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Table 3
Differential expression of genes in the mitochondrial pathway
Brain region Pathway search  Pathway Subjects with AFS =0 Subjects with Subjects with 285/18S > 1.5
compared to subjects with pH>6.6 comparedto  compared to subjects with
AFS>0 subjects with pH<6.6 285/185<1.5
ACC KEGG Oxidative phosphorylation ~ 4.85E—02 NS* 1.00E—-02
Gene ontology Mitochondria NS 4.30E-02 1.30E-02
CB KEGG Oxidative phosphorylation ~ 4.00E—03 2.70E-02 NS
Gene ontology Mitochondria 4.30E-02 6.50E—-03 NS

Differential gene expression was determined in two brain regions and used for ranking in an over-representation analysis (GSEA gene set enrichment analysis,
Mootha et al., 2003a,b). The over-representation analysis used subject permutation to correct p-values for multiple test comparisons.

* NS: not significant.
3.2. Tissue quality for gene expression profiling

Some brain banks have collected brains ~10-30 years older
than the current sample (Breese et al., 1997; Hakak et al., 2001;
Konradi et al., 2004). Because of the high average age of these
cases, investigators routinely utilized microscopic neuropatho-
logical examinations to rule out age-related neurodegeneration
in cases and controls. In the present study, subjects were rela-
tively young at the time of death (Table 1) and were excluded if
they showed clinical signs of dementia prior to death. Therefore
a neuroanatomist performed gross neuropathological examina-
tions of all subjects after the brain had been sliced into 1 cm
coronal slabs to rule out hemorrhage, gross infarcts, and lesions.
Any subjects with gross neuropathology were excluded.

The pH and AFS measures were significantly correlated
(r=-044, p<0.01, d.f. =89) therefore the residual variation
between pH and AFS must be accounted for by other unmea-
sured variables. We found that subjects with zero agonal factors,
which included only short agonal duration of minutes and no pro-
longed illnesses had a range of pH from 6.3 to 7.26 (Fig. 2). The
average pH was 6.83 (n=98) and the median was 6.87 (Fig. 2).

In order to assess the statistical relationships of pH on RNA
integrity and microarray quality, the subjects were arbitrarily
divided into high pH (>6.6) and low pH (<6.6). In a statistical
sense, pH significantly affected measures of RNA quality and
microarray quality for both brain regions by ¢-test comparisons
of the high and low pH groups (Fig. 1; Table 2).

Table 4

The PMI was not statistically associated with pH or RNA
integrity (Fig. 1; Table 2). This was not surprising because
the average PMI was 24.1 £8.6h and during the collection
process any sample with a PMI over 48h would not be
collected. Furthermore, a majority of the postmortem cases
received from the coroner’s office were placed in the refrig-
erator within hours after death pending autopsy. The average
Zstandard deviation of the postmortem time to refrigeration
was 6.5+4.2h. The average freezer time =standard devia-
tion for the 98 ACC samples was 2.9 +3.3 years and there
were no significant relationships between freezer time and
RNA quality (Tables 2 and 4). However, an in vitro pertur-
bation of RNA to assess one freeze-thaw cycle that could
occur during prolonged freezer storage conditions of small
RNA aliquots modestly increased RNA degradation (next
section).

The mitochondrial gene pathways were significantly differ-
ent between the groups with high pH (>=6.6) and low pH (<6.6)
using an over-representation analysis of GO terms for cellu-
lar, biological, and molecular components (Vawter et al., 2006).
The mitochondrial pathway was significantly over-represented
between the high pH and low pH groups for the KEGG analysis
and the GO mitochondrion cellular component term (Table 3).
These results were similar to the comparisons of the AFS groups
(see Section 3.1 above), as pH and the AFS (sum of the num-
ber of agonal factors) were significantly correlated (r=—0.44,
p<0.01,Fig. 2).

The top 5% of dysregulated genes in ACC comparing different groups based on AFS, pH and 285/18S were compared to genes listed in Auer et al. (2003) that were

found to be dysregulated due to RNA degradation

Gene symbol Auer et al. up/down AFS=0vs. AFS=+1 pH=6.6 vs. pH<6.6 285/185 > 1.5 vs. 285/185< 1.5
GNAS Down X X
CHD1 Down X

GDI2 Down X

ATP5A1 Down X X
YWHAZ Down X X
PCBPI Down X X
TEGT Down X

B2M Down X X
NME] Up X X
ATP5B Up X X

There were 31 genes listed in Auer et al. (2003) changed by RNA degradation. Comparisons of the top 5% of dysregulated genes between our ACC samples revealed
194 genes in common between AFS and pH, 202 genes in common between AFS and 285/18S and 417 genes in common between pH and 285/18S. There were 146

genes in common between the three groups.

