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Figure 10.  Effects of subchronic celecoxib treatment on dopamine and its metabolites.

The levels of dopamine and its metabolites were measured in the striatum of vehicle-
infused (CON) and EGF-infused (EGF; 30 s.g/pump) control rats that also subchronically
received celecoxib (CLX) or saline (SAL). Note that, to minimize acute effects of celecoxib
treatment, tissue dissection was performed at least 20 h after the last treatment with
celecoxib. White and black bars represent vehicle-infused and EGF-infused rats receiving
saline orally. Black dotted and white dotted bars represent vehicle-infused and EGF-
infused rats receiving celecoxib orally. Error bars indicate means + SEM (n = 5- 6 each).
*p < 0.05,**p < 0.01,.***p < 0.001 by Fisher's LSD.
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Table 2. Effects of EGF infusion and celecoxib on tyrosine hydroxylase activity in
the striatum :

Tyrosine hydroxylase activity

CON-SAL EGF-SAL EGF-CLX
Dorsal striatum 983+ 05 121 £ 05" 123 + 0.8*
Ventral striatum 9410 125 £06° N7+ 06

E6F (30 p2g/pump) o saline {(ON) was subthronically administered to the striatum of rats. Some rats wete orally
grven celecoxdb ((LXVor saline (SAL)3 d after EGF infusian was initiated. The celecoxib teatment was dene daily 2nd
repeatedfor 7 d.Tissue homogenates were prepared from thespsilateralhemisphere of the stniatum, and the activity
of tyrosine hydroxylase was dby ing the praduction of 1-DOPA. Dz1a represent means = SEM
{picomales per milligram of pratein, n — 6 animals each). *p < 0.05 compared with saline-infused control rats
{CON-SAL) by Fisher's LSD

tion were significantly lowered by subchronic treatment with
celecoxib.

How does striatal EGF infusion trigger dopamine-associated
behavioral deficits and elevate dopamine levels without changing
the expression of the rate limiting enzyme for dopamine synthe- -
sis, tyrosine hydroxylase? There are reports that inflammatory
cytokines including EGF can elevate the activity of tyrosine hy-
droxylase by phosphorylating the enzyme or upregulating its co-
factor tetrahydrobiopterin (Halegoua and Patrick, 1980; Anasta-
siadis etal., 1997). We measured the tyrosine hydroxylase activity
in the dorsal and ventral striatum of the rats receiving EGF in the
striatum (Table 2). The activity of tyrosine hydroxylase in the
dorsal striatum of EGF-infused animals was significantly larger
than that of saline-infused controls ( p = 0.017). An increase in
the enzymatic activity was also detected in the ventral striatum ( p
= 0.012). However, subchronic cotreatment with celecoxib did
not attenuate the increase in the activity of tyrosine hydroxylase.
We conclude that the increase in dopamine content observed
after EGF infusion is, in part, attributable to increased enzymatic
activity of tyrosine hydroxylase.

Discussion

The alterations in inflammatory cytokine levels and the eftective-
ness of anti-inflammatory drugs observed in schizophrenia pa-
tients are consistent with the neuroinflammatory hypothesis of
schizophrenia (Muller et al., 2000; Nawa and Takei, 2006). Here
we combined the evidence that EGF is an inducer for Cox-2
expression (Ackerman et al., 2004; Slice et al., 2005) with our
previous tinding that EGF signaling might be upregulated in the
striatum of schizophrenia patients (Futamura et al.,, 2002) and
hypothesized that enhanced EGF signaling might increase pros-
taglandin synthesis and lead to behavioral deficits. Therefore, we
tested the neurobehavioral consequences of EGF stimulation in
rat striatum as well as the antagonistic effects of Cox-2 inhibition.
Subchronic infusion of EGF and concomitant celecoxib treat-
ment produced the following results: (1) striatal infusion of EGF
yields behavioral deficits in PPI and latent inhibition of fear
learning; (2) these deficits were reversible and extinguished by
cessation of EGF infusion; (3) EGF administration elevated the
expression of Cox-2, the enzyme activity of tyrosine hydroxylase,
and dopamine turnover in the striatum; and (4) subchronic
treatment with a CoX-2 inhibitor ameliorated these behavioral
deficits and concomitantly normalized dopamine turnover.
These observations strengthen the argument that EGF-mediated
neuroinflammation may, at least in part, result in abnormal do-
pamine transmission and associated behavioral deficits.

Enhanced EGF signaling in the striatum and

behavioral impairments

The present findings might illuminate the neuropathological im-
plication of abnormal levels of EGF or its receptor in the brain of
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schizophrenia patients (Futamura et al., 2002). The postmortem
study demonstrates that, among various ErbB1 ligands, EGF con-
tent is specifically decreased in the striatum of schizophrenia pa-
tients. Whether this decrease in EGF content reflects enhanced
release of EGF from vesicular stores or decreased EGF synthesis is
not clear. To address this question, here, we exogenously supplied
EGF to the striatum: subchronic infusion of EGF into the stria-
tum induced behavioral impairments. Gross learning ability of
EGF-infused rats was normal in active-avoidance test (Fig. 8) as
well as in contextual fear conditioning (Fig. 9), however. Abnor-
malities in PPI as well as in latent inhibition are often observed in
schizophrenia patients (Gray et al., 1995; Weiner and Feldon,
1997; Braff et al., 2001; Swerdlow et al., 2001). Accordingly, these
results suggest that elevated EGF/ErbB1 signaling in the striatum
might contribute to etiology or pathology of schizophrenia.

