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Table ]

765

List of primers for genomic DNA fragment amplification and sequencing reactions

Name of primer Sequence (5'-3") Direction Position* Product size (bp) Purpose
D4-120F* GTTGTCTGTCTTTICTCATTGTTTCCATTG Sense -1726 -1697 } 429, 549 Amp’
D4-120R* GAAGGAGCAGGCACCGTGAGC Antisense ~1179 -1199 Amp
D4iF3 CACACCTGTCCCTGGTGCAGG Sense ~1256 -1236 } 606 Amp, Seq®
D4iR3 CCCACCCGTTGCACAGTTGATC Antisense ~651 —672 Amp, Seq
D4iiF3 - TACCTAGCTCACGGTCTTGGGC Sense —765 -744 } 1160 Amp
D4ivR2 CTGGAAGCTCCGCACCAGAAAG Antisense 395 374 Amp
D4iiF5 GCTGTCCGCCCAGTTTCGGAG Sense ~706 —686 Seq
D4pos3® CTCAGGTCITTCTGCGTCTGGC Sense —472 —451 Seq
D4EXIF* CGCCATGGGGAACCGCAG Sense —4 14 Seq
D4iiiR | GTGGCCACGCTCACGCACACG Antisense 182 162 Seq
D4iiiR2 CGCTGAGCACCGCGGACAACG Antisense -17 -37 Seq
D4iiR} TCGACGCCAGCGCCATCCTAC Antisense ~346 ~366 Seq
D4neg3* CAGGTCACAGGTCACCCCTCIT Sense —947 -926 } 792 Amp, Seq
Ddneg4* TTGCTCATCTTGGAATTTTGCG Antisense —-156 -177 Amp, Seq
D4-48F¢ AGGTGGCACGTCGCGCCAAGCTGCA Sense 2612 2636 } 174+ (48 xN)  Amp
D4-48R¢ TCTGCGGTGGAGTCTGGGGTGGGAG Antisense 2929 2905 Amp

* Seaman et al. (1999).

b Mitsuyasu et al. (1999, 2001).
¢ Catalano et al. (1993).

¢ Nanko et al. (1993).

° Relative position to the first nucleotide of initiation codon of the genomic sequence (GenBank Accession No. AC021663).

f Amp, these primers were used for PCR amplification.
& Seq, these primers were used for direct sequencing.
" N, number of repeats of the 48-bp sequence in exon 3.

The 48-bp VNTR was genotyped according to published
methods (Nanko et al., 1993; Van Tol et al., 1992). PCR
products were electrophoresed on an Agilent 2100 Bioana-
Iyzer (Agilent Technologies, Inc., USA). The size of the
amplified fragments was 174 bp plus 48 bp multiplied by
the repeat number.

DNA sequencing was used to genotype 26 polymor-
phisms. First DNA sequencing templates were generated
by PCR amplification of two DNA fragments (606-bp
and 1160-bp) from genomic DNA of each individual
(Fig. ). PCR primers (Table 1) were designed based on
GenBank Accession No. AC021663. The 606-bp fragment
was amplified in a 10 pl reaction mixture that contained
1 pM of each primer, 0.2 mM of dANTPs (Amersham Bio-
sciences Corporation, USA), 50ng template DNA,
0.025 U/ul of AmpliTaq polymerase (Applied Biosystems,
USA), 5.5ng/ul of TaqStart Antibody (Clontech, USA),
50 mM KCl, 10 mM Tris-HCI (pH 8.3), 1.5 mM MgCl,
and 10% of dimethylsulfoxide (DMSO) (Wako Pure Chem-
ical Industries, Ltd., Japan), Thermal cycling profile was
I min at 95°C for initial denaturation, followed by 40
cycles of 30 s at 95 °C, 30 s at 60 °C and 1 min at 72 °C, fol-
lowed by a final incubation at 72 °C for 5 min. The 1160-bp
fragment was amplified in 1 uM of each primer, 0.2 mM of
dNTPs, 50 ng template DNA, 0.025 U/pl of KOD Dash
polymerase (Toyobo, Japan), KOD Dash PCR buffer sup-
plied by the manufacturer and 10% of DMSO in a total
volume of 20 pl. The thermal cycling profile was I min at
96 °C for the initial denaturation, followed by 33 cycles
of 30s at 95°C, 2s at 63°C and 30s at 74 °C followed
by a final incubation at 74 °C for 5 min.

These two DNA fragments were then used for 26 minise-
quencing reactions. First the template fragments were trea-
ted with two units of shrimp alkaline phosphatase (Roche
Diagnostics Corporation, USA) and exonuclease 1 (New
England Biolabs, USA) at 37 °C for 1 h. Both enzymes were
heat inactivated at 80 °C for 15 min. Cycle sequencing was
carried out by BigDye Terminator Cycle Sequencing Ready
Reaction Kit ver 2.0 (Applied Biosystems, USA) according
to the manufacturer’s instructions. Depending on the frag-
ments and primers used (Table 1 and Fig. 1), the protocols
were slightly modified. Extension products were purified by

Multiscreen 96-Well Filter Plates (Millipore, USA). Sample
electrophoresis and data analysis were performed on the
ABI PRISM 3100 and/or 3700 DNA Analyzer (Applied
Biosystems, USA). Duplicate genotypes were generated
from 133 individuals using as sequencing template a 792-
bp fragment located between position —947 and —156, as
previously described (Mitsuyasu et al., 2001). This fragment
contains 12 polymorphisms (~713C/T, —616G/C, —615A/
G, —603del/T, —600G/C, —598G/T, —597(G),ps, —521T/
C, —376C/T, —364A/G, —291C/T and —234C/A) (Table
1 and Fig. 1) and was used to confirm results generated from
the 1160-bp fragment.

