of using
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ASREs to carry out per-region sample matching, as pH and clinical indicators are measures for the

entire brain.

Robustness of ASRs
It is difficult to know how much between-region differences arise from variabilities in tissue
dissection, but this factor is unlikely to explain most of the differences we observed here, as the
effect is seen even for relatively large, easy-to-dissect regions such as DLPFC and CB.
Although the nature of the observed regional differences is still not clear, most of such
differences are likely due to actual biological differences 1"ather than to technical variability in
performing RNA labeling and hybridization or to data analysis methods. There are several
reasons for making this conclusion. First, while regional differences of ASRs are often large (+/-
0.5), ASRs varied to a much lesser degree (1) between sites, (2) between different numbers of
informative genes used, (3) between different distance measures (correlation, rank correlation, or
Euclidean distance), (4) with another round of normalization after median centering, (5)
following the selection of only the high ASR samples as the basis for re-calculating block
medians, or (6) importantly, following the use of only normal controls rather than both cases and
controls for ranking genes by t scores. Secondly, we examined the possibility that some regions
~may actually have a greater Type 1-Type 2 difference than the other regions, and different
samples may have different regional differences. To this end, we calculated additional versions
of ASR by using (1) the same ten Type 1 samples and the same 14 Type 2 samples to determine
the informativeness of genes in all six regions; (2) combined all six regions (more than 1200
chips) in designating the canonical samples on the two extremes, defining most informative
genes, and calculating ASR across all 1200 samples (all regions together). These alternative
versions did not significantly alter the ASR patterns across samples and regions, and did not

explain most of the observed regional differences. Thirdly, with our 700-gene Illumina data, we
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were able to compare the ASRs based on data from two different platforms. For each sample,
we averaged the Affymetrix ASR values from two sites to obtain the six values for six regions,
and calculated their correlation to the corresponding six ASR values from the Illumina data,. We
obtained 67 such correlations in 67 samples for which we had both the Affymetrix and Ilumina
data. Of these 67, 58 correlations were above 0.33, 43 were above 0.67, and 28 were above 0.8,
with most of the smaller correlations explained by very low between-region variations, that is,
when the six scores are similar to begin with for a given sample, it is more difficult to observe a

highly correlated pattern for this sample in a different platform.

Discussion

Many gene expression analyses have shown that agonal stress at the time of death can
significantly alter expression patterns in postmortem tissues [29-33]. Because of this,
comparative studies that rely on postmortem material must take every precaution to ensure that
cases and controls are propefly balanced with regard to this well-established confounder. What
remains unclear, however, is to what extent residual imbalance still accounts for the most
significant findings. The study presented here is motivated by two considerations. First, a
dichotomous classification of good-quality versus bad-quality samples is often inadequate in
assuring that cases and controls are well matched among the "good samples”. Secondly, clinical
variables such as AFS and continuous variables such as tissue pH have several practical
limitations, both in terms of accuracy and in their inability to assess each brain region separately.
To address these concerns, we developed a rating metric to infer agonal stress based on
expression data, and strongly advocated a conservative approach that uses these empirical ratings

to select a homogeneous group or to balance cases and controls. The adoption of continuous
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ratings instead of the more commonly used categorical assignment is expected to bring several
advantages: providing a more reliable measurement of underlying heterogeneity that does not
show natural boundaries, retaining important information regarding sub-threshold variability,

and allowing flexible integration with other variables.

Between-region differences

Our results revealed striking between-region differences in stress outcome. This complexity
presents additional challenges to gene expression analyses of the brain, especially if the goal is to
not only study each region separately, but also to study biological regulation across brain regions,
as well as their disruption in the diseased state. During our initial analysis, we had hoped that all
regions of the same brain would have a similar stress profile, making it possible to use one or
more regions as the same-subject control for the other regions. In this scheme, between-region
differences in gene expression, instead of gene expression levels in each region separately, are
compared between cases and controls, under the assumption that agonal stress is acting more
extensively across the entire brain, whereas expression signatures of psychiatric disorders are
restricted in some regions. This approach is reminiscent of the genetic metilod of using family
controls to remove the impact of population structure. Our analysis, however, revealed
considerable heterogeneity between brain regions in stress-related expression patterns,
suggesting that this between-region analysis method is still problematic and requires further

investigation.