36



M. Atz et al. / Journal of Neuroscience Methods 163 (2007) 295-309 303

(A) pH
74F
- o
72 ﬂ
: ]
70 &
68} 8 -
<=673
[ T Sens 636
661 ‘g’:‘ Spec 747
o
64} 8 o
+ D
52_“:'
] T o UL A SRR
0 1
AFSODorAFS>0
(B) Compare AFS (0) and AFS (1+)
30
025 8
®
B ;
xz20} : <
2
o <=150
‘é’ 15 % e Sens. 391
E.. g Cg) Spec: 853
=]
z 10 o 8
05} o
0 1

()
74

7.2
7.0

6.8

<=6 66
Sens 778
Spec 915

6.6
6.4

6.2

6.0

Category Type1 (= 0) Type 2(=1)

Fig. 2. (A) Sensitivity of pH and (B) RNA to AFS 0 and AFS > 0. The majority
of 98 cases show a pH above an arbitrary cut point of 6.73 and RNA quality
above a cut-point of 1.4, however there are outliers within AFS =0 and AFS 1
categories. The combined use of three quality measures of pH, RNA, and AFS
results in less differences in gene expression as a result of agonal-pH effects
(Vawter et al., 2006). (C) Type ‘1’ and ‘2’ microarray outcome strongly depends
on pH (Li et al., 2004). (B) Histogram of RNA quality (285/185) by AFS.
(C) Histogram of pH by Type ‘1’ and Type ‘2’ samples. The type ‘1’ and ‘2’
refer to groups formed in hierarchical clustering that were associated with pH
differences between clusters.
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3.3. RNA quality

We induced RNA degradation in vitro by freeze-thawing
RNA extracts from brain to simulate what might be observed
during prolonged freezer storage, as aliquots in small volumes
may freeze—thaw on occasion especially when moving samples
in and out of the freezer. RNA samples that were fresh frozen,
thawed once at room temperature and then subjected to an addi-
tional freeze—thaw cycle showed no differences in the integrity
of total RNA determined by quantification of 28S/18S riboso-
mal RNA ratios on the Agilent 2100 Bioanalyzer. However, the
Agilent RNA integrity number (RIN) showed significantly more
degradation in the twice thawed samples compared to the thawed
once samples (p =0.0018). These results support the ability of
the RIN algorithm to robustly detect mild degradation differ-
ences between samples compared to the 28S/18S ratio which
did not detect any difference.

Total RNA 28S/18S ratios from a set of samples were
measured on both the Agilent Bioanalyzer and on a denatur-
ing agarose gel. The paired r-test between the methods was
significant (p=0.03) and the Agilent 285/18S readings were
consistently higher than the agarose gel 28S5/18S ratio, as previ-
ously observed (Boris Sokolov, personal communication). Thus,
setting a low threshold for Agilent quality translated to a lower
quality measurement by conventional formaldehyde gel elec-
trophoresis.

To measure the effect of RNA degradation on other qual-
ity parameters, the samples were divided into high (>1.5) and
low (<1.5) 285/18S total RNA based upon Agilent measures.
The median length of cRNA was significantly decreased in the
low 285/18S group (p=0.03) compared to the high 285/18S
group confirming that shorter transcripts, as shown by cRNA
length, are indeed made from degraded total RNA. Addition-
ally, the samples with pH < 6.6 displayed a shorter size of the
cRNA in vitro transcript compared to the higher pH group
>6.6 (p=0.006). A poor quality total RNA was associated with
shorter cRNA transcripts.

We found significant correlations between the 28S/188S ratio
and 3'/5" GAPDH ratio (r=-0.64, p<0.01, d.f.=89) and
between the 28S/18S and 3'/5' ACTB (r=-0.48, p<0.01,
d.f. =89). Asexpected, the negative correlations indicated higher
3'/5' signal ratios, which was associated with poorer starting
RNA quality. GAPDH 3'/5’ ratio presents a view of short tran-
script degradation while the ACTB 3'/5' ratio gives a view of
longer transcript degradation in postmortem brain. Hence, this
was the reason that samples often showed a large disparity
between the two ratios.

We employed an arbitrary criterion for 285/18S Agilent mea-
sure (>1.5) which produced a significant difference in the four
quality measures in ACC and in CB (Fig. 2; Table 2). There was
a technical problem in measuring the RIN in the ACC, so not all
samples were measured. The technical issue might have biased
our measures towards a lower RIN value for ACC compared to
the CB samples leading to this regional variability. However, the
285/18S measure was very robust and the mitochondrial path-
way was significantly different between the 28S/18S groups in
both the KEGG pathway and GO terms for cellular component
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in ACC. The significance was also observed in CB for the KEGG
pathway (Table 3).