EGF and other ErbB1 ligands elevate the expression of ty-
rosine hydroxylase (Casper et al., 1994; Farkas et al., 2002;
Iwakura et al., 2005). EGF also modulates the activity of tyrosine
hydroxylase by promoting phosphorylation of the enzyme or in-
creasing the synthesis of its essential cofactor tetrahydrobiopterin
{(Halegoua and Patrick, 1980; Anastasiadis et al., 1997). There was
a significant increase in its enzymatic activity in EGF-infused
animals. Because this enzyme limits the rate of dopamine synthe-
sis, this increase in enzymatic activity presumably led to an in-
crease in the synthesis and release of dopamine. In this context,
the increase in DAT expression might result from enhanced do-
pamine release through the negative teedback regulation (Xia et
al., 1992; Fang and Ronnekleiv, 1999).

Subcutaneous administration of EGF to neonatal rats and
mice increases dopamine turnover and later results in life-long
neurobehavioral deficits (Futamura et al., 2003; Tohmi et al,,
2005). In that experimental paradigm, however, there is a large
time lag between the dopaminergic abnormality in neonates and
the emergence of the behavioral impairments in adults. Here we
learned that striatal EGF infusion to adult animals similarly per-
turbed dopaminergic responses and mimicked the behavioral
deficits induced by neonatal treatinent with EGF. Thus, the be-
havioral deficits induced by neonatal EGF treatment might share
a common pathologic mechanism with those of the present stri-
atal EGF infusion, although the persistency of the deficits diftfers
significanty.

Behavioral deficits associated with elevated dopamine
synthesis and metabolism

Consistent with these reports, the present experiments demon-
strate that EGF-triggered behavioral abnormalities are concomi-
tant with changes in dopaminergic metabolism in the striatum.
EGF administration increases the concentrations of dopamine
and its metabolites in the striatum and impaired prepulse inhibi-
tion performance in a dose-dependent manner, and, conversély,
celecoxib treatment normalized the levels of this neurotransmit-
ter and metabolites, as well as behavioral performance. This ele-
vated dopamine metabolism, but not the increase in the tyrosine
hydroxylase activity, was reversed by subchronic treatment with
the Cox-2 inhibitor celecoxib. Previous reports demonstrated
that prostaglandins influence the activity of excitatory neurons
and monoaminergic neurons (Takechi et al., 1996; Oida et al,,
1997; Nakamura et al., 2001; Matsuoka et al., 2005; Sang et al.,
2005). Given the defined roles of EGF and prostaglandin, we
speculate that EGF may increase dopamine synthesis and prosta-
glandins may enhance its release. These two effects may act syn-
ergistically to induce the observed behavioral deficits, although
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these explanations need to be verified in future experiments in-
cluding in vive microdialysis.

Targets of EGF in the brain

Lesion studies indicate a major contribution of inhibitory stria-
topallidal circuitry to the acoustic startle retlexes regulating PPI
(Swerdlow et al., 1990, 2001). Unilateral dysfunction of this in-
hibitory circuitry appears to be sufficient to impair PPl responses
(Li et al,, 1998; Uehara et al., 2007). In agreement with these
reports, both unilateral and bilateral infusion of EGF similarly
decreased PPI in the present study.

Enhanced dopamine signaling in both ventral and dorsal stri-
atum is implicated in PPI deficits (Kodsi and Swerdlow, 1995;
Swerdlow et al., 2001). Among the striatal regions, the nucleus
accumbens is suggested to play an important role in regulating
PPI (Swerdlow et al., 1990, 2001 ). Even when EGF was injected to
the center of the striatum, EGF immunoreactivity and an increase
in the tyrosine hydroxylase activity were also present in the ven-
tral striatum, including the nucleus accumbens. Accordingly, we
had expected that EGF infusion directly into the nucleus accum-
bens would similarly affect PPI. However, it was not the case. We
speculate the reasons. Implanting the cannula directly into the
nucleus accumbens might produce surgical injury, potentially
counteracting the EGF action or perturbing the local neurotrans-
mission. Alternatively, our preliminary result that dopaminergic
terminals in the nucleus accumbens express lower levels of ErbB1
may account for the discrepancy (Zheng et al., 2007). Because
latent inhibition of learning involves various brain regions and
neural circuits including the striatum, the nucleus accumbens,
the limbic system, and the cholinergic system (Weiner and Fel-
don, 1997; Jeanblanc et al., 2003; Peterschmitt et al., 2005), un-
derstanding the present discrepancy may require future experi-
ments of greater complexity.

Neurobehavioral and antipsychotic effects of the Cox-2
inhibitor celecoxib

Significant basal levels of Cox-2 are detectable in several brain
regions (Tsubokura et al., 1991; Yamagata et al., 1993; Kaufmann
et al., 1996). Inflammatory cytokines induce Cox-2 expression
after brain injury, ischemia, and hypoxia (Smith et al., 2000; Ack-
erman et al., 2004). Increasing Cox-2 expression elevates the lev-
els of all five prostaglandins and activates their downstream re-
ceptor signaling (Smith et al., 2000). Conversely, Cox-2
inhibitors attenuate post-ischemic cell death or neurodegenera-
tion associated with Alzheimer’s disease (Firuzi and Pratico,
2006). Thus, Cox-2 induction and resultant prostaglandin syn-
thesis are often implicated in neurodegeneration, although the
neurotrophic and neurodegenerative actions of prostaglandins
remain controversial (Hewett et al., 2000; Strauss and Marini,
2002; Liang et al., 2005). The transgenic mouse model for Alzhei-
mer’s disease that overexpresses Cox-2 exhibits age-associated
working memory deficits and spatial memory impairment, both
of which are sensitive to Cox inhibitors (Sharifzadeh et al., 2005;
Melnikova et al., 2006). However, the EGF-induced cognitive
deficits in the present study do not appear to involve neurode-
generation because markers for neurons and synapses and brain
histochemistry were not altered, the behavioral deficits were re-
versible, and gross learning scores were normal.