The need for a conservative approach
One of the concerns in adopting this approach is that gene expression changes in response to
near-death conditions may overlap with those affected by chronic psychiatric states. If the

Agonal Stress Ratings reflect the blending of both effects, how do we know whether we have
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under- or over-corrected the main effect of interest? Unfortunately, at the present time we do not
know many genes or pathways that are clearly and reproducibly altered by major depression and
bipolar disorder; as a result we currently do not have a definitive set of "true positives" to fine-
tune the stringency of the sample matching strategy. To address this type of question would
require a sufficiently large collection of samples to directly investigate whether patients of
mental disorders are more likely than the healthy controls to have more severe terminal stress,
lower tissue pH values, and more pronounced changes in gene expression patterns. When the
sample size is below or near 100, as is currently the norm in expression profiling of human
brains, a study is not properly powered to formally answer this question, and the gene expression
signature due to mental disorders, if it overlaps with that due to agonal stress, will be easily
obscured. However, despite this uncertainty, it is widely recognized that the effects due to
agonal stress usually have a much more potent influence on gene expression patterns than do
mental disorders. In such a situation, the chance of finding false positives due to residual
imbalance is quite high. A continuous, quantitative rating system, like the ASR that we
developed here, can greatly reduce the number of false positives in such studies by allowing a
quantitative assessment of the broadly recognizable outcome of the most prominent confounder.
By applying the ASR, it rerﬁains possible to detect a true signal for psychiatric disorders as long
as it is strong enough or sufficiently independent of the confounding effect, particularly if the
disease related changes involve a small number of transcripts whereas the agonal conditions
usually affect a large number of genes [6]. In essence, the practice of sample matching by data-
derived indices constitutes a higher standard for a "true positive", requiring that its main effect
(for psychiatric disorders) to rise above its potential colinearity with the major extraneous
covariates (changes due to agonal stress). The situation is analogous to the case of a genetic
association study of, for example, cardiovascular disorders, where the goal is typically to detect

genetic association with the disease while adjusting for the traditional risk factors, such as blood
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pressure, diabetes, body-mass index, and serum levels of HDL and triglyceride [34]. Because
these traditional risk factors are also influenced by genetic variation, making such corrections
constitutes a more focused goal: to discover genetic contribution to the disease independent of
the genetic basis of the other risk factors, even though in the long run it is ideal to be able to
study all the contributing factors in conjunction with each other. By the same token, the near-
term goal of our study is to discover gene expression signatures of psychiatric disorders
independent of gene expression changes due to confounding factors, especially when these

factors (stress at death) are not likely to be closely related to the biology of mental illness.

Conventional versus empirical indicators

In this study, we found that the Agonal Stress Ratings are sometimes at odds with tissue pH
values or clinically-recorded medical factors. These indices, though useful in most situations,
have several shortcomings when serving as surrogates for the underlying biological
heterogeneity. First, different brain regions may carry different stress outcomes, while pH values
were usually measured in one region. Likewise, the clinical indicators do not inform regional
heterogeneity. Secondly, these conventional variables inevitably contain measurement errors or
incomplete information. Thirdly, brain pH is both the outcome of prior episodes of stress and the
trigger for subsequent physiological responses. As a result, even if pH is measured in all regions,
and even if pH is similar across regions [32], the samples that have similar pH are still not likely
to have a uniform stress-induced gene expression profile. For these reasons, we recommend
using ASR as a primary criterion in sample selection and sample matching, analogous to using

inferred ancestry in genetic association studies [15].

It is also important to point out that the tissue pH measurements and clinical records are still of

immense value in sample matching. They provide biological meaning to the ASR values, and
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allow an integrated strategy that combines these different indicators in sample selection [35].
We believe that future studies need to continue collecting clinical information as extensively as
possible, and if feasible, measure pH in multiple brain regions to directly assess regional

differences of degree of stress.

Assumption of neutrality

An implicit assumption of using inferred ancestry to control population stratification in genetic
studies is that most of the genetic markers tested are phenotypically neutral; that is, not
associated with the disease under study. Under this assumption, when data have been collected
for a large number of loci (that is, not just for a few candidate genes), the majority of these loci
can be used to infer population structure [14, 16, 36, 37]. Alternatively, they can be used as
Genomic Control loci to detect over-dispersion of the standard test statistics due to stratification
[38-40]. This assumption of neutrality generally holds when we expect to detect large or
moderate signals of association for only a small number of causative genes. In gene expression
analysis, however, it is possible that a considerable proportion of the transcripts are affected both
by the extraneous confounders such as agonal stress and by the disease being studied. As a result,
some of the genes used to infer agonal stress may also be associated with the disease, making it
difficult to separate the two effects. However, this apparent difference between genetic and gene
expression studies depends on the actual context of the study. Population stratiﬁcation can be a
very strong confounder for traits or diseases that have subtle genetic effects but large population
differentiation (in incidence rates as well as in allele frequencies), or are studied in recently
admixed population where chromosomal segments of defined ancestry can be as long as 5 ctM
[41]. In these situations, a substantial fraction of genetic markers may show weak association,
while most of such signals may disappear after correcting for inferred individual ancestry or

locus-specific ancestry. For both gene expression and genetic studies, using the data per se to
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detect sample heterogeneity is a practically useful yet ultimately exploratory method, especially

when true positives are not known beforehand.