Another question we addressed was if a consistent set of labile
genes in degraded samples existed which could be used to survey
the degradation and adjust for degradation effects using the labile
gene set. The top 5% of genes dysregulated by the AFS, pH, and
28S/18S comparisons were matched to the Auer et al. (2003)
gene list. There were 9 genes in common between the 31 genes
found by Auer et al. (2003) and the present study indicating that
certain labile transcripts are dysregulated when the postmortem
brain sample was degraded (Table 4). Furthermore, in the present
study there were 146 altered genes in common between all three
group comparisons of AFS, pH, and 285/18S.

3.4. Microarray chip quality

The results presented thus far, have largely focused on
the impacts and inter-relatedness of clinical, tissue, and
RNA quality. We have also examined pathway analysis for
mitochondrial-related transcripts, and will later address the issue
of variability of the quality factors across the entire transcrip-
tome. It can be summarized that using only one quality indicator
did not account for the total picture of sample variability and
selection because each quality indicator was partially and not
perfectly correlated (see Table 5 for correlation matrix of quality
indicators; Fig. 2).

After the samples were completely processed the data from
the microarray chip provided a set of indicators to measure
overall chip quality and derivative measures of RNA degrada-
tion. The Affymetrix MAS 5.1 software was used to determine
whether each transcript was reliably detected using a percent
present call (%PC) and a scaling factor (SF), which adjusted
the average signal intensity to a preset constant. Microar-
ray chip quality was evaluated in the present study at cut
points for the other three quality measures (AFS=0, pH > 6.6
and 28S/18S > 1.5). Two microarray quality indicators, %PC
and SF, were significantly different in both ACC and CB
for RNA quality and for pH (tissue quality) group compar-
isons (Fig. 2, Table 2). Thus, differences in mRNA quality
were related to significant changes in microarray %PC and
SE.

ACT was significantly different between all three groups
(AFS, pH, and 28S5/18S shown in Fig. 2 and Table 2) for both
brain regions. Employing these same cut points for AFS, pH
and 28S/18S revealed significant differences (p-values ranged
from 9.6E—09 to 5.2E—04) between the ‘“Type 1° and ‘Type 2’
groups for the current samples (Table 2; Fig. 2). The ROC plots
and data table showed similar findings that pH and RNA qual-
ity were equally related to “Type 1’ and “Type 2’ membership
(illustrated in Figs. 2 and 3; Table 6).

We tested more global gene expression parameters in two
further methods. First, the AffyRNAdeg function modeled the
extent of RNA degradation and thus could possibly control for
this effect across samples at the probe level. The slope gener-
ated by AffyRNAdeg, which putatively measured the severity of
degradation, was found to be significantly correlated with %PC
(r=-0.36, p=0.0005), 3'/5 GAPDH (r=047, p<0.0001),

Type 172

ACI

Microarray quality
PC

cRNA (~nts)

RIN

3'/5' ACTB

3'/5' GAPDH

RNA quality

285/188

Freezer time

Tissue quality
PMI

pH

AFS

Clinical quality

Age

Correlations of quality control measures. Each quality control measure is organized by the four categories (clinical, tissue, RNA, microarray) and then correlated for cerebellum data

Table 5

1.00
-0.59 1.00

1.00
-0.41
0.30

1.00
-0.82
0.65
-0.48

1.00
0.21
—-0.22
0.39
-0.33

1.00
028
0.63
-0.70
0.63
-034

02
15
04
01
06

7

-0
-0
-0
0
-0
0.

PC
SF

ACI
Type 12

89).

" Bold correlations were significant (r>0.267|, p<0.01, d.f.

The significant correlations are in bold (p <0.01). Abbreviations are the same as in Table 1.
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1.97 (2.08)
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5.67 (1.58) 41.47(6.25)
035
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1.51(0.36) 2.03 (0.93)
N/A

2.51(3.41)

