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Papuloerythroderma of Ofuji induced
by furosemide

To the Editor: Papuloerythroderma was first de-
scribed in 1984 by Ofuji et al.! It may occur as a
result of allergic reaction to unknown substances
with T helper (Th) 2 deviation.> Recently, we have
found that one of the causative agents of papuloer-
ythroderma is a drug, as documented in a patient
administered with aspirin.* Here, we describe a case
of papuloerythroderma caused by furosemide.

A 79-year-old man had a 25-year history of mild
eczema, which was originally prominent on his trunk
and spread thereafter to his 4 extremities. He also
had experienced heart failure 10 months earlier and
was given furosemide 6 months before his visit to
our clinic. Four months after the administration, an
erythematous papular eruption deteriorated and he
was referred to our hospital.

Clinical examination revealed widespread eythro-
derma with coalescent solid papules predominantly
on the trunk and extremities with sparing of the face,
axillae, and skinfolds (Fig 1, 4). The peripheral
blood sample showed a normal leukocyte count of
5100/uL with 13.3% eosinophils (678/uL). A biopsy
specimen showed moderate perivascular infiltration
of lymphocytes and eosinophils in the papillary der-
mis. Although a patch test to furosemide produced
negative findings, the lymphocyte stimulation test
produced positive findings (stimulation index 9.08;
normal < 1.8) (Fig 1, B).

Furosemide therapy was discontinued and he
was treated with topical application of 0.05% beta-
methasone butyrate propionate once a day for a
month, resulting in clinical improvement. An oral
challenge test to furosemide revealed positive results,
as the patient developed the same erythematous
papular eruption 48 hours after administration. Upon
this provocation, a higher percentage of CCR4"*
CD4™ Th2 cells was found in the peripheral blood
(Fig1, €), and HLA-DR*CD4™ activated T cells were
elevated to 15.2%. Therefore, we gave this patient
the diagnosis of papuloerythroderma caused by fu-
rosemide, and the eruption seemed to be mediated
by Th2 cells reactive with furosemide.
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Fig 1. A, Diffuse coalesced red papules form sheets of erythroderma-like lesions on trunk with
sparing of skinfolds. B, Lymphocyte stimulation test. Patient’s peripheral blood mononuclear
cells (PBMC) were cultured for 72 hours with furosemide or aspirin as control. *H-thymidine
was pulsed for last 18 hours. *P < .01, compared with control. C, Flow cytometric analysis of
patient’s PBMC after provocation test. FITC, fluorescein isothiocyanate; PE, phycoerythrin.

We have recently reported a patient with aspirin-
induced papuloerythroderma.® The patient de-
scribed here is the second case that was evoked by
a drug. In both cases, the eruptions were different
from the acute type of exanthema usually observed
as drug eruption. Rather, they were chronically seen
presumably in association with pre-existing eczema-
tous dermatitis. It should be noted that widely used
drugs are one of the important causative agents for
papuloerythroderma.
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LETTER TO THE EDITOR

Fexofenadine downmodulates antigen-
presenting ability of murine epidermal
Langerhans cells

Rl
Langerhans cell; Dendrtic cell; F

nadine; Tcell

To the Editor

Fexofenadine is a nonsedating, anti-allergic, hista-
mine H1-receptor-blocking antagonist acknowl-
edged as an oral drug for allergic rhinitis,
urticaria, and various itchy skin diseases including
atopic dermatitis and other eczematous dermatoses
[1]. This H1 blocker suppresses the production of
various chemical mediators as anti-allergic action.
Furthermore, fexofenadine inhibits the production
of cytokines and chemokines by epidermal kerati-
nocytes and nasal epithelial cells, such as CCL17/
TARC, and CCL22/MDC [2—4]. It also inhibits the
production of CCL5/RANTES in keratinocytes [4].
Therefore, fexofenadine downregulates the produc-
tion of Th2 chemokines and eosinophil chemokine
CCL5 by keratinocytes, thereby possibly preventing
skin-infiltration of Th2 cells and eosinophils. Sus-
ceptibility of keratinocytes to fexofenadine was also
found in downregulated expression of CD54/1CAM-1
by this anti-histamic drug [4].