Model considerations and the need for canonical patterns

In inferring individual ancestry from genetic data, it is helpful to know the genetic profile of the
putative ancestral populations, for example, the allele frequencies determined from samples that
represent the progenitors of the admixed individuals. Without these "pure” canonical profiles,
while it is still theoretically possible to simultaneously determine both the canonical ancestral
patterns and the mixing ratios of each sampled individual, the results are less reliable and often
improperly scaled [16]. Similarly, our strategy to derive Agonal Stress Ratings relies on having
obtained data for both "normal” tissues and severely stressed tissues. These opposing extremes
serve as the two reference points to measure the grades of membership in between.
Hypothetically, in a different study, if none of the samples (or too few of them) are from the
severely stressed low-pH samples, the canonical signature of the confounder (or the principal
components) would be much less precisely defined. However, even when the absolute values of
ASR only scale from "normal” to mildly stressed, the relative ratings among samples can still be
used as the empirical basis for sample matching, or as the basis for a variety of post hoc
strategies, such as stratified analysis, or incorporating covariates in regression analysis. We have
found that the main differences due to agonal stress can be robustly observed, i.e., are highly
similar between study sites and across two microarray platforms. This means that the canonical
patterns that we describe here, featuring prominently energy metabolism genes and stress
response pathways, can be transferred to other studies of postmortem tissues even if these studies
characterized a narrower range of the confounding effect. In Additional files 3 and 6 we provide
the genes most strongly affected in our dataset; these genes can be used as informative stress

markers for pre-evaluating future sample collections, even before microarray experiments. The
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parallel example in genetic studies is that one can profile the genetic signature for a few major
continent groups (such as in the International HapMap Project) and use this information
repeatedly to infer admixture in individuals from a heterogeneous population such as the African
Americans, sometime by using a small number of most informative genetic markers [26]. We
also wish to emphasize that using only the controls to define the two canonical expression
patterns did not change the ASR ratings in any meaningful way, reflecting the fact that the case-

control differences are far subtler than the stress-related differences.

The situation would be much simpler if the mixing ratios are known by other, independent
methods, or if the canonical patterns were profiled in independent studies. Such an "expression
signature bank" can be established by studying the response to controlled stress treatment in
animal models, or by analyzing "pure” classes of brain cells, such as laser-captured defined cell
populations. Stuart et al. [42] gave an example where the mixing ratio is known for tumor
samples when tissue pathologists reported a priori the fractional composition of different cell
types in each sample. Conversely, Lu et al. [43] used expression data for synchronized yeast
cells in defined phases to infer mixing ratios of asynchronized samples—this is a case where the
basic patterns were known, with mixing ratios being the target of inference. When neither is
known, as in our case, the solution cannot be arrived at analytically but can be optimized
iteratively. For example, several methodology studies [44-46] have implemented variants of the
Expectation-Maximizing (EM) algorithm to simultaneous search for the unknown canonical
patterns and the unknown mixing ratios in gene expression data. Similar methods, including
ones involving Markov Chain Monte Carlo methods, have been developed for inferring
individual's genetic ancestry [14, 16, 47]. In our dataset, as the principal pattern is relatively
strong, we expect the result to converge quickly and decide to adopt a simple definition of ASR.

In more complicated situations, for example, when the second or higher Principal Components
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can be interpreted as signatures of other confounders such as age, medication, or cell types, it

would be important to apply these more sophisticated algorithms.