0.24
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Fig. 3. The diagnostic performance of test variables, or the ability of a variable 8|% 8
to discriminate microarray outcome (Type ‘1’ vs. Type 2") is evaluated using Sl |3
receiver operating characteristic (ROC) curve analysis. The ROC curves are a
shown for six quality variables that relate differentially to microarray outcome. =
The area under each curve shows a relationship to overall prediction of Type ‘1’ i g
and ‘2’ microarray outcome. The comparison of ROC curves for tissue quality E -
(pH, freezer time, PMI), clinical quality (AFS, age), or RNA quality (285/18S)
shows that tissue quality pH measure is strongly related to Type 1 and Type 2 E §
microarray outcome (Li et al., 2004). Table 6 shows the ROC values for each < =
variable, © ]
™ o~
o
3'/5" ACTB (r=0.76, p <0.0001), and cRNA length (r=—0.35, ) 5
p=0.0007). The AffyRNAdeg slope variable was used as a f'i g
covariate in PLMfit (Bolstad, 2004) and this reduced the resid- . e i
ual variation between duplicate RNA samples run on chips at ) & a
different laboratories (data not shown), - g- 2 g
The second method of testing global gene expression rela- g 2 2 S
tionships to the four groups of quality covariables was to enter g- -
each variable as either a main effect if categorical such as AFS 5 9
or ‘Type 1, 2’ or as a covariate if continuous. The F-ratios from g gz
the ANCOVA for all transcripts were summarized by average 8 i 3
F-ratio for each variable. Of interest, the slope from the AffyR- i |
NAdeg showed the highest average F-ratio compared to all other g, ‘g &
covariates (Fig. 4). The rank of AffyRNAdeg persisted regard- b 2 |B
less of the type of data normalization used (quantile or grand - §
median centering) or the effect of entering or removing other g™ %
covariates. ? g g
2 :
glélg |8
Table 6 $‘ .
The comparison of receiver operator characteristic (ROC) curves for microarray g g |
Type 1 or Type 2 outcome (Li et al., 2004) ) g <
Quality variable  Area under ROC Standard error  95% CI ? &
(maximum area=1) g g e
pH 0.874 0.035 0.792-0.933 5 .§' ]
285/18S RNA ratio  0.841 0.040 0.754-0.907 -1 Q
AFS' 0.683 0.063 0.581-0.773 g U 2 g
Age' . 0.597 0.066 0.493-0.694 g _
Freez.er time 0.523 0.066 0.420-0.625 & 2
PMI 0.532 0.066 0.429-0.634 é g
Tissue quality (pH) and RNA quality (285/18S) strongly associated with accurate > E 4
detection of Type 1 and Type 2 microarray outcome. The ROC plot for these =} 5 S
variables is shown in Fig. 3. ~ 2 =
* The area under the ROC column was significantly increased for RNA quality % 5' E 8
and pH compared to all other variables except the pH. = = -

39

7725
<0.000005

5712

<0.000005  <0.000005

0.98 (0.02)
0.92 (0.07)

0.0005

1.66 (3.10)
4.24 (5.28)

0.02

0.03
7.11(1.31) 45.96(3.08)
5.72(1.81) 40.20(6.86)

0.00006

0.002

454 (3.33)

0.03

3.02(2.74)

0.00074
0.0002

2.06 (0.34) 1.42(0.48)
1.57(0.50) 2.16 (0.97)

N/A

3.11(3.24)
3.22(3.73)

0.89

> 1.5. The samples that passed all three measures were placed into the *included’ group and the remaining were placed in the group

0.16

6.94 (0.16) 23.44 (7.99)

6.62 (0.25) 24.25(9.26)
0.68

> 6.6 AND 285/18S

priori selection of quality by AFS, pH, and RNA produced highly significant differences in these three measures; therefore the p-value was not shown.

RIN calculation for ACC only included part of the sample due to technical difficulties in the Agilent run.

*** Type 1/2 p-values were calculated by Fisher's exact test.

N/A
N/A

0 AND pH

N/A
N/A
N/A

0.01
59) 50.20(13.81) N/A

0.14

Exclude (n=32) 54.31(11.75)

p-value

Include (n

‘excluded.’ The two groups were compared by t-test separately in two brain regions. The significant p-values are in bold. The abbreviations are the same as Table 1. The microarray chip quality was improved in the

included compared to the excluded samples. N/A: The a

-

The criteria applied for inclusion were: AFS

CB
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Table 8
An example of applying four quality parameters to the results of anterior cingulate for 98 subjects

Clinical cut-off (AFS =0) RNA cut-off (285/185 > 1.5) Tissue cut-off (pH > 6.6) Chip type cut-off (Type ‘1")

Number of subjects above cut-off 75 64 60 57
Number of subjects below cut-off 23 14 12 9

The methodology shows that 58% of the initial subject pool will pass all four parameters. Other methods to adjust for the effects of these quality and other postmortem
variables on gene expression can be tested in post hoc analysis such as ANCOVA.