2.3. Population genetic analyses

Hardy—Weinberg equilibrium of each bi-allelic polymor-
phism was assessed by y” test. Pairwise LD statistic D’ and
r? were calculated with unphased genotype data by Haplo-
view 3.2 software (Barrett et al., 2005). LD calculations
were done for a total of 17 polymorphisms including 14
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Fig. 1. Schematic representation of polymorphisms of the DRD4 gene. The DRD4 gene spans approximately 3.9 kbp consisting of four exons (black
boxes: coding regions; white boxes: untranslated regions; hatched box: multiple transcription start sites). The region between position —1217 and +31
nucleotide {the numbering is relative to the first nucleotide of the initiation codon (ATG)) was extensively searched for novel or published SNPs. In total
34 polymorphistas (arrows) were collected from databases (dbSNP; Sherry et al., 1999) and JSNP (Hirakawa et al., 2002), published resources (PubMed)
and our experiments. 28 polymorphisms (closed arrows) out of 34 were genotyped, including four novel polymorphisms (asterisks) first reported in this
study. For genotyping, five fragments (bold lines) (549-bp, 606-bp, 1160-bp, 792-bp and 366-bp in length) were amplified by five primer sets (closed arrows;
- Jetails are shown in Table 1) and sequenced by primers as indicated (open arrowheads). Thin lines next to open arrows indicate sequenced regions and
orientation of primers. Exact positions of genotyped markers on each sequenced fragment are shown by longitudinal dotted lines. The reference sequence

was AC021663 (GenBank).

biallelic polymorphic markers (120-bp TR, —1217G/del,
—1106T/C, —906T/C, —809G/A, -768G/A, -T713C/T,
-616G/C, —603del/T, —600G/C, —521T/C, —376C/T,
—291C/T and 12-bp repeat) for which minor allele frequen-
cies exceeded 0.01, and three multi-allelic polymorphisms
(=930C/G/T, —597(G),_s and 48-bp VNTR). Since the
Haploview software can analyze only bi-allelic data, we
excluded individuals with allele T for —930C/G/T, and
individuals with allele (G), or (G)s for —597(G)..s. For
the same reason, only individuals with genotype 4/4, 2/4,
or 2/2 at the 48-bp VNTR were included. LD blocks were
defined according to the confidence intervals described by
Gabriel et al. (2002). Haploview LD analysis was carried
out by selecting confidence intervals as specified in the
software.

LD blocks in the 4.4-kb region of the DRD4 gene were
investigated and tag-SNPs (haplotype tagging markers)
selected using Tagger software in Haploview, Markers
whose 1 values were more than 0.8 were selected by Tagger
as part of an LD block.

Tag-markers selected using Tagger were used for haplo-
type estimation by PHASE ver 2.1 software (Stephens and
Donnelly, 2003; Stephens et al., 2001). The distribution of
the predicted haplotypes was compared between: (i) all
schizophrenic patients vs. all controls, (ii) female schizo-
phrenic patients vs. female controls, and (iii) male schizo-
phrenic patients vs. male controls by i test.

We also carried out a sliding window haplotype analysis
using the HTR (Haplotype Trend Regression) program
(http://statgen.ncsu.edu/zaykin/htr.html) (Zaykin et al,
2002). This program estimates haplotype frequencies and
performs a sliding window mode of haplotype association
analysis between cases and controls. In this study, window
size was set to be from 2 to 6 markers.

2.4. Statistical methods
Genotype frequencies of 17 polymorphic markers were

compared between: (i) all schizophrenic patients vs. all con-
trols, (ii) female schizophrenic patients vs. female controls,
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and (iii) male schizophrenic patients vs. male controls by »*
test. When the expected number of any cell in a contin-
gency table was less than 5, we employed Fisher’s exact
test. The significance level (a) for all statistical tests was
two sided 0.05. Odds ratios (ORs) were calculated with
95% confidence intervals (Cls).

Following univariate analysis, stepwise logistic regres-
sion analyses were carried out using gender, age and the
17 polymorphic markers as independent variables. The bin-
ary dependent variable was ““schizophrenia affected” =1 or
“control” = 0.

A modified Bonferroni procedure was used to correct for
muitiple hypothesis testing. According to Bonferront, since
multiple tests were performed, the a level of 0.05 should be
divided by the number of tests. However, this correction is
almost certainly too strict because of the existence of LD
between some of the polymorphisms. Therefore we also
used a modified Bonferroni correction (Nyholt, 2004).

According to this method, an effective number of indepen--

dent marker loci is calculated and used in the denominator
of the Bonferroni correction. Another adjustment to Bon-
ferroni’s method (Li and Ji, 2005) was also used to calculate
an effective number of polymorphisms. -

Statistical calculations were performed using BMDP sta-
tistical software (BMDP Statistical Software, Inc., USA)
and SPSS 13.0J software (SPSS Japan Inc., Japan). StatX-
act (Cytel Software Corporation, USA) was used to com-
pute Fisher’s exact test, except for 2 x 2 contingency tables.