In cutaneous immunity, Langerhans cells (LCs) are
professional antigen-presenting cells in the epider-
mis and play a critical role in the development of
contact hypersensitivity with the help of keratino-
cytes. Since fexofenadine suppresses the early and
late cutaneous allergic responses [5], it is possible
that fexofenadine modulates the immunological
functions of not only keratinocytes but also LCs.
We therefore investigated the effect of fexofena-
dine on the hapten-presenting capacity of LCs.

First, epidermal cell (EC) suspensions freshly iso-
lated from naive BALB/c mice were subjected to
Ficoll gradient separation of LC-enriched epidermal
cells (LC-ECs) as described previously [6]. The
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percentage of LCs in LC-EC fraction was 15—20%,
as assessed by flow cytometric analysis with anti-I-
A9 phycoerythrin (PE)-labeled monoclonal antibody
(BD PharMingen, San Diego, CA). LC-ECs were mod-
ified with trinitrophenyl (TNP) [6]. As responders,
CD4” T cells were prepared from lymph node cells
(LNCs) of trinitrochlorobenzene (TNCB)-sensitized
BALB/c mice. The immune CD4" T cells were cul-
tured with TNP-haptenized LC-ECs to examine Tcell
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Fig. 1 Fexofenadine suppression of the ability of LC-ECs

to present hapten to immune T cells without direct sup-
pression of T cells. (a) LC-ECs were obtained from naive
BALB/c mice and modified with trinitrophenyl (TNP).
Immune LNCs were obtained from BALB/c mice sensitized
with 2,4,6-trinitrochlorobenzene (TNCB) 5 days before.
CD4" Tcells were isolated positively with monoclonal anti-
CD4 antibody using MACS, and their purity was >98%.
Immune tymph node CD4* T cells (2 x 10° per well) were
cultured for 72 h with TNP-modified LC-ECs (5 x 10° per
well) in the presence or absence of fexofenadine and
pulsed with methyl [*H] thymidine (1 uCi/well) 18 h
before harvest. Cells were collected on glass fiber filters
using a cell harvester and their radio-uptake was mea-
sured in a scintillation counter. Data represent the
mean +5.D. *P < 0.05, compared with T + LC-EC group.
(b) Immune CD4* T cells (1 x 10° per well) were cultured
for 72 h with varying concentrations of fexofenadine in
the presence of anti-CD3 mAb (5 ug/ml).

0923-1811/5$30.00 © 2007 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
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Fig. 2 Fexofenadine downmodulation of CD86 expression on LCs. (a) Epidermal cell suspensions from naive mice were
cultured for 24 h with or without fexofenadine at 10~ M. The cultured cells were subjected to flow cytometric analysis to
see the expression of CD86 on LCs, which were gated by I-A expression. Fexofenadine did not impair the viability of ECs at
the concentrations used. (b) A representative flow cytometry shows the mature (CD86 high) and immature (CD86
intermediate) populations of LCs in the culture system. The dotted line represent the isotype-matched control. (c) The
mature/immature ratio is calculated from three independent experiments. Data represent the mean + S.D. *P < 0.05.
(d) Fexofenadine reduction of the percentage of CD86" BMDC population. Murine immature DCs were generated from
bone marrow according to standard protocols [8,9]. Minor modification included feed culture medium on day 3 containing
GM-CSF (10 ng/ml). On day 6, BMDCs (5 x 10 per well) were cultured for 24 h with the two indicated concentrations of
fexofenadine and the expression of CD86 on BMDCs, which were gated by 1-Ad, was monitored. Three independent series
of experiments confirmed this reduction of mature BMDC number by fexofenadine. Fexofenadine did not impair the
viability of BMDCs at the concentration used. (e) The mature/immature ratio is calculated from three independent
experiments. Data represent the mean + S.D. *P < 0.01.
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proliferation. The culture was maintained for 72 hin
the g)resence or absence of fexofenadine at 1078 to
107° M.