There are several reports demonstrating that the antipsychotic
effects and neurocognitive improvement are associated with ad-
ministration of Cox inhibitors (Ho et al., 2006). Add-on therapy
of the Cox-2 inhibitor celecoxib to risperidone improves PANSS
of patients with schizophrenia compared with those treated with
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risperidone alone (Muller et al., 2004; Riedel et al., 2005). A
follow-up study indicates the most pronounced therapeutic ef-
fects of Cox-2 inhibitors are cognitive improvements (Riedel et
al., 2005). Nonspecific Cox inhibitors such as indomethacin and
piroxicam also reverse behavioral and cognitive deficits induced
by cocaine, amphetamines, and brain inflammation (Reid et al.,
2002; Ross et al., 2002; Matsumoto et al., 2004). The present study
may reveal aspects of the mechanism underlying the effectiveness
of this medication protocol. Oral administration of celecoxib for
1 week normalized PPI deficits, whereas a single oral dose failed
to do so. Thus, subchronic suppression of Cox-2 activity is re-
quired to exert significant effects in this animal model (Rivest,
1999; Carothers etal., 2006). In addition, there was no significant
effect of celecoxib on basal PPl levels in control animals, suggest-
ing that basal Cox-2 expression, which is normally present in the
corticolimbic system (Tsubokura et al., 1991; Yamagata et al,,
1993; Kaufimann et al., 1996), do not influence PPI. Although it
remains to be determined which types of prostaglandins contrib-
ute to the behavioral and cognitive impairments observed after
EGF administration, these experiments support the hypotheses
that, in addition to its role in neurological diseases,
inflammation-triggered prostaglandin synthesis and signaling
are potential therapeutic targets for schizophrenia and related
psychiatric disorders.
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Summary. Abnormality in cytokine signaling is implicated in the neuropa-
thology of schizophrenia. Previously, we established an animal model for
schizophrenia by administering epidermal growth factor (EGF) to neonatal
rats. Here we investigated effects of the anthraquinone derivatives emodin
(3-methyl-1,6,8-trihydroxyanthraquinone) and sennoside (bis-[D-glucopyr-
anosyl-oxyl-tetrahydro-4,4'-dihydroxy-dioxo[bianthracene)-2,2'-dicarboxyl-
ic acid) on behaviors of this model and EGF signaling. Subchronic oral
administration of emodin (50mg/kg) suppressed acoustic startle re-
sponses and abolished prepulse inhibition (PPI) deficits in this rodent
model. ANCOVA revealed that emodin had distinct effects on PPI and
startle responses. In contrast, sennoside (50 mg/kg) had no effects. Emodin
attenuated weight gain initially during treatment but had no apparent effect
on weight gain and locomotor activity thereafter. Application of emodin to
neocortical cultures attenuated the phosphorylation of ErbB1 and ErbB2.
We conclude that emodin can both attenuate EGF receptor signaling and
ameliorate behavioral deficits. Therefore, emodin might be a novel class of a
pro-drug for anti-psychotic medication.

Keywords: Antipsychotic; behavior; inflammation; ErbB; EGF; schizo-
phrenia

Introduction

Emodin is an anthraquinone derivative, 3-methyl-1,6,8-tri-
hydroxyanthraquinone, that is extracted and purified from
thubarb. This natural compound has been proposed to
possess a variety of pharmacological activities including
anti-inflammatory, antiviral, hepatoprotective and antiul-
cerogenic activities (Wang et al. 2001; Huang et al. 2007).
Recent molecular studies indicate that this compound
attenuates signal transduction of growth factors and cyto-
kines, inhibiting ErbB2, src-family kinases, IkappaB kinase
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and MAP kinase (Jayasuriya et al. 1992; Kumar et al. 1998;
Zhang et al. 1998, 1999; Wang et al. 2001, 2006, 2007; Li
et al. 2005; Kaneshiro et al. 2006). Accordingly, emodin
has been reported to exhibit anti-tumor activity against
adenocarcinomas, leukemias and lung carcinomas (Lee
2003; Su et al. 2005; Muto et al. 2007). Despite the inten-
sive study of emodin in tumor biology, the effects of this
compound on the brain or behavioral traits are largely un-
known (Gu et al. 2005; Lu et al. 2007). )
The EGF receptors, ErbB1, are enriched in midbrain
dopaminergic neurons (Seroogy et al. 1994). Abnormal
expression or function of ErbB1 and ErbB2 has been impli-
cated in Parkinson’s disease and schizophrenia (Futamura
et al. 2003; Mizuno et al. 2004; Iwakura et al. 2005; Tohmi
et al. 2005). EGF signaling appears to be perturbed in
patients with schizophrenia as ErbB1 levels are increased
in the striatum of schizophrenia patients (Futamura et al.
2002). Genetic linkage studies also support the contribution
of EGF signaling to the etiology and pathology of schizo-
phrenia (Anttila et al. 2004; Hanninen et al. 2007). To
study the mechanisms that contribute to the emergence
and symptoms of schizophrenia, we established an animal
model for schizophrenia by treating neonatal rats with sub-
chronic doses of EGF. Treated rats later exhibit behavioral
deficits in prepulse inhibition, social interaction, and ex-
ploratory locomotor activity. Some of these behavioral def-
icits are sensitive to antipsychotic medication (Futamura
et al. 2003; Mizuno et al. 2004; Tohmi et al. 2005). In ad-
dition, subchronic exposure of neonates to EGF appears to
permanently sensitize ErbB1 signaling (Nawa and Mizuno

2006). Thus, as emodin attenuates EGF receptor signal-

— 183 —



ing, it may also ameliorate these associated behavioral
deficits.