Conclusions

In this study we developed an Agonal Stress Rating (ASR) system that evaluates each sample’s
degree of stress based on gene expression data, and used ASRs in post hoc sample matching.
We found that ASR-based matching provides tighter control of the agonal effect than by using
pH. We also found that different brain regions exhibited different stress outcomes and that such
regional patterns also varied between individuals. Our results once again highlight one of the
main challenges in gene expression studies of psychiatric disorders: transcript levels are under
the influence of a large number of confounding factors. Agonal stress undoubtedly plays a majoi'
role; as a result the stress-related, pH-sensitive genes or pathways are prone to appear as the top
findings in case-control comparisons. We propose to adopt a conservative approach for the
genes and pathways that are clearly altered by the confounding factors, even if it is possible that
they are also influenced by the disease of interest. Deriving an ASR from gene expression data
and using it for sample matching is one example of such an approach. This approach involves
using continuous ratings as opposed to categorical assignments, thus represents an early attempt
to apply graded classification methods to a sample heterogeneity problem for brain tissues,
similar to the application of dimensional models in psychiatric diagnosis. In practice, we believe
that this method can and should be expanded to the characterization of other sources of
biological variation, such as medication, age, and cell-type composition of the dissected brain
tissues. Drug use by psychiatric patients is likely to affect gene expression, regardless whether
the medication was effective in treating the disease or not. But medication history is one of the

most elusive aspects of clinical information to accurately record and quantify. Likewise, an
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individual's chronological age may vary greatly from the actual physiological age of the tissue
under study, while the neuronal-glial ratios of the dissected tissues may also vary from brain
region to brain region, from subject to subject. Proper monitoring of these additional sources of
phenotypic variation is an important prerequisite for the eventual identification of the true gene
expression signature of mental disorders, and in this regard, animal models of either drug
treatment or stress, independently applied, in the absence of psychiatric history and genetic
heterogeneity, represents a powerful alternative strategy for defining canonical expression

patterns and assessing their relative contributions.
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Methods

Sample acquisition, RNA labeling, and microarray hybridization were carried out as described
previously [6, 48]. We used RMA [49] to obtain the probe set summary values for the
Affymetrix U133A and U133Plus_2 Genechips. We removed chips that were clearly outliers, or
failed the "gender-test”, in which we confirm that Y-chromosome transcripts are only detected in
male samples. The entire dataset, consisting 1218 Genechips, has been deposited to the Gene

Expression Omnibus [50] with the Accession Number GSE6306.

Since the original Affymetrix probe definitions require frequent updates, and are known to
contain errors and redundancies, we developed a custom probe definition method that involves
re-annotating all Affymetrix probes by sequence alignment to the most recent build of genomic
DNA sequences and a variety of transcribed sequence collections, including Unigene, Refseq,
ENSEMBL Genes/Transcripts/Exons, and Entrez, etc [51]. For each of these transcript
definition systems, the probes that could be uniquely assigned to their transcript targets were .
assembled in custom Channel Definition Files (CDF files) as individual probe sets, which
assumed the names of the matched transcripts, thus replacing the Affymetrix probe set ID's. The
analysis presented here used the third generation of our Unigene-based CDF files, which were

based on Unigene Build 176. The CDF files can be downloaded for free at [52].

We calculated chip-chip correlation in each region by using RMA summaries values and defined
blocks by visual inspection of the correlation heatmaps. Logged expression values for each gene
were centered within each block. Median centered values were used for the Principal
Component Analysis, whereby the PC1 scores were used to rank samples so that a proportion of

samples at one extreme were designated canonical Type 1 samples, while a proportion of
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samples at the other extreme were designated canonical Type 2 samples. These two groups of
samples were compared by the Student's t test, so that all genes can be ranked by the t scores.
The ASR of each sample is then calculated as the "distance” to canonical Type 1 pattern minus
its distance to the canonical Type 2 pattern by using a proportion of the genes with the largest
absolute t scores. A range of parameter values were tested, including different proportion of
samples used to define canonical patterns, different number of genes used for calculating ASRs,
and different measured of chip-chip distance. For example, most results in this report were
based on using approximately 20% of samples at each extreme of PC1 scores, 25% of the genes
of largest t scores, and Pearson's correlation as distance measures. The nearest Shrunken
Centroid Classification was carried out by using the Predictive Analysis of Microarrays (PAM)

package in R. All R scripts used in the analysis are available from the authors.

The Illumina custom Beadchips were designed to cover ~700 transcripts that represent both
biologically candidate genes and preliminary Affymetrix results to be validated. Sample labeling
and hybridization were performed according to manufacturer's specifications. In all, about 67
samples were aﬁalyzed in each brain region, except for AMY, which we analyzed only 54
samples. All of the nearly 400 RNA samples were randomized with regard to cohort and region.
The calculation of ASRs was carried out in a similar fashion as with the Affymetrix data except

that there were only 700 genes used in the analysis.
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