As shown in Fig. 1a, the ability of LC-ECs treated
with 107® M fexofenadine to stimulate immune T
cells was significantly lower than that of LC-ECs
incubated without fexofenadine. A question arose
whether this reduction stemmed from fexofenadine
impairment of LCs or T cells. In an alternative
system, precultivation of LCs with fexofenadine
before coculturing with T cells decreased the
response (data not shown). These data strongly
suggest that fexofenadine suppresses LC function.
Moreover, when purified CD4* T cells from trinitro-
chlorobenzene-sensitized mice were solely cultured
for 72 h with anti-CD3 mAb in the presence of vary-
ing concentrations of fexofenadine, the stimulant-
induced proliferation of T cells was not affected by
fexofenadine at 10~®M (Fig. 1b). Thus, fexofena-
dine did not directly decrease T cell proliferation,
and its suppressive effect on LCs seemed to be
predominant.

B7 molecules such as CD86 are involved in the
antigen-presenting ability of LCs. To test the effect
of fexofenadine on LC CD86 expression, freshly
isolated ECs were cultured for 24 h in the presence
or absence of fexofenadine and double-stained
with phycoerythrin (PE)-labeled anti-I-A® and
fluorescein isothiocyanate (FITC)-labeled anti-
CD86 monoclonal antibodies (BD PharMingen, San
Diego, CA) and were gated by |-A9 expression. As
shown in Fig. 2a, the percentage of CD86'I-A%*LCs
were decreased by fexofenadine treatment. LCs
usually have two populations in their CD86 expres-
sion after 24h culture [6]. Fexofenadine
decreased the CD86-highly expressing population
(mature) of LCs, as the immature population was
increased by fexofenadine at 107/ or 107°M
(Fig. 2b). Three independent series of experiments
confirmed the reduction of mature LCs by fexofe-
nadine (Fig. 2¢).

In our experiment systems, keratinocytes coexist
with LCs. This raises the possibility that fexofena-
dine alters the production of cytokines by bystander
keratinocytes, thereby modulating the function of
LCs. Moreover, recent findings have suggested that
dermal dendritic cells (DCs) positively induce con-
tact hypersensitivity, while LCs are rather regula-
tory [7]. Therefore, another DC population should
be tested without contamination of keratinocytes.
For this purpose, bone marrow-derived dendritic
cells (BMDCs) were cultured for 24 h with fexofena-
dine and the I-A% and CD86-double positive cells
was monitored by flow cytometry. As shown in
Fig. 2d, fexofenadine decreased the percentage
of CD86" mature BMDCs. Three independent series

Letter to the Editor

of experiments confirmed this reduction of mature
BMDCs (Fig. 2e). The above findings interpreted as
an indication that fexofenadine downregulates the
costimulatory molecules of LCs, and subsequently
inhibits their antigen-presenting function. To
address this possibility, BMDCs derived from C57/
BL6 mice were harvested on day 6 and treated with
25 pg/ml mitomycin C (Sigma) for 30 min at 37 °C.
The treated BMDCs (2 x 10° per well) were then
cultured with CD4" Tcells (2 x 10° per well) derived
from BALB/c mice in 96-well cell culture plates for 3
days. The cells were pulsed with methyl [*H] thy-
midine. T cell proliferation was markedly inhibited
at fexofenadine 10~7 M (data not shown). There-
fore, it is likely that fexofenadine directly sup-
presses the antigen-presenting function of DCs
though downmodulation of the costimulatory mole-
cules.