In this study, we investigated the effects of emodin and
its derivative on the behavioral deficits associated with this
EGF model for schizophrenia. Bearing in mind future ther-
apeutic applications, these anthraquinone agents were giv-
en orally and the effects on startle responses and prepulse
inhibition were examined at acute and/or subchronic phases
of drug administration. In parallel, the side effects of emo-
din administration on weight gain and locomotion were
evaluated. In addition, we examined the activity of emodin
on EGF receptor signaling in primary neuronal cultures in
order to correlate the molecular activity of emodin with its
influence on behavior.

Materials and methods

Subjects

Neonatal Sprague-Dawley rats (postnatal day 2, 10 pups/L) were purchased
with dams from SLC Co. Ltd (Shizuoka, Japan). Recombinant human EGF
(Higeta Syoyu, Chiba, Japan) was dissolved in saline and subcutaneously
administered to half of individual litters daily during postnatal day (PND)
2-10 at the nape of the neck at a dose of 0.875mg/kg of body weight
(Futamura et al. 2003). Control littermates received 0.875 mg/kg of cyto-
chrome ¢ (Sigma Chemical Co., St. Louis, MO, USA), and served as
controls for all analyses. After PND20, rats were separated according to
gender and raised separately (2-3 rats per cage; 25L x 38W x 18Hcm). All
rats were maintained under a 12-h light-dark cycle (7:00 on —19:00 off)
with free access to food and water.

Schedule of behavioral testing, drug treatment, and dissection

The cytochrome c- or EGF-treated rats were given emodin (5-50 mg/kg;
96-99% pure; Tokyo Chemical Industry Inc., Tokyo, Japan or 90% pure;
Sigma Chemical Co.) or sennoside A (50mg/kg; >90% pure, Wako
Chemical Co., Osaka, Japan) as adults (PND56-62). Emodin or sennoside
A was sonicated in a 10% lecithin solution (Wako Chemical Co.) at a final
concentration of § mg/ml. This emulsion of emodin, sennoside, or vehicle
(10% lecithin) was administered to rats once a day for 7 days with the aid of
an oral zonde for rats (Natume Seisakusho Co. Ltd., Japan). One day after
the last administration, rats were subjected to behavioral tests (see below).
Alternatively, rats were given emodin orally (50 mg/kg) once and subjected
to behavioral tests 3h later. The given doses were set below the reported
toxic amount of emodin (< 80 mg/kg) according to Jahnke et al. (2004). To
minimize interactions between independent tests in Figs. 2, 3, and S, rats
were weighed, tested for locomotor activity and then tested for acoustic
startle response. In the other experiments, rats were subjected to only one of
the schedule tests. Behavioral tests were performed during the day cycle. In
total, 6 experimental groups representing 130 rats were used in the present
study. All of the animal experiments described here were petformed in
accordance with the Animal Use and Care Committee guidelines of
Niigata University and the Guiding Principles for the Care and Use of
Laboratory Animals approved by the Japanese Pharmacological Society.

Rat neocortical culture

Whole cerebral neocortices of embryonic rats (Sprague-Dawley, embryonic
day 18-19) were treated with papain solution (10mg/ml; Sigma
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Chemicals), mechanically dissociated, and seeded onto poly-D-lysine-coated
dishes at a density of 500 (:ells/mm2 (Takei et al. 2004). Cortical neurons
were maintained in Dulbecco’s modified Eagle’s medium containing 1 mM
glutamine and 10% fetal bovine serum. After 6 days, neuronal cultures were
pretreated with emodin (0-300 uM; Tokyo Chemical Industry) or sennoside A
(0-300uM; Wako Chemical Co.) for 2h and challenged with EGF
(5 ng/ml; Higeta Syoyu) for 5 min.

Immunoblot analysis

Polyacrylamide electrophoresis (PAGE) and immunoblotting were per-
formed as described previously (Takei et al. 2004). Cells were harvested,
lysed, and sonicated in sample buffer (10 mM Tris—-HCl, 150 mM NaCl, 2%
SDS, 20mM NaF, 1 mM Na;VO,). After centrifugation, supernatant was
collected and the protein concentrations were determined. Equal amounts of
protein were subjected to SDS-PAGE and transferred to PVDF membranes.
Membranes were probed with anti-phosphorylated-ErbB1 (1:1000, Santa
Cruz Biotechnology, Santa Cruz, CA, USA), anti-phosphorylated-ErbB2
(1:1000, Upstate, Lake Placid, NY, USA), anti-beta-actin antibodies
(1:10000, Chemicon Int, Temecula, CA, USA), followed by horseradish-
peroxidase-conjugated anti-mouse IgG or horseradish-peroxidase-conjugat-
ed anti-rabbit IgG secondary antibodies (1:10000, DAKO Cytomation,
Glostrup, Denmark). Peroxidase activity was visualized with chemilumines-
cence reaction (Western Lightning, Perkin Elmer, Tokyo, Japan) coupled
with film exposure.

Measurement of acoustic startle and prepulse inhibition (PPI)

Acoustic startle and prepulse inhibition (PPI) responses were measured in a
startle chamber (SR-Lab Systems, San Diego Instruments, San Diego, CA,
USA) adapted for rats (Swerdlow and Geyer 1998; Swerdlow et al. 2001).
This paradigm was used to assess startle amplitude, habituation and PPI
response with acoustic stimuli of 120dB, a single prepulse interval
(100 msec), and three different prepulse intensities [5, 10, and 15dB above
background noise (white noise, 70dB)]. Each rat was placed in the startle
chamber and initially acclimatized for 5 min with background noise alone.
The rat was then subjected to 50 startle trials, each trial consisting of one of
five conditions: (i) a 40-msec 120-dB noise burst presented alone (S); (ii-iv)
a 40-msec 120-dB noise burst 100 msec after a prepulse (20-msec noise
burst) at either 5, 10, or 15 dB above background noise (ie., 75-, 80-, or
85-dB prepulse, respectively); or (v) no stimulus (N; background noise
alone). The last condition was used to measure baseline movement in the
chamber. In PPI test, these 5 trial types (i—v) were each repeated 8 times in a
pseudorandom order, resulting in 40 total trials. Each trial type was pre-
sented once within a block of five trials. At the beginning and end of the PPI
test, five consecutive trials of (i) were presented to assess habituation during
the session. The inter-trial interval was 15 sec. Analysis of PPI was based on
the mean of the eight trials for each trial type. The percentage PPI of the
startle response was calculated as:

(startle response on prepulse — pulse stimulus trials
— no stimulus trials) x 100

PPI =100 — - - -
pulse-alone trials — no stimulus trials

Locomotor activity

We measured locomotor activity in a novel environment using a large size
of behavioral chamber as described previously (Futamura et al. 2003). Each
rat was placed in an open field box (45cm length X 45cm width x 30cm
height, MED Associates, St. Albans, VA, USA) under a moderate light level
(400 Lx). Line crossings and rearing counts were measured by photo-beam
sensors (25 mm intervals for horizontal axis and 150mm for vertical axis)
for 60 min.

— 184 —



Antipsychotic features of Emodin in rats

Statistical analysis

Results are expressed as means + SEM. Statistical differences were deter-
mined by analysis of variance (ANOVA) as well as by analysis of co-
variance (ANCOVA). When univariate data were obtained only from two
groups, a two-tailed -test was used for comparison. Behavioral scores were
initially analyzed using multiple ANOVA with EGF treatment (two levels),
emodin administration (two or four levels) as a between-subject factors and
prepulse magnitude (three levels) as a within-subject factor. Interaction of a
within-subject factor with between-subject factors was estimated by
ANCOVA. When the initial analyses yielded significant factorial interaction,
the data were separated to avoid the interaction for the final analyses.
Subsequently, a Fisher’s LSD test was applied to absolute behavioral values
as a post hoc test of multiple comparisons. A P value less than 0.05 was
regarded as statistically significant. Statistical analysis was performed using
the SPSS software (version 11.5). N values in parentheses represent the
number of animals used.

Results

Effects of emodin oral administration on startle response
and prepulse inhibition

Neurobehavioral impairments were induced in rats with
the inflammatory cytokine EGF as described previously
(Futamura et al. 2003; Mizuno et al. 2004; Tohmi et al.
2005). EGF or cytochrome ¢ (a control compound for
EGF) was administered daily to littermates of neonatal rats
(PND2, n =35 for each group) for 9 days. At 8 weeks post-
natal (n=>5 each), vehicle or various doses of emodin (5,
15 and 50 mg/kg/day) were given daily (p.o.) to rats for 7
days. One day after the last emodin administration, startle
responses to 120-dB tone and prepulse inhibition with 85-
dB tones were monitored to estimate the effective dose of
emodin. Two-way ANOVA with a between subject factor of
neonatal EGF treatment (EGF and cytochrome c) and em-
odin dose (4 levels) revealed that neonatal EGF treatment
exhibited a significant main effect on startle response

[F(1,32)=9.65, P=0.039]. The main effect of emodin’

dose was not significant [F(3,32) = 0.91, P = 0.45] without
interaction [F(3,32) =0.272, P=0.85] (Fig. 1A). In con-
trast, PPI levels were significantly increased by emodin
administration in a dose-dependent manner. Repeated
ANOVA with between subject factors of treatment (EGF
and cytochrome c) and emodin dose (0, 5, 15, and 50 mg/
kg/day) (Fig. 1B) revealed that there were significant
main effects of EGF treatment [F(1,32) =40.8, P <0.001]
and emodin dose [F(3,32) =4.98, P=0.006] with a sig-
nificant interaction between EGF treatment and emodin
dose [F(3,32)=3.82, P=0.019]. Post-hoc analysis indi-
cated that the 15 and 50 mg/kg dose of emodin signifi-
cantly elevated PPl levels of EGF-treated rats in
comparison to the levels of EGF-treated rats not receiving
emodin. In contrast, cytochrome c-treated group (control)
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Fig. 1. Emodin dose dependency of PPI recovery in the EGF model.
Different doses of emodin (0, 5, 15, and 50 mg/kg/day) were orally
administered for 7 days to adult male rats that had been treated with
EGF (closed square) or cytochrome c (open circle) as neonates. (A) The
magnitude of pulse-alone startle (120dB) was plotted against individual
emodin doses. Values indicate means + SEM (n=35 each). (B) Prepulse
inhibition (PPI) with an 85dB prepulse stimuli was measured and com-
pared between doses. ***P < 0.001, compared with cytochrome c-treated
controls, and *P <0.05, ***P <0.001, compared with the EGF-treated
group not receiving emodin, both by Fisher LSD. #The startle differ-
ence between EGF-treated and cytochrome c-treated groups were mar-
ginal at the zero and 5mg/kg doses of emodin (both P=10.057) by
Fisher LSD

failed to react with emodin. Accordingly, we detected sig-
nificant differences between EGF-treated and cytochrome
c-treated (control) groups at the doses of 0 and 5 mg/kg
emodin, but not at higher doses. However, there were no
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Fig. 2. Effects of subchronic emodin administration on the PPI deficits
and startle responses of rats receiving EGF as neonates. Adult male rats
were given an emodin emulsion or vehicle orally (10% lecithin) daily for 7
days. One day after the last dose of emodin, pulse-alone startle response to
a 120-dB tone (A) and the percentage PPI with 75, 80, and 85dB prepulse
stimuli (B) were measured. Open and black bars represent cytochrome
c-treated controls (CON) and EGF-treated rats (EGF) that received vehicle
orally. Black dotted and white dotted bars represent cytochrome c-treated
controls and EGF-treated rats that received emodin orally. Bar indi-
cates mean + SEM for each prepulse intensity (n =14 each). *P<0.05,
**¥p -0.001, compared with cytochrome c-treated controls, and
++p <001, ++*+P<0.001, compared with EGF-treated controls that did
not receive emodin at the same prepulse intensity, both by Fisher LSD

significant effects on PPI for other prepulse intensities (data
not shown).