Our sample size had a post-hoc power of 0.848 to detect
an effect size of w = 0.10 (weak) at the 0.05 significance level
(two-tailed), as calculated by software program G*Power
(http://www psycho.uni-duesseldorf.de/aap/projects/gpo-
wer/how_to_use _gpower.html) (Erdfelder et al., 1996).

3. Results
3.1. Polymorphism detection and genotyping

Fig. 1 shows the structure of the DRD4 gene and the
locations of all reported polymorphisms (see also Table
2). We collected data on 34 polymorphisms including 28
SNPs and six insertion/deletions within an approximately
49kbp region. The data was obtained from dbSNP
(Sherry et al., 1999) (http://www.ncbi.nim.nih.gov/SNP/
snp_summary.cgi), JSNP (Haga et al., 2002; Hirakawa
et al., 2002), other published reports and our experiments.
As shown in Fig. 1, there are 27 polymorphisms, including
22 SNPs, in the 1.8 kbp region starting 1.5 kbp upstream of
the 3’ end of exon 1. This is a much higher SNP density
£12.2 SNPs/kbp) than the genome-wide average SNP den-
sity (reported to be 0.827 SNPs/kbp in dbSNP or
1.91 kbn/SNP by Sachidanandam et al. (2001)]. Table 2
. summarizes data on 27 DRD4 polymorphisms genotyped
in this study, including four novel SNPs (—1102G/A,
—930C/G/T, —598G/T and -234C/A) and one novel
mononucleotide repeat polymorphism: —597(G),_s. The
—597(G),.s polymorphism was previously reported in the

database as either —602G/del or —602(G)g_o (Mitsuyasu
et al.,, 2001; Mitsuyasu et al., 1999; Okuyama et al.,
2000). The —602(G); and —602(G)¢ alleles were also iden-
tified in our experiments. In addition, a novel SNP
(—598G/T) was found within the mononucleotide repeat
of —602(G);_j0. Thus, the —602(G)g s polymorphism
appears to be a combination of a guanine mononucleotide
repeat with 2-5 units (—597(G),_s), together with a SNP at
~598G/T and an invariant four guanine nucleotide repeat
immediately upstream. Thus we suggest a designation of
—597(G),s for this polymorphism instead of —602G/del
or —602(G)se. The —598G/T SNP was registered as
—598G/A/del in the dbSNP database, however, our study
showed only the —598G and T genotypes. For this reason,
we classified this SNP as novel.

In order to understand the relationship between these
polymorphisms, including the four novel SNPs, and the
well studied 120-bp TR and 48-bp VNTR polymorphisms
we include data on the latter in this study. The 120-bp
TR is located approximately 0.8 kb upstream of the 5'
end of exon 1. The 48-bp VNTR is in exon 3. It has been
reported that two adjacent intronic SNPs (TVS3(+43)A/G
and IVS3(—32)C/G) are in strong LD with the 48-bp
VNTR 4 repeat allele (Ding et al., 2002). Based on that
data we typed the 48-bp VNTR polymorphism as a repre-
sentative marker for variation in the 3’ region of the gene.

Twenty-seven polymorphisms were genotyped. (The 13-
bp deletion in exon 1 could not be analyzed for technical
reasons.) Twenty-one were biallelic SNPs (19 substitution,.
two insertion/deletion), one triallelic. Five SNPs (—1123C/
T, —615A/G, —364A/G, —11C/T and +31G/C) were
monomorphic in the study population, as was the 21-bp
deletion (Table 2). Four markers (—1102G/A, —598G/T,
—234C/A and, —128G/T) were singletons. These polymor-
phisms were not analyzed for disease association. The
seven repeat allele of the 48-bp VNTR was rare; only four
heterozygous genotypes (4/7) were found.

The genotype distribution of each biallelic polymor-
phism was consistent with Hardy-Weinberg equilibrium
(data not shown).

3.2. Association with schizophrenia

Uni- and multivariate analyses were carried out with 17
polymorphisms to assess the effect of polymorphism on
risk of developing schizophrenia. Specifically, 12 known
SNPs (—1217G/del, —1106T/C, —906T/C, —809G/A,
—768G/A, —713C/T, —-616G/C, —603del/T, —600G/C,
—521T/C, —376C/T, and —291C/T), three repeat polymor-
phisms (120-bp TR, 12-bp repeat, and 48-bp VNTR) and
two novel polymorphisms (—930C/G/T and -597(G)s.s)
were analyzed. Results from univariate statistical analyses
are shown in Table 2.

No polymorphisms differed in frequency between the
schizophrenic patients and the controls, even before adjusi-
ing for multiple hypothesis testing (Table 2). Companng the
female schizophrenic patients with the female controls, we
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found significant differences — before correction for multiple
hypothesis testing — in the distribution of both —713C/T
(p = 0.049) and —521T/C (p = 0.046, Table 2). In the case
of —713C/T, the minor allele frequency was very low
(0.02 in female schizophrenic patients, 0 in controls). There
were four heterozygous schizophrenic patients (no rare
homozygotes) compared to zero in the female controls.
The —521C allele was more frequent in the female schizo-
phrenic patients than the female controls (p = 0.034,
OR:1.58, 95% CI: 1.06-2.37). When comparing the OR
for each genotype using genotype T/T as the referent in
the female group, the OR for T/C was 2.11 (95% CI:
1.10-4.07) while the OR for C/C was 2.33 (95% CI: 1.01-
5.38). If the —521C allele behaved as a dominant, the OR
for the combined C/C and T/C female group would be
2.17 (95% CI: 1.17-4.04, p =0.021) relative to the T/T
female group. However, when either the Bonferroni correc-
tion, or a less conservative modified Bonferroni that
accounts for LD (Li and Ji, 2005; Niyholt, 2004) was applied
these results were no longer significant.