In our study, we showed that fexofenadine
suppresses the hapten-presenting ability of LCs.
This suppression was associated at least partly
with the decreased expression of costimulartory
molecules. Our study implicates that fexofenadine
downmodulates DC function concerned with skin
immunity and may exerts its therapeutic effec-
tiveness.
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Epidermal chemokines and modulation by
antihistamines, antibiotics and antifungals
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Abstract: Growing evidence has demonstrated that chemokines
released from epidermal cells control inflammatory skin diseases.
Keratinocytes elaborate both Thl- and Th2-associated
chemokines, although the former is more abundantly produced
than the latter. Downmodulation of keratinocyte production of
chemokines is one of the therapeutic approaches for cutaneous
inflammatory disorders. Recent observations have shown that

keratinocyte chemokine production can be modulated by well-
used drugs, including antihistamines, antibiotics and antifungals.
Utilization of the beneficial side effects of these drugs may by
clinically valuable.
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Introduction

Skin is a well-orchestrated immune organ where epidermal
cells produce various cytokines, chemokines and mediators,
thereby inducing leucocytes infiltration in the dermis and
even epidermis and evoking contact dermatitis and other
skin lesions (1). Recent accumulating evidence has clarified
that chemokines play an important role in cutaneous
immunity (2). Allergic contact dermatitis and atopic der-
matitis (AD) are the typical conditions to show the essen-
tial roles of chemokines by which immunocompetent cells
interact dynamically with each other (3,4). Keratinocytes
are the major producers of epidermal chemokines, which
are controlled by various cytokines (5-7).

Keratinocyte production of chemokines may be modu-
lated by clinically used therapeutic reagents. Cytokines such
as interferon-y (IFN-y) and anticytokine antibodies such as
antitumor necrosis factor-o (TNF-a) duly alter the chemo-
kine production as seen in patients with mycosis fungoides
treated with IFN-y (8) and psoriasis with anti-TNF-« anti-
body (9). Besides these biologics or biological response
modifiers, recent findings have revealed that certain drugs
have a capacity to modulate the chemokine production.
These seemingly attractive drugs include antihistamines,
antibiotics and antifungals. The fact that antihistamines
have this capacity is perhaps not particularly surprising, as
it has been known for many years that antihistamines alter
cytokine production. However, it is of particular interest

that antibiotic and antifungal drugs have this potential. We
can hypothesize that they possibly exert beneficial, not
adverse, side effects in patients with not only skin allergy
but also bacterial/fungal infections, although physicians
and patients have not noticed such pleasant effects of the
drugs. This article aims to review the roles of epidermal
chemokines and highlight the drugs capable of modulating
keratinocyte chemokine production.

Epidermal chemokines

In the skin, external stimuli such as chemicals and ultravio-
let B (UVB) (10), or cytokines represented by IFN-y and
TNF-o (6,11) stimulate epidermal keratinocytes to elabo-
rate various chemokines, which initiate migration of T cells
as well as polymorphonuclear leucocytes (12). The infiltrat-
ing T cells further activate keratinocytes to produce chemo-
kines by secreting IFN-y (13), leading to exaggeration of
cutaneous inflammation.

Chemokines in the epidermis are mainly released by
keratinocytes and Langerhans cells (LC). These two types
of cells are deeply involved in skin immunity, as contact
dermatitis is induced and elicited by their close interac-
tion (14). Table 1 summarizes chemokines produced/
expressed by keratinocytes (15-18) and LC (19-22), and
Table 2 shows chemokine receptors expressed on Thl,
Th2 and LC. Keratinocytes are capable of producing Thi-
associated chemokines (Thl chemokines) with affinity to
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Receptors for