To confirm the results of this preliminary dose response
study for emodin, we prepared four larger groups of ani-
mals that had been treated with EGF or cytochrome ¢ as
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neonates-and given either vehicle or emodin subchronically
(50mg/kg) as adults (n=14 for each group) (Fig. 2).
Pulse-alone startle responses (120dB) were significantly
altered by neonatal EGF treatment [F(1,52)=1L.1, P=
0.016, ANOVA] and marginally by emodin administration
{F(1,52)=3.77, P=0.058, ANOVA] with a significant
interaction between EGF treatment and emodin adminis-
tration [F(1,52)=7.87, P=0.007, ANOVA] (Fig. 2A).
Post-hoc analysis revealed that emodin administration spe-
cifically suppressed the pulse-alone startle increased by
neonatal EGF treatment.

Emodin ameliorated the abnormality in prepulse inhibi-
tion (Fig. 2B). Three-way ANOVA with between subject
factors of treatment (EGF and cytochrome ¢) and emodin
administration (emodin and vehicle) and a within subject
factor of prepulse intensities (75, 80, and 85 dB) revealed
significant main effects of EGF treatment [F(1,52)=63.1,
P<0.001] and emodin administration [F(1,51)=16.6,
P<0.001], and a significant ‘interaction between EGF
treatment and emodin administration [F(2,104)=7.13,
P =0.010]). We interpret from these data that emodin had
a differential effect on EGF-treated and cytochrome c-trea-
ted animals. The effects of emodin were separately ana-
lyzed in either the EGF-treated or the cytochrome c-treated
group. In the EGF-treated group, there was a significant
effect of emodin administration on PPI [F(1,26)=17.5,
P<0.001, repeated ANOVA] with an emodin X prepulse
interaction [F(2,52) =9.86, P<0.001]. Post-hoc analysis
detected significant effects of emodin administration for
80- and 85-dB prepulses. In contrast, emodin did not
have an effect on PPI in the cytochrome c-treated group
[F(1,26)=1.40, P =0.25, repeated ANOVA].

As emodin administration affected the pulse-alone startle
and specifically PPI levels for higher prepulse stimuli, inter-
preting these results required detailed analysis (Swerdlow
et al. 2001). To test the possibility that the increase in
pulse-alone startle responses might promote the decrease
in PP], individual data for EGF-treated rats were re-ana-
lyzed by the Peason’s correlation analysis followed by
ANCOVA (Cadenhead et al. 1993) (Fig. 3). When the per-
cent PPI levels for 85-dB prepulse were plotted versus the
magnitude of the pulse-alone startle for each animal of the
EGF-treated group, there was weak correlation between
these values in vehicle-given rats (R = —0.60, P = 0.023 for
vehicle and R =+0.185, P=0.54 for emodin). This sug-
gests that there was a weak contribution of the increase in
pulse-alone startle to the reduction in PPL. As there was no
significant difference in slope of the line for the vehicle and
EGF-treated groups [F(3,24)=1.99, P=0.17], therefore,
we re-valuated pure effects of emodin on PPI while assum-
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Fig. 3. The effects of emodin on the comelation between PPI and pulse-
alone startle. Percentage of PPl obtained with an 85dB prepulse was
plotted against the pulse-alone startle for rats treated with EGF as neo-
nates. The data correspond to Fig. 2. Circles represent PPl levels of
individual EGF-treated rats given vehicle orally for one week and squares
represent those of EGF-treated rats receiving emodin. Emodin administra-
tion did not significantly change the slope of the regression curves

ing that the pulse-alone startle influenced the levels of
PP1. ANCOVA with the pulse-alone value as a covariate
revealed that the group main effect of EGF treatment
on absolute PPI retained significance [F(1,24)=42.2,
P<0.001, ANCOVA]. Similar statistical results were ob-
tained for the data obtained with an 80-dB prepulse
[F(1,25)=10.1, P =0.003]. Thus, we conclude that emo-
din ameliorates the PPI deficits irrespective of its effect on
pulse-alone startle.

Acute effects of emodin on startle response and prepulse
inhibition

We also examined the immediate effect of emodin adminis-
tration on prepulse inhibition (Fig. 4). Vehicle or emodin
(50 mg/kg) was orally given to rats. Three hours after
administration, startle responses were monitored in the
presence and absence of the prepulse stimuli and PP] levels
were calculated. Two-way ANOVA for pulse-alone startle
revealed that there were no significant effects of emodin
administration [F(1,16)=0.113, P=0.74] without interac-
tion [F(1,16) = 2.07, P =0.17) (Fig. 4A). Acute administra-
tion of emodin failed to mimic the subchronic effects. There
was no significant main effect of emodin administration
[F(1,16) =0.070, P=10.79] or interaction [F(1,16)=129,
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Fig. 4. Acute effects of emodin administration on pulse-alone startle and
PPI in the EGF model. Adult male rats were given emodin emulsion or
vehicle (10% lecithin) orally. Three hours after administration, pulse-alone
startle response to a 120dB tone (A) and percentage PPI with 75, 80 and
85 dB prepulse stimuli (B) was measured. Open and black bars represent
cytochrome c-treated controls (CON) and EGF-treated rats (EGF) that
received vehicle orally. Black dotted and white dotted bars represent
cytochrome c-treated controls and EGF-treated rats that received emodin
orally. Bar indicates mean + SEM for each prepulse intensity (n=14
each). **P <001, ***P<0.001, compared with cytochrome c-treated
controls at the same prepulse intensity by Fisher LSD

P =0.28] (Fig. 4B). The present result suggests that repeated
administration of emodin is required to improve the PPI
deficit induced by neonatal EGF treatment.