3.5. Quality control parameters application in anterior selecting high quality microarray data. The “included” set shows
cingulate cortex that the cut points improved the four microarray chip quality
indicators (%PC, SF, ACL, and Type 1/2) (Table 7), although it
We presented evidence that each of the four quality con- isnoted that other methods for determining outlier samples could
trol indicators (clinical, tissue, RNA and microarray quality)  be equally applied at this point. Other methods might include
were significantly correlated to one another (Table 5), but were  principal component analysis to determine outliers based upon
not perfectly correlated. A multiple covariable analysis of all  the entire gene expression profile, or performing an ANCOVA
transcripts showed that a post hoc measure of putative RNA  with multiple covariates.
degradation (AffyRNAdeg) accounted for a large proportion of Some regional variability in the outcome of the quality param-
variance in transcript expression. eters was noted. As an example, the RIN values for the high
All three quality selection parameters were used simulta-  quality ‘included’ groups in cerebellum and ACC were not com-
neously in the current data set using cut points of AFS=0, parable. This was likely due to lower starting RIN values in
pH>6.6, and 28S/185 > 1.5 as threshold criteria for sample ~ the ACC the technical result of the revised Agilent software
selection as described. The “included” set (AFS=0, pH>6.6  reading of the electropherograms. However correlations were
and 28S/18S > 1.5) and the “excluded” (AFS > 1, pH< 6.6 and calculated between ACC and cerebellum regions for both RIN
285/18S < 1.5) set were compared. When the poor quality sam-  (r=0.42, p<0.01) and SF (r=0.85, p <0.0001), thus indicating
ples were “excluded” each microarray quality control indicator  that across regions there was agreement of these values within
was significantly improved in the “included” group (Table 7). subjects.
Notably, the microarray quality indicators (all post hoc) were When we employed the four quality cut-offs to the present
significantly improved in eight measures performed in twobrain  results the number of samples removed at each stage (Table 8)
regions (Table 7). Additionally, the mitochondrial pathway was  significantly reduced the study from 98 to 57 samples. This
significantly over-expressed between the groups. The thresholds ~ reduction in sample size is only one strategy that we have
appeared to work very well for this datasetin twobrainregionsin  adopted, and may not be practical when working with degraded
samples from fixed tissues, or for certain research questions that
require use of tissues obtained under less than ideal conditions.
Sources of Variation

e 4. Conclusions
183
145 We systematically evaluated four quality indicators in one

127 study with reference to gene expression results in postmortem
brain from two regions. When samples in our study were not
balanced well or matched for these quality indicators, the results
of pathway analysis identified a brain disorders pathophysiology
of mitochondria dysfunction. This pathophysiology is correlated
to sample groups that have RNA, clinical, and tissue quality
differences. Researchers have implicated mitochondrial-related
pathways as a cause in schizophrenia (Prabakaran et al., 2004;
Altar et al., 2005) and bipolar disorder studies (Konradi et al.,
% %, % ac c( %ﬁ S 2004). A slight imbalan'ce in group campqsition based upon an
% (5 ,y % Z. agonal-pH difference will affect this functional pathway and its
related pathways such as apoptosis, proteasome, and chaperone

Factors functions (Vawter et al., 2006).
Fig. 4. The sources of variation in an ANCOVA of multiple covariates shows The impact of each quality covariable on gene expression
that the RNA degradation accounts for the highest average effect (F-ratio) across  may not be linear across wide ranges. As a first approxima-
the entire transcriptome in ACC measured on an Affymetrix UL33A chip. The (i researchers have found it useful to examine the readily

AffyRNAdeg program (Cope, 2005) provides a slope, which is a microarray G .. . . »
chip based indicator of the decline in signal across a transcript, thus a putative accessible measures of clinical, tissue and RNA quality prior

index of RNA degradation. The abbreviations for each variable are describedin ~ t0 Microarray analysis and have used matched pairs of sub-
Table 1. jects or matched groups on these measures. Across a wide
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range there was a potentially large non-linear variation observed
with matching strategies. Investigators might adopt an approach
of using all samples and making adjustments with regression
models, however this would presume that adequate models
exist.

RNA quality found to have a large statistical impact on the
amount of variation across all transcripts. The R-script AffyR-
NAdeg (Cope, 2005) can be used post hoc to assess RNA quality
to measure the slope across all transcripts in the 3'/5’ direction
instead of only using the beta-actin or GAPDH transcripts. Other
chip measures such as present calls and scaling factor accounted
for a large proportion of variance across transcripts. Most inves-
tigators agree that severely degraded samples will not provide
useful data and the findings are compromised when total RNA
is degraded (Schoor et al., 2003; Auer et al., 2003; Buesa et
al., 2004; Tomita et al., 2004; Lipska et al., 2006). However,
modest degradation of samples such as observed in postmortem
brain collections was addressed in the present paper to attempt
to describe different strategies to select samples with minimal
RNA degradation and with high clinical and tissue quality. It was
shown that by removing samples with agonal factors, low pH and
degraded RNA higher quality microarray results, based on post
hoc measures, will be observed. Consistent recommendations to
use the highest quality RNA for gene expression measurements
(Bahn et al., 2001; Auer et al., 2003; Schoor et al., 2003; Buesa
etal., 2004; Mexal et al., 2006; Lipska et al., 2006) have led one
group of investigators to conclude that “The strongest predictor
of gene expression was total RNA quality”(Lipska et al., 2006).
Our results are consistent with these reports.