Table 1. Chemokines produced by
keratinocytes and LCs

Cell sources  Chemokines chemokines Chemoattracted cells
Keratinocytes ~ Mig/CXCL9 CXCR3 Thi cells
IP-10/CXCL10 CXCR3 Thi cells
FTAC/CXCL11 CXCR3 Thi cells
MDC/CCL22 CCR4 ThZ cells
(TARC/CCL17) (CCR4) (Th2 cells)
RANTES/CCLS CCR1, CCR3, CCRS  Eosinophils, T cells, fibroblasts
CTACK/CCL27 CCR10 Skin homing memory T cells
LARC/MIP-3a/CCL20  CCR6 Memory T cells, monocytes,
’ immature DCs, LCs
MCP-1/CCL2 CCR2 Monocytes, DC precursors
IL-8/CXCL8 CXCR2 Neutrophils
GRO/MGSA CXCR2 Neutrophils
I-309/CCL1 - CCR8 Th2 cells, LC precursors
LCs TARC/CCL17 CCR4 Th2 cells
MDC/CCL22 CCR4 Th2 cells
RANTES/CCLS CCR1, CCR3, CCRS  Eosinaphils, T cells, fibroblasts
MIP-12/CCL3 CCR1, CCRS - " Monocytes, T cells o
MIP-18/CCL4 - CCR5 Th1 cells

Keratincyte-derived chemokines were investigated by ELISA and/or RT-PCR of in vitro cultured
normal human epidermal keratinocytes and their supernatants, or by immunchistochemistry

- and/or in situ hybridization of skin specimens (9,15-18). it should be noted that CCL17 can not
be produced by normal human keratinocytes (25), although it is released from HaCaT cells. .
CCL1 was detected in vitro, but theré has been no report on the in vivo expression of CCL1.

© LC-derived chemokines were examined by RT-PCR or ELISA of purified murine LCs and their -

supernatants (19-21), or by and human LC histiocytosis tumor cells (22).

Table 2. Chemokine receptors in Th1, Th2, and LCs

" Chemokine =

Ugands

* Cell type receptors (chemokines)
- Th1 (Tct) CXCR3 e p10/CXCLI0 Y
Mig/CXCL9
FTAC/CXCL11
“CCRS RANTES/CCLS -
S MIP-1a/CCL3 7
. MIP-18/CCLA
Thz ] CCR4 TARC/CCL17
’ S MDC/CCL22
“CCR3 -yl eotaxin-1/CCLI-
’ oL Eotaxin-2/CCL24
RANTES/CCLS
MCP-3/CCL7
n MCP-4/CCL14 -,
CCR8 L3o9/ccLr ¢ :
LCs CCR6 MIP-3a/CCL20 (epidermis) :
: CCR7 SLC/CCL21 (lymph nodes)
“CXCR4 SDF-1/€XCL12

- (lymphatics, Iymph hodes)

.. Chemokine receptors expressed on Th1, and Th2 cells (23) and LCs E

" (45) were summanzed

CXC chemokine receptor 3 (CXCR3) and CC chemokine
receptor 5 (CCR5) on Thl cells (23), including IFN-y-
inducible protein 10 (IP-10/CXCL10), monokine induced
by IFN-y (Mig/CXCL9) and IFN-y-inducible T-cell
chemoattractant (I-TAC/CXCL11) and Th2-associated
chemokines (Th2 chemokines) with affinity to CCR4,
CCR3 and CCRS8 on Th2 cells (23), including thymus and
activation-regulated chemokine (TARC/CCL17) and mac-
rophage-derived chemokine (MDC/CCL22) (2,9,15-18). It
should be carefully noted that CCL17 is produced by the
keratinocyte cell line HaCaT cells but not cultured normal
human keratinocytes (24,25). In addition, RANTES/CCLS5,
chemotactic for eosinophils and Thl and Th2 cells, and
interleukin (IL)-8 for neutrophils are important chemokines
produced by keratinocytes in consideration of skin immune
or inflammatory disorders. Thus, a considerably wide range
of chemokines is released from the keratinocytes.
Furthermore, a specialized form of chemokine/receptor
system is constructed by the interaction between
CTACK/CCL27 secreted by keratinocytes and CCR10 on
certain population of T cells with skin-homing capacity
(26,27). T cells bearing cutaneous lymphocyte-associated
antigen (CLA) is known as skin-homing T cells. CCR4 and
CCR10 show preferential expression on circulating CLA*
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skin-homing T cells. While the majority of circulating
CD4" CLA" memory T cells expresses CCR4, 30-40% of
CLA* memory T cells are positive for CCR10 (28). As
CCL27 expression is not concomitant with other chemo-
kines such as CXCL10 in hapten-challenged skin (26),
CCRI10* T cells possibly play a different role from CXCR3"
T cells in the cutaneous sensitivity.