There were no significant differences between patients
and controls in the male subgroup, even before multiple
hypothesis correction (Table 2). Likewise, stepwise logistic

regression analyscs failed to detect any significant associa-
tion between polymorphisms and schizophrenia.

Having failed to detect any influence of individual poly-
morphisms on risk of schizophrenia, we next sought to
determine whether DRD4 haplotypes might influence
schizophrenia risk. Before using software to predict haplo-
types it is efficient to first remove polymorphisms that are
in strong LD with other polymorphisms. Accordingly, we
determined the LD coefficient D’ and the correlation
between all pairs of 17 polymorphisms (Fig. 2 and Table 3).

The International HapMap Project (http://www.hap-
map.org) includes data on only five DRD4 SNPs that are.
polymorphic in Japanese: rs3758653 (5’ flanking region),
rs3889692 (exon 3), rs11246226, rs936465 and rs4331145
(3’ flanking region). These SNPs were analyzed by Haplo-
view. Only one LD block was formed, comprising the three
downstream SNPs. Two HapMap SNPs, rs3758653
(—906T/C in this study) and rs3889692 (not genotyped in
this study) were not correlated with each other or the other
four SNPs (r* values 0.024-0.061). These resuits indicate
low LD across the DRD4 gene.

We used our genotype data to analyze LD in the 4.4-kb
region of the DRD4 gene and select tag-markers using

Fig. 2. LD coefficient D’ representation of polymorphisms of the DRD4 gene. The values in the boxes represent D’ between pairs of markers. The LD
display is from Haploview software. The boxes without values indicate complete LD (D' = 1.0). The dark grey boxes indicate strong LD. The light grey
boxes indicate uninformative variant pairs. The white boxes indicate low LD. LD blocks were defined according to the algorithm in Haploview (Gabriel
et al., 2002).
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§ Tagger software in Haploview. Two small LD blocks were

2 detected, one between —1217G/del and —1106T/C (D’ =

2 o 0.98; r* =0.59), the other between —291C/T and the 12-

- € bp repeat (D’ = 0.96; = 0.86). Other polymorphisms were

‘S only very weakly correlated, if at all (+* < 0.80). However,

) ey —376C/T and the 48-bp VNTR indicated relatively high

: e correlation value (r? = 0.78). Based on this analysis 16

s markers were selected for haplotype analysis. Thus, as a

53 gae result of the low LD across the DRD4 gene, we were only

: es¢< able to decrease the independent polymorphism number

g from 17 to 16 tag-markers.

= sagg The 48-bp VNTR polymorphism is in strong LD with

! Sese —376C/T (D' = 0.91, #* = 0.78). However, it did not exhi-

2 bit a high r* value with any other polymorphism in the

g region between the 120-bp TR and the 12-bp repeat of

2 g§8g8g DRD4 (Table 3). D' values between 120-bp TR and

o —906T/C (D'=0091) and —291C/T (D'=0.90) were

I} =0.90. However, since corresponding #* values were less

g 2888888 than 0.80, these polymorphisms could not be dropped

! STocoS S L. . . .

. based on our criteria for removing certain polymorphisms

% as described in Section 2.

g Stoxges Using 16 markers, a total of 136 haplotypes were esti-

! cSssscSesS mated by PHASE. We compared the distribution of a total

Q of 20 haplotypes with aliele frequencies >0.01 between

g o oo . schizophrenics and controls in: (i) all subjects, (ii) female

At 8ggEg8Es subgroup, and (iii) male subgroup. When the difference in

= haplotype frequencies was analyzed by the ¥ test no signif-

& o w icant differences were observed. Using 16 tag-markers, p

T S88358:s83 values of sliding window haplotype analysis with window

< size 2 and 6 showed no statistically significant difference

g between schizophrenic patients and controls before adjust-

< £888z885:8 ment for multiple hypothesis testing. Fig. 3 indicates the

< results of this analysis only for window sizes 2 and 3 (Fig. 3).

O .

g 58353585853 4. Discussion -

| =R - -

% In order to clarify the structure of genetic variation in

§; 8zs2335z38353585 the DRD4 gene and to further explore potential genetic

cecseeeseess influences on schizophrenia, we genotyped 216 Japanese

S ) schizophrenics and 243 healthy controls at 27 polymorphic

g g sites, including four novel SNPs.

S g88gEE38838888|< Not surprisingly, we found the allele frequencies of some
§ o 2 polymorphisms to be different in the Japanese population
Sl _2 compared to European or other populations: —615A/G is
= SSszsosgsagosgls polymorphic in Caucasians (Ronai et al., 2004}, however,
2 ! eeseecccessssely it was monomorphic in our study. The same phenomenon
212 3 was observed with —364A/G, —11C/T and +31G/C
3 e 3 (Cichon et al., 1995) and with a 21-bp deletion reported
.5- o § § § g § g3 § § § E § § § 3 3 in a single individual suffering from obsessive-compulsive
:.? “ $ disorder and panic disorder (Cichon et al., 1995). Other
<le < polymorphisms (~1102A, -930T, -713T, -598T,
g '-;:' scugegcezsNeNEss 8 —597(G),, ~597(G)s, —234A and —128T) had very low
I EEEEEEE R R B allele frequencies in the Japanese population (Table 2).