Future microarray knowledge will include how different
types of transcripts are affected by postmortem and premortem
variables as well as the set of transcripts not affected by these
variables. Postmortem brain studies generally utilize one or more
of the criteria reviewed for study design and statistical analysis.
By adopting only one indicator to accept or reject samples at a
certain threshold, an investigator may accept marginal samples.
However, in post hoc analysis the impact of these parameters can
be determined. We have used multiple criteria to form cohorts of
postmortem samples based upon these a priori quality parame-
ters of clinical, tissue, and RNA quality indicators and post hoc
microarray indicators. We have also used these same parameters
as covariables. For variables with a simple linear relationship
these approaches are satisfactory, however, we have not tested
non-linear models which may address a larger proportion of
variance than the simple linear models. After forming a cohort
with cut-off criteria this essentially narrows the range that strong
effects can operate, so that the potential for case—control effects
can emerge. As an example, we have used a set of criteria to
reduce the range of strong effects with the following criteria:
AFS =0; the samples must have both medical records and next
of kin interview information; the sample pH is minimally in the
range of 6.4-6.6; and the RNA integrity measured by Agilent
must have a 285/18S ratio greater than 1.4-1.5 while at the same
time taking the RIN value into consideration. We finally use post
hoc indicators such as the AffyRNAdeg slope, percent present,
scaling factor, ACI, and hierarchical clustering approaches to
find outlier chips. These steps taken together will minimize the
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strong effects of these covariates, but other methods can be uti-
lized to study the same effects and to assess the final quality of
the chip.

The evaluation of these four quality categories aids in the
study design, characterization and assessment of our samples,
analysis, and interpretation of results. Not all transcripts are
affected to the same degree by these variables as shown in our
ANCOVA results. Thus, meaningful data can be derived if post
hoc analysis has ruled out confounding effects on specific tran-
scripts. Post hoc use of these quality covariables will help to
either strengthen or weaken a candidate gene depending on the
impact of the key variables we describe.

The four quality indicators are broadly related and therefore
using a certain combination of these factors improves the quality
of the data set, but might never truly separate the low, moderate,
and high quality samples completely. By having access to alter-
native parameters to assess the quality of both the sample and
the microarray data, we present an investigator with covariates
for study design, selection criteria, or parameters for matching
strategies depending on the nature of the study. These quality
parameters may assist future investigators for meta-analysis of
postmortem brain gene expression studies, such as those that
can be conducted with the gene expression arrays deposited at
the Gene Expression Omnibus.
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Abstract

Background: Gene expression patterns in the brain are strongly influenced by the severity and
duration of physiological stress at the time of death. This agonal effect, if not well controlled,
can lead to spurious findings and diminished statistical power in case-control comparisons.
While some recent studies match samples by tissue pH and clinically recorded agoﬁal conditions,
we found that these indicators were sometimes at odds with observed stress-related geﬂe
expression patterns, and that matching by these criteria still sometimes results in identifying
case-control differences that are primarily driven by residual agonal effects. This problem is
analogous to the one encountered in genetic association studies, where self-reported race and

ethnicity are often imprecise proxies for an individual's actual genetic ancestry.

Results: We developed an Agonal Stress Rating (ASR) system that evaluates each sample’s
degree of stress based on gene expression data, and used ASRs in post hoc sample matching or
covariate analysis. While gene expression patterns are generally correlated across different brain
regions, we found strong region-region differences in empirical ASRs in many subjects that
likely reflect inter-individual variabilities in local structure or function, resulting in region-

specific vulnerability to agonal stress.

Conclusion: Variation of agonal stress across different brain regions differs between individuals,
revealing a new level of complexity for gene expression studies of brain tissues. The Agonal
Stress Ratings quantitatively assess each sample's extent of regulatory response to agonal stress,

and allow a strong control of this important confounder.
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Background

Comparing cases and controls is one of the most widely used methods in genetic and
epidemiological research to identify disease risk factors at the population level. From the study
design standpoint, to maximize the power of detecting a true effect it is important to understand
the major sources of phenotypic variation, and to minimize sample heterogeneity accordingly.
Furthermore, to reduce the number of spurious positive findings due to confounding factors, it is
important to match cases and controls on "well-established determinants” [1] that are not
themselves the variables of direct interest. In practice, however, it is often difficult to declare a
priori which variables, out of many that are examined, are the established risk factors.
Occasionally, the major factors affecting the phenotypic outcome may be truly strong and well
known, such as cigarette smoking as a risk factor for lung cancer, or older age for Alzheimer's
disease. In most other situations, however, particularly those concerning multifactorial diseases
such as cancer and psychiatric disorders, there are usually numerous contributing factors for the
observed phenotype, but their relative importance is not always known beforehand. While many
case-control studies automatically include age and gender in sample matching, additional
variables that are important for the phenotype need to be chosen on a case-by-case basis, and
sometimes only after the data have been collected and analyzed. In genetic association studies,
for example, the ancestral background of human subjects can have a strong confounding effect
[for example, 2, 3-5]. A parallel situation exists for gene expression analyses involving the use
of postmortem samples, where tissue pH and near-death physiological stress can exert a major
influence on the inter-individual variation of expression patterns [6, 7]. The impact of pH/agonal
stress is so strong that it often far outweighs the influence of all other factors, including age and

gender, and can obviate the detection of the impact of the illness. Because of this, more and
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more gene expression studies in recent years take special precaution to match samples by pH and
agonal factors, just as a well designed genetic study seeks to balance cases and controls by self-

reported racial identity or continental ancestry.