Several studies by different groups of investigators have
suggested that the chemokine production patterns are dif-
ferent between keratinocytes and LC. Although keratino-
cytes strongly produce Thl chemokines, LC markedly
express Th2 chemokines CCL17 and CCL22 (19-22).
Accordingly, when epidermal cells are deprived of LC, the
expression of CCL17 and CCL22 are markedly reduced. LC
production of Th2 chemokines is inhibited by IFN-y (27)
and enhanced in IFN-y-deficient mice.

Allergic contact dermatitis as a
representative system where epidermal
chemokines are involved

Murine contact hypersensitivity (CHS), corresponding clin-
ically to allergic contact dermatitis, is elicited as a conse-
quence of immunological reactions induced by skin
application of antigen, cellular interactions among LC, T
cells, keratinocytes and mast cells, and well-organized
participation of a variety of cytokines/chemokines (29).

Epidermal chemokines and modulation by drugs |

Antigen-presenting LC or dermal dendritic cells (DC) are
prime T cells in the induction or afferent limb of the CHS
and restimulate them in the elicitation or efferent limb,
and chemokines and their receptors are involved in these
dynamic responses (1,2,29) (Fig. 1). Recent findings have
rendered the positive and regulatory roles of LC and
dermal DC mysterious, and in particular, LC have been
suggested to play a suppressive role (30,31).

Historically, the expression of chemokine genes in CHS
responses has been studied along with the discovery of new
chemokines of keratinocyte origin (32,33). In murine CHS
to picryl chloride, mRNA for CXCL10 as well as macro-
phage chemoattractant protein 1 (MCP-1/CCL2) is
expressed as early as 4 h after challenge and remains ele-
vated until 24 h (34). CXCL10 is also expressed in CHS to
dinitrofluorobenzene and oxazolone (35). Although the
sources of CXCL10 at the elicited skin sites had been con-
troversial (34-36), human keratinocytes were documented
to produce CXCL10 and CXCL9 upon stimulation with
IFN-y (7,36-38). Furthermore, CXCL10 is most abundantly
and predominantly expressed on epidermal cells at patch
test sites of human allergic contact dermatitis (36). In their
study, CXCL9 is expressed in both epidermis and dermis.

It is proposed that the expression of CXCR3-agonistic
chemokines by epidermal and dermal cells contribute to an
environment in which activated T cells bearing CXCR3
migrate to the site of allergen reaction, thereby enhancing

Antigen Sensitization Blicitation | Antigen
exposure re-exposure
X 3 % * ok
- Langerhans "
—
™. cells (LCs)
\/—\ I-le
Keratinocytes \W
&i‘g%‘g‘;; CXCL10, CXCLS, CXCL1 1
‘& CDEO, 86, 40 1 ooy et
MHC class I} 1
Dermal dendritic Eﬁ;d’;eﬂnl
cells (dDCs) T cell accumulation

into skin

CXCR3 (Th1 cells)

ccL21 CCRA4 (Th2 cells)
CXCL12 CCR10 (skin-homing
memory T cells)
Regional activation oo
lymph nodes O Mermory/effector
Qo> Teells
Naive T cells