S 3 & . 1= a In order to assess the relationship between schizophre-
"2 S2g9usg Ly Eg G cer bz ; nia and DRD4 polymorphisms, we carried out association
2 é C28ER8583 é SEQEe:lE analyses between Japanese schizophrenic patients and
e£ TTITTNTITINN T4 € healthy controls. Univariate analyses indicated that none
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Fig. 3. Sliding window haplotype analysis of the DRD4 gene. The X-axis displays each polymorphism analyzed in this study. The Y-axis shows —log;o(p
value) of each marker and sliding window (window size 2 and 3) haplotype analysis. Open circles indicated the result of single marker analysis of each
polymorphism (univariate analysis). Each line between two closed boxes indicates p value of 2-marker sliding window analysis. Each dashed line with three

triangles indicates p value of 3-marker sliding window analysis.

of the markers was statistically significant after correction
for multiple hypothesis testing.

There have been inconsistent reports regarding the
—521T/C polymorphism in schizophrenia. Okuyama
et al. reported that the T allele of this polymorphism
reduces DRD4 transcriptional efficiency by 40% compared
with the C allele, and that, in the Japanese population, this
marker is associated with schizophrenia (Okuyama et al.,
1999). However, attempts to replicate these results in other
populations ‘such as Chinese and Caucasian have failed
(Ambrosio et al., 2004; Jonsson et al., 2001; Xing et al.,
2003). Based on these results one might speculate that there
is heterogeneity in the genetics of schizophrenia. However,
our negative findings regarding —521T/C in another Japa-
nese population suggest that the result of Okuyama may
reflect type I error.

We also carried out LD and haplotype analyses, how-
ever, the DRD4 region is unusual both in terms of high
SNP density and low LD. Consequently the potential
power of haplotype based association methods is not much
different from SNP based approaches. Only two LD blocks
were formed in the DRD4 region, each consisting of only
two Polymorphisms, leaving most polymorphisms as inde-
pendent variables. These results are consistent with other
reports on the population genetic structure of DRD4
(Wang et al., 2004). No statistically significant haplotype
associations with schizophrenia were detected.

There are several limitations of this study that should be
borne in mind. One concern is that the control population

may not be perfectly matched with the schizophrenic popu-
lation. Most of the male controls were Japanese Self Defense
Forces personnel aged about 50 years old. There might be
some characteristics of this population that differ from other
healthy control populations. Ideally more detailed socio-
economic information should be collected to guide selection
of a balanced control population, and for inclusion in a sta-
tistical model along with genetic variables. Also, in view of
the effects of environmental factors on the development of
schizophrenia, it is important to collect as much informa-
tion as possible on environmental exposures.

In conclusion, we report in detail the structure of genetic
variation across the DRD4 gene in the Japanese popula-
tion. LD analysis revealed two small LD blocks, however,
the most notable pattern was low LD across most of the
gene. Haplotype analysis using 16 tag-markers selected
by LD block analysis revealed no associations with risk
of schizophrenia. Despite the biological role of DRD4 in
dopamine signaling, and reports of functional effects asso-
ciated with polymorphisms such as the 48-bp repeat, this
report contributes to the increasing body of literature sug-
gesting that the gene does not contribute significantly to
risk of schizophrenia.
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ABSTRACT

Stimulation of dopamine receptors may induce striatal Homer 1a, an immediate-early gene
(IEG) that is involved in the molecular mechanism for the signaling pathway of the group I
metabotropic glutamate receptors. This study examined the effects of the agonists for
dopamine D;-like and D,-like receptors 6n gene expression of Homer 1a, in comparison with
the IEG c-fos expression, in the discrete brain regions of rats. The D,-like agonist SKF38393
(20 mg/kg, s.c.) significantly increased the mRNA levels of Homer 1a in the striatum and
nucleus accumbens, but not in the medial prefrontal cortex or hippocampus, 2 h after
injection, whereas the D,-like agonist quinpirole (1 mg/kg, s.c.) had no significant effect on
Homer 1a mRNA levels in any brain region examined. Co-administration of SKF38393 and
quinpirole significantly increased Homer 1a mRNA levels in the striatum, nucleus
accumbens and hippocampus, while this effect was not significantly greater than that of
SKF38393 alone. Any treatment did not affect the mRNA levels of other splicing variants,
Homer 1b or 1c. In contrast, combination of both dopamine agonists produced a greater
increase than SKF38393 did in the mRNA levels of ¢c-fos in the nucleus accumbens, striatum
and substantia nigra. These results suggest that stimulation of D,-like receptors, but not D,-
like receptors, may induce gene expression of Homer 1a in the striatum and nucleus
accumbens. However, in contrast to c-fos expression, it is unlikely that co-activation of both