Despite the widespread use and general success of these sample matching strategies, the risk of
residual confounding remains. The key pH-sensitive genes or pathways, such as components of
mitochondrial electron transport chain and proteasome genes, are highly variable between
samples [8], and often appear as the top findings in microarray-based case-control comparisons
of brain samples. For example, while several studies have reported down-regulation of
mitochondrial transcripts in schizophrenia [9] and bipolar disorder [10], others have reported up-
regulation [11, 12]. The samples used by Prabakaran et al. [9] had a slight case-control
difference in pH, but many more controls than cases died of cardiac events [13]. Further
analyses of the same RNA samples suggested that most of the findings that implicate
mitochondria genes could be explained by effects of medication. Interestingly, the samples used
in Sun et al. [10] were not balanced in pH, although the clinical condition appeared to be
balanced. These conflicting results suggest that the role of pH-sensitive, stress-related genes in
psychiatric disorders is still unresolved. Similarly, in the parallel example of genetic association
studies, several recent analyses have highlighted the need for more stringent controls for the very
strong genetic confounders [3, 4]. In studies involving highly diverse populations, many human
subjects are admixed at the individual level, that is, they carry genetic material derived from
several founding populations. For such individuals, a single self-reported racial or ethnic
descriptor such as "African American" or "Hispanic" is no longer adequate for representing the
proportional contribution from multiple ancestral origins. It has become more desirable, and in
fact feasible, to infer the individual admixture ratios from the observed genetic data [14-16), and

to apply these empirically derived ratios in post hoc sample matching [17, 18]. In effect; what
4
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was initially a sample classification problem, in which subjects are categorized into discrete
ethnic groups, has been turned into a "grades of membership" problem [19], in which individual
samples are scored on one or several continuous variables. These continuous variables can be
used for sample selection, case-control matching, or as a new covariate in regression analyses,
stratified analyses, or ordered subset analyses [20-22]. The empirically derived ancestral ratios
may be more effective for mitigating the impact of confounding, because they can be more
accurate than self-reported ancestry, as the former are derived from the genetic data per se, and

are less susceptible to survey errors or recall bias.

fn this study, we applied a similar strategy to an ongoing gene expression study in which we
compare postmortem brain tissues between normal controls and subjects who suffered from
major depression, bipolar disorder, or schizophrenia. In a previous report [6], we described a
classification-based analysis in which gene expression patterns in most subjects can be assigned
to one of two main types: one from a low-pH, highly stressed group of samples, named "Type 2",
and the other from a normal-pH, low-stress group of samples, named "Type 1". These two
prototypes of expression patterns can be distinguished by strong and systematic changes in
several biological pathways, including genes involved in energy metabolism and stress response.
Since that report, we have increased the scope of our investigation from three brain regions in 40
subjects to six regions in up to 126 subjects (some regions were studied in fewer than 126
subjects). In carrying out case-control analyses, we found that even among the supposedly
"purified” subset consisting of only the Type 1 samples, some residual heterogeneity in
pH/agonal stress may still be driving the case-control compaﬂson results, largely because of the
ovefwhelming impact of agonal stress. Meanwhile, the pH- and stress-related genes that we and
others have characterized continue to appear in the literature as among the top gene expression

findings in comparative studies for a variety of diseases and conditions [9, 23]. This experience
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motivated us to seek finer control of this obscuring variable by characterizing sample
heterogeneity in greater detail. Specifically, we refined our previous dichotomous classification
scheme to one that evaluates group-membership by quantitative ratings. A second rationale for
pursuing this study came from the recognition that pH values are typically measured in one or
two brain regions (in our case, cerebellum), whereas disease-related changes in gene expression
are expected to occur in numerous brain regions. There is no a priori reason to assume that
altered pH and agonal factors would impact all these brain regions in a uniform manner.
Consequently, sample matching based on a parameter derived from a single brain area or the
entire brain may not be reliable for all regions examined, whereas gene expression data for

individual regions can be used to assess specific regional patterns of agonal stress.