Figure 1. Schematic representation of mechanisms of contact hypersensitivity (CHS) and participation of keratinocyte chemokines. Sensitization
phase of CHS: upon exposure to exogenous antigens, epidermal keratinocytes produce tumor necrosis factor (TNF)-«, interleukin (IL}-1z and GM-CSF,
thereby inducing the migration and maturation of cutaneous dendritic cells (DC) [epidermal Langerhans cells (LC) and dermal DC]. LC with high
expression of CCR7 and CXCR4 migrate to the regional lymph nodes where their ligands, CCL21/5LC and CXC12/SDF-1, are released. The migrated
and antigen-bearing cutaneous DC sensitize the T cells. Elicitation phase of CHS: upon re-exposure to the antigen, keratinocytes produce Th1
chemokines (CXCL10/1P-10, CXCL9/Mig and CXCL11/I-TACK), Th2 chemokines (CCL22/MDC and possibly CCL17/TARC) and skin-homing memory
T-cell chemokine (CCL27/CTACK). Ordinary haptens stimulate keratinocytes to produce Th1 chemokines, and the migrated Th1/Tc1 cells further
induce keratinocyte Th1 chemokine production by releasing interferon-y. LC are an important source of Th2 chemokines, but it remains unclear
whether LC-derived Th2 chemokines attract Th2 cells in some in vivo settings.
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and maintaining the inflammatory infiltrate. In this sce-
nario, CD8" T cells are suggested to play a major role for
induction of CXCL10 via secreted IFN-y. In fact, T cells
bearing CXCR3 preferentially infiltrate at the challenge sites
compared with the T cells bearing CCR4 (13). CXCL10
produced locally at the challenge sites induces infiltration
of CXCR3" T cells, and their CD8" T cell population fur-
ther stimulates the local milieu to produce CXCL10 by
IFN-y, leading to an enhancement of the elicited responses
(13).

The expression of CXCL10 and CXCL9 is followed by
that of CCL27 (26), suggesting that different population of
T cells with CCR10 migrate to the challenged skin after
Th1/Tcl infiltration. The chemotactic activity seems to be
different between CD4* and CD8* T cells in response to
CCL27 (27). It is an interesting issue whether the CD4*
population plays a positive or regulatory role in CHS.
Whereas CD4" T cells were shown to enhance CD8* effec-
tor T cell activity (39), another study has suggested that
CD4* T cells serve as regulatory T cells that suppress CHS
response (40,41).

In photoallergic contact dermatitis to ketoprofen, how-
ever, lymph node cells from photosensitized mice express
high levels of mRNA for Th2 cytokine (IL-4) and Th2
chemokine receptor (CCR4) as well as Thl cytokine (IFN-y)
and Thl chemokine receptor (CXCR3) (42). Moreover,
epidermal cells from challenged ear lobes have increased
levels of both Thl (CXCL9) and Th2 (CCL17) chemokines
and cytokines (43,44). Therefore, it is considered that not
only Thl but also Th2 cells participate in the pathogenesis
of photoallergic contact dermatitis, suggesting that there
are differences in chemokine expression between the cuta-
neous hypersensitivities.

Chemokines produced by LC include CCL17, CCL22,
CCL5, CCL3 and CCL4 (20,21). Although exogenous stim-
ulus is mandatory for the production of substantial
amounts of Thl chemokines, CXCL10, CXCL9 and
CXCL11, both in LC and splenic DC, LC exhibit low ability
to produce Thl chemokines in comparison with splenic
DC. As for the Th2 chemokines, LC, but not splenic DC,
produce high levels of CCL22 and CCL17 constitutively
during culture even without exogenous stimuli. The pro-
duction of Th2 chemokines is regulated in a complicated
manner. In particular, IL-4 upregulates and IFN-y downre-
gulates both CCL22 and CCL17 production by LC. Of
note, LC produce more amounts of Th2 chemokines than
splenic DC under any conditions tested (21). The fact that
LC can secrete such Th2 chemokines and eosinophil-
attracting CCL5 appears to be in accordance with the
recent finding that LC function as suppressors rather than
as positive antigen-presenting cells (30,31). Given that der-
mal DC play a positive role for CHS, it is an interesting
issue whether they have a pattern of chemokine production

different from LC. As for the chemokine receptor expres-
sion, LC are known to bear CCR7 for migration to regional
lymph nodes, but our recent study has shown that LC also
express CXCR4 as a functional molecule for migration to
the lymph nodes (45).