: Dy-like and D;-like réceptors exerts a synergic action on Homer 1a expression in these -
" regions.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

implications for the pathophysiology of many neuropsychia-

The interactions between dopamine and glutamate within the tric disorders such as schizophrenia, substance abuse and
brain regions including the basal ganglia have significant Parkinson’s disease (Carlsson and Carlsson, 1990; Pulvirenti
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and Diana, 2001). Many lines of evidence suggest the glutama-
tergic control of dopamine transmission and vice versa in the
striatum, nucleus accumbens and prefrontal cortex (Morari et
al., 1998; Vanderschuren and Kalivas, 2000). The dopamine D, -
like receptor agonist SKF38393 increased striatal Fos induction
in 6-hydroxydopamine-lesioned rats following intranigral
injection with AMPA/kainite receptor antagonist DNQX
(McPherson and Marshall, 2000). In contrast, the D,-like
receptor agonist quinpirole decreased striatal Fos but
increased the pallidal Fos induced by intranigral injection
with the NMDA receptor antagonist AP5. SKF38393, but not
quinpirole, significantly increased amplitude of excitatory
postsynaptic current in the prefrontal cortex (Gonzalez-Islas
and Hablitz, 2003). Glutamate levels during food consumption
are controlled by the dopaminergic system in the nucleus
accumbens via not D, receptor- but D, receptor-mediated
mechanism (Mikhailova, 2003). These findings suggest that
dopamine receptor subtypes may differentially regulate glu-
tamatergic transmission in a region-specific manner.

The Homer family of proteins has been found to bind
selectively to group I metabotropic glutamate receptors
(mGluRs) and play an important role in the molecular mechan-
ism for the signaling pathway of these receptors (Brakernan et
al,, 1997; Kato et al., 1997, 1998). The Homer family consists of
three independent genes, Homer 1, 2 and 3. Homer 1 comprises
three splicing variants: Homer 1a, 1b and 1c (Xiao et al., 1998).
The long form of Homer, Homer 1b/c, is constitutively expressed
as a multidimer linking group I mGluRs to calcium-selective
endoplasmic inositol triphosphate (IP5) receptors via the coiled-
coil (CC) domain of carboxyl-terminal. In contrast, Homer 1a, a
short isoform lacking the CC domain, is an immediate-early
gene (IEG) product that is rapidly introduced by neuronal
activation (Brakeman et al., 1997; Kato et al., 1997; Berke et al.,
1998; Morioka et al., 2001; Bottai et al., 2002; Nielsen et al., 2002).
Recently, dopaminergic modulation has been demonstrated to
affect gene expression of Homer la. Cocaine, a dopamine
transporter inhibitor (Brakeman et al., 1997; Swanson et al.,
2001), SKF38393, a D;-like receptor agonist (Berke et al., 1998),
and haloperidol, a D,-like receptor antagonist (de Bartolomeis et
al,, 2002; Polese et al.,, 2002), induced the Homer 1a gene
expression in the striatum. In contrast, SCH23390, a D,-like
Teceptor antagonist, attenuated methylphenidate-induced
expression of striatal Homer 1a (Yano et al., 2006). Moreover,
Homer 1b and 1c-knockout mice displayed enhanced metham-
phetamine-induced motor behavior (Szumlinski et al., 2005),
while behavioral response to amphetamine increased in
transgenic mice overexpressing Homer 1a in striatal medium
spiny neurons localized predominantly in the striosome (patch)
(Tappe and Kuner, 2006). These findings suggest that Homer 1a
could play a key role on dopamine—glutamate interactions in the
striatum. In line with this assumption, we previously reported
that a high dose (40 mg/kg, i.p.) of methamphetamine increased
Homer 1a mRNA levels in the striaturn and nucleus accumbens,
but not in the medial prefrontal cortex or the substantia nigra
(Hashimoto et al., 2004). Neither Homer 1b nor 1c mRNAs were
affected in any brain regions examined. Striatal Homer 1a was
induced to the maximal level 2 h after administration of
methamphetamine, which time-dependent profile was similar
to that of Homer 1a expression induced by the D;-like receptor
agonist SKF38393 (Berke et al., 1998). Glutamate is reported to

induce Homer 1a much slower (the maximal level at 4 h after
application) in cerebellar granule cell culture (Sato et al., 2001).
Taken into account that dopamine receptor subtypes are
thought to play distinct roles in the regulation of glutamatergic
transmission, methamphetamine-induced stimulation of D;-
like receptors, but not D,-like receptors, may increase Homer 1a
mRNAs in the striatum. However, it remains to be known
whether D, and D, receptors differently regulate Homer 1a
expression in other regions than the striatum.

In this study, we investigated the effects of the D,-like and
D,-like agonists on gene expression of Homer 1a as well as its
splicing variants (Homer 1b and 1c) in the discrete brain
regions of rats. Moreover, the effect of combination of both
agonists was also examined to elucidate a synergistic action of
co-stimulation of both receptor subtypes, which effect has
been observed in expression of the IEG c-fos (Gerfen et al., 1995).

2, Results
2.1.  Analysis of IEG mRNAs

Ethidium bromide staining of a polyacrylamide gel revealed a
single band at the expected size of amplification product for
each of -actin, Homer 1a, 1b and 1c ¢cDNAs (Fig. 1). Since no
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Fig. 1 - Ethidium bromide-stained polyacrylamide gel
showing PCR products amplified from rat brain RNA. Total
RNA extracted from the medial prefrontal cortex (mPFC),
nucleus accumbens (NAc), striatum (STR), hippocampus (Hip)
and substantia nigra (SN) was incubated in the absence (left
lanes) or in the presence (right lanes) of reverse transcriptase.
The reverse transcription products were coamplified with
Homer 1a and f-actin primers (A): Homer 1b, Homer 1c and
f-actin primers (B), respectively. Homer 1b and Homer 1c
mRNAs were also amplified extensively for 32 cycles (C). A
DNA standard lane is shown at the left of the gel with bands
labeled in bp.
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amplified products were observed when the reverse tran-
scriptase step was omitted, the contamination by genomic
DNA did not interfere with the signals of PCR products of
Homer 1a, 1b or 1c cDNAs. Genomic DNA of Homer 1a was not
contaminated to interfere with the signals of PCR products of
p-actin, Homer 1b or Homer 1c because these cDNAs were
amplified using the pair of primers derived from different
exons of the genes.