Side effects of subchronic emodin administration

Anthraquinone derivatives such as emodin are used as mild
purgatives (Nakajima et al. 1985). We examined whether
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tivity. (A) Body weight changes of cytochrome c-treated controls (CON) and
EGF-treated rats (EGF) was determined before emodin administration (day
0), during emodin administration (days 1-7) and one day after administra-
tion (day 8) and compared to vehicle-administered controls. Animals were
all males and body weight changes from day O were monitored before the
behavioral tests. Weight gain by emodin-administered rats improved signifi-
cantly during late sessions. (B) Horizontal movement was monitored for 1 h
in a novel environment. Total number of crossings of infrared beams (25 mm
intervals) was measured. Bar indicates mean + SEM (n=10 each, all
males). * P < 0.05, compared to cytochrome c-treated controls not receiving
emodin (CON + Vehicle) at each day by Fisher LSD. Note To minimize
acute effects of emodin administration, body weight was measured just
before emodin administration

the behavioral effects associated with emodin treatment
might be a consequence of emodin-induced defecation.
During daily emodin administration, body weight changes
were monitored and plotted (Fig. SA). Emodin significantly
reduced body weight one day after the first administration.
However, from the third administration onward there were
similar positive weight gains in the emodin-treated groups
and the untreated groups. The slopes of the regression
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curves for the overall body weight changes were indis-
tinguishable among four groups after day 3 [F(1,116)=
0.0004-0.84, P=0.36-0.99, ANCOVA].

We also monitored locomotor activity one day after the
last emodin administration (Fig. 5B) when we measured
startle responses and PP1. Two way ANOVA for horizontal
movements revealed that there were no significant main
effects of EGF treatment [F(1,16)=0.370, P =0.55] nor
emodin administration {F(1,16) =0.113, P =0.74] without
interaction [F(1,16) = 0.219, P = 0.647]. Similarly, emodin
had no influence on vertical movements [F(1,16) =0.439,
P =0.52] (data not shown).

Effects of sennoside on startle responses
and prepulse inhibition

To determine whether the effects on PPI are common for all
anthraquinone derivatives, we also examined the effect of
another anthraquinone derivative, sennoside A. Sennoside
A promotes defecation and is popularly prescribed for con-
stipation (Nakajima et al. 1985; Leng-Peschlow 1993;
Yamaguchi et al. 1993). Sennoside A (50 mg/kg) was given
orally to rats for 7 days and startle responses were mea-
sured in the absence and presence of prepulse stimuli. In
this experiment, we prepared only two groups of rats trea-
ted with EGF and cytochrome c as neonates and evaluated
the effects of sennoside A at the adult stage, comparing
data before and after sennoside administration (Fig. 6).
Two way ANOVA for pulse-alone startle detected a sig-
nificant main effect of EGF treatment [F(1,16)=38.7,
P<0.001] but no effect for sennoside administration
[F(1,16)=1.35, P=0.26] nor an interaction [F(1,16)=
0.489, P=0.50] (Fig. 6A). Three-way ANOVA for PPI
revealed that there wére no significant main effects of sen-
noside [F(1,16)=0.577, P=0.46] without interaction
[F(1,16)=0.282, P =0.60], although EGF treatment sig-
nificantly reduced PPI levels [F(1,16)=95.2, P<0.001]
(Fig. 6B). During subchronic administration of sennoside
net body weight gain was little or negative (1.6 + 2.8 g).

Influences of emodin on EGF receptor activation
in neuronal culture

Emodin suppresses growth of HER-2/neu-overexpressing
breast cancer cells (Zhang et al. 1998, 1999). We monitored
the effects of emodin and sennoside on receptor phosphor-
ylation of ErbB1 and ErbB2 in primary cortical cultures
(Fig. 7). Neuronal cultures were pre-treated with various
doses of emodin (0-300 uM) or sennoside A (0—300 uM) and
challenged with EGF (2ng/ml). In the absence of emodin
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Fig. 6. Effects of subchronic sennoside administration on pulse-alone
startle and PPI. Adult rats (male and female) treated with EGF or cyto-
chrome ¢ (control, CON) received sennoside (50 mg/kg/day) daily for 7
days. Pulse alone-startle responses (120 dB) and percentage PPI of the
acoustic startle response with 75, 80 and 85dB prepulse stimuli were
measured one day before the first sennoside administration (Before) and
after the last dose of sennoside (After). Open and black bars represent
values of cytochrome c-treated and EGF-treated rats before sennoside
administration. Black dotted and white dotted bars represent cytochrome
c-treated controls and EGF-treated rats after receiving sennoside, respec-
tively. Bar indicate mean & SEM (n = 10 each). *P <0.05, ***P <0.001,
compared with cytochrome c-treated controls not receiving sennoside by
Fisher LSD. Note In contrast to the other experiments, both male and
female rats were used only in this experiment. There was no significant
difference in PPI between male and female rats (F =0.005, P =0.946)

there was a marked phosphorylation of ErbB1 and ErbB2
following EGF challenge. Increasing amounts of emodin
attenuated the phosphorylation of ErbB1 and ErbB2 in a
dose-dependent manner, whereas the other anthraquinone
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Fig. 7. Acute effects of emodin on ErbB1 and ErbB2 activation in culture.
Neocortical neurons were prepared from embryonic rats and grown for
6 days. Cultures were pretreated with various concentration of (A) emodin
(0-300 uM) or (B) sennoside A (0-300 M) and then challenged to EGF
(2ng/ml final) for 5min. Phosphorylation of ErbB1 and ErbB2 was
monitored by immunoblotting with their antibodies. Immunoreactivity
for beta-actin was used as a control

derivative, sennoside A, failed to inhibit the receptor activa-
tion. Therefore, the observed behavioral effects of emodin
might be ascribed to its inhibitory action on EGF signaling.

