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observed in AD, including drebrin loss and cognitive deficits.
Overall, these data suggest that the following sequential events
may occur in the brains of individuals with AD: AB peptide
accumulation — PAK activity loss — drebrin loss/cofilin patho-
logy — synaptic dysfunction — cognitive decline (Fig. 1).

In addition to genetic vulnerability, a number of environ-
mental risk factors are involved in the pathogenesis and
progression of AD. One candidate risk factor is docosahex-
aenoic acid (DHA), an essential dietary n — 3 polyunsaturated
fatty acid (PFA) that represents approximately 15% of the total
fatty acids in the brain. Epidemiological studies suggest that the
consumption of large amounts of DHA protects the brain from
its susceptibility to AD (Conquer et al., 2000; Tully et al.,
2003). Lipid peroxidation, which is enhanced in AD brain,
accelerates the degradation of PFAs, including DHA (Montine
and Morrow, 2005).

In aged Tg2576 mice, the dietary depletion of n — 3 PFA
leads to the degradation of actin (increase in fractin level) and a
decrease in the level of postsynaptic proteins including drebrin
(Calon et al., 2004). These changes are partially restored by
supplementing the mice’s diet with DHA. DHA directly
activates the PI3 kinase/Akt pathway and inhibits caspase
activation in neuroblastoma cells (Akbar et al., 2005). DHA
deprivation may activate caspase, which in turn promotes actin
degradation by reducing PI3 kinase activity in the brains of
Tg2576 mice (Fig. 1).

5. Altered AMPA receptor and drebrin levels in mutant
APP and presenilin-1 double-knockin mice

Another useful animal mode} of AD is the APPYNLpg.
1P264LP264L 4ouble-knockin (2 KI) mouse, which harbors

Normal brain

both mutant APP and mutant presenilin-1 (PS-1) genes (Flood
et al., 2002). The brains of these mice accumulate Af3 peptide
with aging without inducing APP overexpression. Electro-
physiological analysis revealed that these mice show a
decreased AMPA receptor activity in the CAl region of the
hippocampus and an impaired long-lasting synaptic plasticity,
such as long-term potentiation and depression (Chang et al.,
2006). These findings are supported by anatomical data
obtained from quantitative immunoelectron microscopy ana-
lysis showing a decrease in synaptic AMPA receptor number in
CAl pyramidal cells. Thus, these data suggest that the
regulation of AMPA receptor trafficking on the postsynaptic
membrane is impaired in 2x KI mice.

Quantitative immunoelectron microscopy also revealed that,
by the age of 6 months, 2x KI mice have proportionately fewer
drebrin-immunopositive spines than wild-type mice (Maha-
domrongkul et al., 2005). In cultured hippocampal neurons,
drebrin accumulation within spines depends on AMPA receptor
activity (Takahashi et al., 2004). Thus, in AD brain, reduced
AMPA receptor activity may lead to drebrin loss in
postsynaptic sites (Fig. 2). Recently, Hsieh et al. (2006) have
shown that an increased AR peptide level leads to endocytosis
of surface and synaptic AMPA receptors, which then causes
loss of spines and NMDA receptors. Drebrin may serve as a link
between the reduced AMPA receptor activity and the loss of
spines.

Because drebrin is involved in the homeostatic synaptic
scaling of NMDA receptors (Takahashi et al., 2006), a
disruption of drebrin—actin cytoskeletal networks in the
dendritic spines of AD brains may lead to the abnormal
regulation of NMDA receptor trafficking (Fig. 2). Moreover,
the dietary depletion of n — 3 PFA causes a decrease in NMDA
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Fig. |. Proposed mechanistic pathway for regulation of actin cytoskeletal dynamics in dendritic spines and how this mechanism is related to synaptic dysfunction in
AD. PAK activity correlates with the drebrin level in dendritic spines, and PAK negatively regulates cofilin activity. These actin-binding proteins support synaptic
function by regulating actin cytoskeletal dynamics in dendritic spines. The accumulation of AP peptide inhibits PI3 kinase and reduces PAK activity in AD brain. The
reduction in PAK activity causes drebrin loss in spines and simultaneously activates cofilin, whereas caspase is activated in response to the reduced PI3 kinase activity.
Caspase degrades actin, thereby disrupting the actin cytoskeletal network. DHA intake ameliorates the effects of AP peptide accumulation. Arrows do not necessarily

indicate direct interactions between molecules.
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Fig. 2. Altered actin organization and trafficking of AMPA and NMDA
receptors in the dendritic spines of AD brain. In a normal brain, increased
AMPA receptor activity causes drebrin to accumulate in spines. Drebrin
regulates not only spine size but also activity-dependent NMDA receptor
targeting on postsynaptic sites via the regulation of actin cytoskeletal dynamics.
In AD brain, reduced AMPA receptor activity leads to drebrin loss from spines,
causing the actin-binding partner to be replaced by cofilin. The actin depoly-
merizing activity of cofilin severs actin filaments, resulting in a decreased spine
size and the abnormal regulation of NMDA receptor trafficking.

receptor expression level in the brains of Tg2576 mice (Calon
et al., 2005).

Although the precise molecular mechanism of NMDA
receptor trafficking is largely unknown, the targeting of the
NMBDA receptor in the postsynaptic membrane has recently
been reported to be regulated by the tyrosine phosphorylation of
the NMDA receptor subunit 2B (NR2B) by Fyn tyrosine kinase
(Prybylowski et al., 2005). Synaptotoxicity due to the
overexpression of APP depends on Fyn kinase activity.
Moreover, the deletion of Fyn protects hippocampal neurons
from synaptotoxicity resulting from the accumulation of A3
peptide and the overexpression of Fyn, and reduces synapse
loss in APP transgenic mice (Chin et al., 2004). These findings
support the idea that the tyrosine phosphorylation of Fyn
substrates, including NR2B, represents a downstream compo-
nent of synaptotoxicity resulting from the accumulation of AR
peptide. The drebrin—actin complex may contribute to the
trafficking of the tyrosine-phosphorylated NR2B-containing
NMDA receptor to the postsynaptic site. It would be interesting
to determine the changes in synaptic NMDA receptors and
cognitive function in genetically manipulated mice lacking
drebrin.

6. Conclusion

Here, we discuss how defects in the postsynaptic
components of synapses may contribute to the development
of neurological disorders that are accompanied by cognitive
deficits such as AD. The disruption of the actin-regulatory
machinery that includes the degradation of actin, the
accumulation of cofilin, and the loss of drebrin, is a prominent

pathological feature in AD brain. Drebrin level correlates well
with the severity of cognitive impairment, suggesting that
drebrin is involved at the molecular level in the development of
cognitive impairment that accompanies neurological disorders
and normal aging.

Thus far, research on neurological disorders, including AD,
has been focused on neuropathological aspects, such as the
formation of senile plaques, neurofibrillary tangles, and Hirano
bodies; neuronal cell death; and synapse loss. However, to
better understand the nature of the neurological symptoms
observed in these disorders, attention must be given to the
physiological mechanisms underlying these disorders, such as
the functional vulnerability of synapses and the resulting
synaptic dysfunction.
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