Homer 1b and 1c mRNAs were amplified with an identical
pair of primers and differed by 36 nucleotides. The levels of
Homer 1b mRNA in the substantia nigra were significantly
higher than those in the other brain regions (F;1;=254,
P<0.001). The ratios of Homer 1b mRNA levels to Homer 1c
mRNA levels were as follows: the medial prefrontal cortex,
0.0191+0.003; nucleus accumbens, 0.018+0.003; striatum,
0.020+0.003; and substantia nigra, 0.395+0.023, respectively
(Fig. 1C). The Homer 1b mRNA could be quantified only in the
substantia nigra.

To determine the optimal amplifications, PCR was per-
formed using different amounts of reverse-transcribed total
RNA and different numbers of cycles. These results indicated
that amplification was exponential between 18 and 24 cycles
for p-actin mRNA. Amplification was also exponential

(A) mPFC

(B) NAC

between 26 and 34 cycles for Homer 1a and 1c mRNAs. The
PCR products were proportional to RNA input over.a range of 5
to 50 ng total RNA for p-actin and Homer mRNAs. Thirty
nanograms of reverse-transcribed RNA were amplified for 28
cycles for the quantitation of relative amount of the Homer
mRNAs in the rat brain.

2.2 Effects of SKF38393 and quinpirole on Homer 1a
MRNA levels in the discrete brain regions of rats

The D;-like réceptor agonist SKF38393 (20 mg/kg) significantly
increases Homer 1a mRNA levels in the striatum (+97% of
saline control levels, F; 33=8.294, P <0.001), nucleus accumbens
(+61%, Fi31=3.03, P<0.05), but not in the medial prefrbntal
cortex, hippocampus or substantia nigra as compared to
saline controls 2 h after injection (Figs. 2 and 4). In contrast,
the D,-like receptor agonist quinpirole (1 mg/kg) had no
significant effect on the gene expression of Homer 1a in any
brain regions examined. Co-administration of SKF38393
(20 mg/kg) and quinpirole (1 mg/kg) produced a significant
increase in the striatum (+83%, F333=8.294, P<0.001), nucleus
accumbens (+59%, Fi331=3.03, P<0.05) and hippocampus
(+24%, F336=3.42, P<0.05), but not in the medial prefrontal
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0.5 0.5

Hoher1a mRNA relative to B-actin mRNA 2 h after drug injection
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Fig. 2 - Effects of SKF38393 and quinpirole on regional Homer 1a mRNA levels. Homer 1a and $-actin cDNA were coamplified
using 30 ng of total RNA for 32 and 20 cycles, respectively, in the five regions; (A) medial prefrontal cortex (mPFC); (B) nucleus
accumbens (NACc); (C) striatum (STR); (D) hippocampus (Hip); (E) substantia nigra (SN). Rats were sacrificed 2 h after s.c. injection
with SKF38393 (SKF; 20 mg/kg), quinpirole (Quin; 1 mg/kg), combination of SKF38393 and quinpirole (SKF + Quin; 20 mg/kg
and 1 mg/kg, respectively) or saline. The values represent Homer 1a mRNA levels relative to 8 -actin mRNA levels (mean + SEM of
9-10 animals). *P<0.05 and **P<0.01 were considered significant in this study using ANOVA followed by the Fisher’s PLSD.
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cortex or substantia nigra, compared to saline controls. This

effect was not significantly greater than that of SKF38393
alone, while combination of both dopamine agonists, but not
single treatment with either drug, significantly increased
Homer 1a levels in the hippocampus.

Homer 1b mRNA levels could not be detected in the
substantia nigra or other regions examined under the
standard experimental condition (Figs. 1B and C). Homer 1c
mRNAs were detected with homogeneous distribution in all
the brain regions examined, while these were not affected by
any drug treatment (Figs. 1B and C).

2.3. Effects of SKF38393 and quinpirole on c-fos mRNA
levels in the discrete brain regions of rats

SKF38393 (20 mg/kg) significantly increased the level of c-fos
mRNA in the striatum {+ 55%, F; 35=234.156, P <0.0001), nucleus
accumbens (+50%, F33=16.127, P<0.0001), medial prefrontal
cortex (+34%, F33,=11.221, P<0.0001), hippocampus (+55%,
F3,36=30.076, P<0.0001) and substantia nigra (+44%,
F336=19.256, P<0.0001) 1 h after injection, compared with
saline controls (Figs. 3 and 4). Quinpirole (1 mg/kg) also
significantly increased the level of c-fos mRNA in the nucleus

accumbens (+38%, F336=16.127, P<0.0001), medial prefrontal
cortex (+43%, F33=11.221, P<0.0001), hippocampus (+21%,
F3,36=30.076, P<0.0001) and substantia nigra (+59%,
F335=19.256, P<0.0001), compared to saline controls. When
administered alone, quinpirole (1 mg/kg) had no significant
effect on c-fos mRNA levels in the striatum. However,
combination of SKF38393 and quinpirole produced a greater
increase in striatal c-fos mRNA levels (+88%, Fa35=34.156,
P <0.0001) than SKF38393 alone did 1 h after injection. Such a
synergic effect of combination of both dopamine agonists on
c-fos mRNA levels was also found in the nucleus accumbens
(+78%, F335=16.127, P<0.0001 versus SKF38393 treatment
group) and substantia nigra (+107%, F;33=19.256, P<0.0001
versus SKF38393 or quinpirole treatment group) (Fig. 3). This
synergism still remained in the striatum and substantia nigra
2 h after injection (Fig. 4).