Discussion

EGF is an inflammatory cytokine that activates NF-kappaB
signaling and induces prostaglandin synthesis (Ackerman
et al. 2004; Slice et al. 200S5). Abnormal EGF signaling
has been implicated in schizophrenia neuropathology
(Futamura et al. 2002), consistent with the neuroinflamma-
tory hypothesis of schizophrenia (Muller et al. 2000; Nawa
and Takei 2006). As anthraquinone compounds purified
from natural herbal extracts inhibit ErbB2-dependent can-
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cer proliferation, we tested if the anthraquinone compounds
emodin and sennoside A ameliorate EGF-induced be-
havioral deficits (Futamura et al. 2003). We examined
the pharmacological effects of these anthraquinone deriva-
tives on prepulse inhibition and EGF receptor signaling.
Subchronic administration of emodin (50 mg/kg/day)
ameliorated EGF-triggered behavioral deficits in the acous-
tic startle reaction as well as in PPI, although acute admin-
istration had no effect on PPl In addition, subchronic
administration of emodin attenuated weight gain but had
no effect on locomotor activity. Emodin, but not sennoside,
attenuated EGF-triggered activation of ErbB1 and ErbB2 in
primary neuronal cultures. Sennoside A did not mimic the
behavioral effects of emodin but it had a greater effect on
limiting weight gain. This gain during sennoside treatment
(1.6 £ 2.8 g) was significantly smaller than that during em-
odin administration (9.8 £ 2.6 g gain). Therefore, it is less
likely that physical impact of the emodin’s purgative activ-
ity was not causative for the effects of emodin on behavior.
From these findings, we propose that oral administration of
emodin can improve neurobehavioral deficits associated
with EGF signaling.

Emodin used in the present study was purified from
rhubarb. To avoid detecting the biological activity of con-
taminating agent(s), we used emodin from three different
sources. The dose-responses were obtained with emodin
from Sigma Chemical Inc. (90% purity). In the acoustic
startle experiment, two lots of emodin from Tokyo Chemical
Industry Inc. (96, 99% purity) were used. As all lots of
emodin tested consistently produced behavioral effects,
we conclude that emodin is the causative agent responsible
for the behavioral results. However, emodin decreased
acoustic startle responses, the explanation of prepulse inhi-
bition may be complex. Although statistical analysis with
ANCOVA revealed the dissociation between PPI and startle
responses for EGF-treated animals, we cannot fully rule out
the possibility that emodin-triggered decrease in startle
amplitudes contributed to the normalization of PPI.

The pharmacological activity of emodin is distinct
from that of the atypical antipsychotic clozapine. Sub-
chronic treatment with clozapine does not normalize the
higher pulse-alone startle amplitudes of the EGF-treated
rats but significantly improves their PPI score (Futamura
et al. 2003). The antipsychotic potency of clozapine
appears to be lower than that of emodin, however. Cloza-
pine does not fully normalize PPI of the present EGF
model to a control level whereas emodin does (Futamura
et al. 2003).

There are many anthraquinone derivatives that have been
extracted and purified from numerous plants (Wang et al.

M. Mizuno et al.

2001; Huang et al. 2007). These compounds include emo-
din, sennoside, chrysophanol, aloe-emodin, physcion and
rheum. Extracts from these Chinese herbs containing these
compound are most famous for their promoting defecation
but may also possess additional activities, including affect-
ing various psychiatric conditions. For example, extracts
from mixed Chinese herbs including rhubarb rhizome
(the major source of emodin) have been proposed to be
anxiolytic. A recent clinical study examining 67 schizo-
phrenia patients reported the effectiveness of combined
therapy of a leech-rhubarb mixture and antipsychotic drug
(Zhu et al. 1996). A double blind study in Germany dem-
onstrated that chronic administration (12 weeks) of a rhu-
barb extract decreased the anxiety of treated individuals on
Hamilton Anxiety Scale to one third (Kaszkin-Bettag et al.
2007). These findings are consistent with rhubarb contain-
ing a compound(s) that have a psychopharmacological ef-
fect like an antipsychotic. The present study suggests that
emodin might be one of these active ingredients.

Here we tested the potential anti-psychotic activity of
emodin and its derivative in this schizophrenia model, as-
suming that emodin or its metabolites penetrates the blood-
brain barrier and acts on brain neurons. Our previous stud-
ies demonstrate that EGF signaling is upregulated in
schizophrenia patients as well as in the present rodent
schizophrenia model established with neonatal EGF chal-
lenge (Futamura et al. 2002; Tohmi et al. 2005; Nawa and
Mizuno 2006). Although emodin- actions in the brain re-
main to be characterized, its effects on attenuating behav-
ioral deficits emerged after its subchronic administration.
In contrast to the in vivo effects, acute application of a low
dose of emodin (30 uM) was enough to attenuate the recep-
tor activation of ErbB1 and ErbB2 following EGF chal-
lenge in primary neuronal cultures. We can speculate the
reason why behavioral effects of emodin require subchronic
administration of emodin: efficacy of emodin penetration
through the blood-brain barrier is low. Alternatively, emo-
din effects on behaviors through ErbB signaling involve
structural alterations of the brain circuits.

In addition to the emodin effect on sensorimotor gating,
our preliminary study indicates that this compound is ef-
fective to ameliorate methamphetamine sensitization but
not abnormal social interaction of the present EGF model
(unpublished data). In this context, emodin might have a
limited anti-psychotic action against positive symptoms.
However, emodin can be given orally and shows only the
modest and time-limited effect on defecation. Accord-
ingly, we propose that emodin might be an interesting
pro-drug for schizophrenia medication targeting ErbB
signaling.
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