To this end, we developed Agonal Stress Rating (ASR), a quantitative system that measures the
degree of stress of each RNA sample on a continuous scale based on gene expression data, We
examined the relationship between ASRs and conventional pre hoc indicators such as pH and
clinically derived Agonal Factor Scores (AFS), compared the stress ratings across six brain
regions, and assessed the performance of different sample matching strategies. We also
developed rigorous data pre-processing methods, compared different options of defining the
ASRs, evaluated the robustness of ASRs in terms of the between-lab and between-platform

reproducibility, and explored several related analysis algorithms.
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Results

Systematic technical variation and data processing strategies

Before we begin to characterize biological confounding factors, non-biological sources of
variation must be identified. The microarray data used in this study were collected in multiple
experimental batches, representing the mixed use of two types of Affymetrix Genechips
(U133A/B and U133Plus_2), experiments run at three laboratories (at UC Irvine, UC Davis, and
University of Michigan), RNA samples from six brain regions (AnCg, DLPFC, AMY, HC, CB,
and NACC), and six cohorts of approximately 20 subjects each (four Mood Disorder Cohorts
and two Schizophrenia Cohorts), for up to 126 subjects, about half of which were normal
controls, the other half were cases of major depression, bipolar disorder, or schizophrenia.
Cohort assembly, tissue disséction and RNA extraction took place in multiple stages, typically
several months apart. The RNA samples were labeled and hybridized one cohort at a time, one
region at a time, in two or three laboratories (called "Sites", not to be confused with the six brain
regions) separately. As a result of these technical variabihﬁés, the entire dataset contained
systematic differences between sites, chip types, and sometimes, cohorts, although the cohort-
cohort technical differences are blended with éenuine sample-sample differences across cohorts,
This type of technical variation warrants careful scrutiny, and must be adequately controlled to

ensure the accuracy of analyzing biological differences.

After array scanning and Affymetrix Genechip data summary (a computational process that
combines data from multiple oligonucleotides probes designed to interrogate a given transcript to
obtain a single expression value for that transcript, see Methods for more details), we examined

chip-to-chip similarity in each region by plotting the pairwise correlation matrices as color-coded
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heatmaps, where red indicates high similarities between pairs of chips, blue indicates low
similarity, and the samples are ordered by site and by cohort. Figure 1a showed one such
correlation map for 201 AnCg chips produced by using logged intensities of all 12,734 Refseq
gene-based probe sets on the U133A chip. In this example, as is the case for other brain regions,
we analyzed data from two sites in our Consortium for six cohorts, representing 12 naturally
occurring experimental batches. Figure la shows that the observed patterns aggregate in
rectangular "blocks" of high correlation, indicated in red, corresponding to samples that are
highly similar to each other in gene expression patterns. Importantly, the block-block partition
coincides with the natural boundaries of experimental batches. Not all experimental batches can
be definitively separated from each other; typically the 12 batches can be adequately described
by 5-9 blocks, as sometimes two adjacent cohorts from one site form a single indistinguishable
group, mostly due to relatively homogeneous technical conditions shared across these cohorts.
In all, block-like structures are seen in every brain region, and almost always correspond to
experimental batches, suggesting that they arose from changes in reagents, hybridization

protocols, chip types, or scanning conditions.

At ]east two other lines of evidence suggest that the "blocks" are derived from technical variation
between experimental batches rather than due to genuine biological differences between samples
in different cohorts. First, when we set aside data for all human transcripts, and plot chip-chip
correlations by using only the 68 Affymetrix control probe sets, which target spiked-in E. coli
transcripts, the data still exhibit the same block structure as seen with the use of all genes [see
Additional file 1, figure 1a], indicating that technical factors play a major role in delineating the
blocks. Secondly, when we re-ran all samples on a custom 711-gene Illumina Beadarrays in a
validation experiment that was done at one site and randomized samples across cohorts and

regions, we did not observe the block-like separation between cohorts [see Additional file 1,
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figure 1b], suggesting that biological differences between cohorts made a minor contribution, if

any at all, to the observed "blocks".

The correlation matrices not only provide a means to visualize sample heterogeneity, but also
allowed us to define a most parsimonious set of blocks for each region for the purpose of data
normalization. To adjust for the block effect, we subtracted from each sample's logged
expression value the median value of the block, and did so for each block and for every transcript.
For example, for each gene, expression values for all Block 1 samples would subtract the median
value of Block 1, and likewise for all other blocks, such that after the centering, the median of
each block is at zero, effectively transforming the original data into the deviations from the block
medians, in a procedure that is similar to adding a Block factor as a categorical variable in robust
linear modeling (particularly the median polish method). The goal of this procedure is to remove
a block-wide fixed factor, most of which, as we argued above, came from technical sources. The
benefit of this adjustment, particularly the assumption of a fixed block-specific effect, can be
evaluated by an objective criterion: how well the adjusted data increase the technical
reproducibility of the same samples that were run at two or more sites. We found that after
removing the block effect by median centering, we improved the between-site similarity for
replicate chips run at multiple sites (Figure 1b). For samples that were run on both the U133A
and the U133Plus_2 chips, removing a fixed between-chip-type effect produced satisfactory

agreement between the two chip types [see Additional file 1, Figure 1c].

Although the systematic differences between blocks can be adjusted in this way, the assumption
of a fixed effect is not expected to hold for all genes in all samples equally well. Other types of
variation, including within-block heterogeneity, however, are not readily discernible in the data,

and are probably impossible to control. Our analysis showed that a major portion of the
9

54