3. Discussion

The major finding of this study is that the dopamine D;-like
receptor agonist SKF38393, but not the D,-like receptor agonist
quinpirole, increased Homer 1a mRNAs in the striatum and

(A) mPFC (B) NAc »e (C)STR
% .

Quin  SKF+Quin

c-fos mRNA relative to B-actin mRNA 1 h after drug injection

“Quin  SKF+Quin

_saline SKF

Fig. 3 - Effects of SKF38393 and quinpirole on regional c-fos mRNA levels. The [EG c-fos and (-actin cDNA were coamplified
using 30 ng of total RNA for 30 and 20 cycles, respectively, in five regions; (A) medial prefrontal cortex (mPFC); (B) nucleus
accumbens (NAc); (C) striatum (STR); (D) hippocampus (Hip); (E) substantia nigra (SN). Rats were sacrificed 1 h after s.c. injection
with SKF38393 (SKF; 20 mg/kg), quinpirole (Quin; 1 mg/kg), combination of SKF38393 and quinpirole (SKF +Quin; 20 mg/kg
and 1 mg/kg, respectively) or saline. The values represent c-fos mRNA levels relative to B-actin mRNA levels (mean+SEM of
9-10 animals). "P<0.05 and **P<0.01 were considered significant in this study using ANOVA followed by the Fisher’s PLSD.
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Fig. 4 - Time course of mRNA levels of Homer 1a (A and B) and c-fos (C and D) in the striatum (STR, A and C) and nucleus
accumbens (NAc, B and D) following the dopamine agonist treatment is plotted, respectively. Rats were sacrificed 1h or 2 h after
s.c. injection with SKF38393 (SKF; 20 mg/kg), quinpirele (Quin; 1 mg/kg), or combination of SKF38393 and quinpirole (SKF + Quin;
20 mg/kg and 1 mg/kg, respectively). The values are expressed as % of saline control (mean + SEM of 9-10 animals) because the
IEG mRNA levels relative to B -actin mRNA levels of saline control rats differed between 1 h and 2 h after injection. Saline control
values of IEGs in each region 1 h and 2 h after injection are as follows: Homer 1a, 1.31£0.25 (STR/1 h), 1.1310.17 (STR/2 h),
1.77+0.16 (NAc/1 h), 1.10+£0.20 (Nac/2 h); c-fos, 0.65+0.02 (STR/1 h), 0.421+0.06 (STR/2 h), 0.69+0.05 (NAc/1 h) and 1.11:+0.06
(NAc/2 h), respectively. When compared with saline control at each time point, *P<0.05 and *P<0.01 were considered significant

in this study using ANOVA followed by the Fisher’s PLSD.

nucleus accumbens. While SKF38393 is a partial D, receptor
agonist in terms of in vitro adenylate cyclase stimulation and
is often used in dopamine-depleted animals in which D,
receptors are sensitized (Gerfen et al., 1995; Berke et al., 1998,
Pollack and Yates, 1999), the in vivo effect of SKF81297, a full D,
receptor agonist, on firing rates of the nucleus accumbens
neurons has been demonstrated nearly identical to that of
SKF38393 (Johansen et al., 1991). In this study, the effects of
SKF38393 and its combination with quinpirole on c-fos
expression, as discussed later, were consistent with the
results from the previous studies using 6-hydroxydopamine-
lesioned or normal {unlesioned) rats (Paul et al., 1992; LaHoste
et al.,, 1993; Gerfen et al.,, 1995; Keefe and Gerfen, 1995).
Moreover, Berke et al. (1998) reported SKF38393 to induce
Homer 1a expression to the maximum 2 h after injection, in
the striatum of 6-hydroxydopamine-lesioned rats. Taken
together, the present results suggest that D-like receptor

stimulation by SKF38393 may induce gene expression of
Homer 1a in the basal ganglia. Consistently, methylphenidate
and methamphetamine are reported to increase Homer la
expression in the striatum and nucleus accumbens, and these
effects are attenuated by SCH23330, a D,-like receptor
antagonist (Hashimoto et al., 2004; Yano et al., 2006).

Further studies employing Western blots would confirm
the present finding. In this regard, another experiment in our
laboratory demonstrated that methamphetamine enhanced
Western blots of Homer 1a protein expression in rat striatum
and nucleus accumbens, and this effect correlated to the
methamphetamine-induced increase in PCR products of
Homer 1a mRNA (unpublished data). This study chose only a
single dose of each dopamine receptor agonist on the basis of
the previous studies showing it to enhance Fos-like immunor-
eactivity in rat striatum (LaHoste et al.,, 1993; Pollack and
Yates, 1999). When administered alone, SKF38393 at the dose