Antihistamine drugs as a modulator of
keratinocyte chemokine production

The second generation of histamine H1-receptor-blocking
antagonists is used for various inflammatory skin disorders.
Patients with urticaria are usually well treated with antihis-
tamines. Its antipruritic potential in the management of
AD is statistically significant (46) but may be limited
in such an eczematous dermatitis. In addition to
antihistaminic action, they have various antiallergic actions,
as represented by mast cell stabilization and resultant sup-
pression of various chemical mediators and cytokines, such
as leukotrienes, arachidonic acid, IL-6, IL-8 and TNF-«
(44). Some of the antihistamines also suppress the expres-
sion of co-stimulatory molecules (47), eosinophil chemo-
taxis (48), adhesion molecule expression (48-51) and
substance P release (51). Although they have similarities in
their antihistaminic and antiallergic actions, each of them
has different characteristic effects on immunocompetent
cells and allergy-associated molecules.

In addition to these actions, the suppression of keratino-
cyte chemokine production has been demonstrated in sev-
eral antihistamines (50,52,53). In a series of our study, we
stimulated normal human epidermal keratinocytes or
HaCaT cells by the previously reported method using IFN-y
and TNF-a as follows: 2000 units/ml of IFN-y and
4000 units/ml of TNF-a for the first 2 h, followed by
200 units/m! of IFN-y and 400 units/ml of TNF-« for the
remaining 3 days (52,53) in the presence or absence of
antihistamines. The concentration of each chemokine was
measured by enzyme-linked immunosorbent assay (ELISA)
and mRNA expression was evaluated by reverse transcrip-
tase-polymerase chain reaction (RT-PCR). HaCaT cells
were used to see the effect on CCL17 production, because
normal human keratinocytes, at least when cultured in vitro,
are unable to produce CCL17. By flow cytometry, we also
monitored the changes in the expression of major histo-
compatibility complex (MHC) class II and CD54 molecules
on HaCaT cells after culturing with antihistamines (52,53).
The results are summarized in Table 3. There are discernible
differences among antihistamines in the downmodulatory
effects on each chemokine production.

Epinastine inhibits the production of Thl chemokines,
CXCL10, CXCL9 and CXCL11 (52). The optimally inhibi-
tory dose of epinastine was 10® M, and its concentration
in the skin was reported to be 107’ M, suggesting that
epinastine exerts its clinical effectiveness in the skin. CCL22,
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a Th2 chemokine, and CCL5, capable of chemoattracting
Thl and Th2 cells and eosinophils, tend to be suppressed
by this antihistamine. Thus, epinastine is characterized by
its wide range of suppressive capacity towards Thl and
Th2 chemokines with the former being more suppressed.
Fexofenadine suppresses Th2 chemokines, CCL22 and
CCL17 and additionally CXCL11 and CCL5 as low as 1077
to 10°M in a dose-dependent manner (53). As the Cy
of fexofenadine is 1.0 X 107° M when administered orally at
120 mg in humans and its concentration in the skin is
higher than that in the plasma, this in vitro suppressive
concentration is considered to be meaningful. Neither pro-
duction of CXCL10, CXCL9 nor CXCL8 is affected by
fexofenadine. Thus, fexofenadine uniquely downregulates
the production of Th2 chemokines, CCL22 and CCL17,
but not Thl chemokines, CXCL10 or CXCL9, which
suggests its beneficial effects on Th2 cell-mediated, and
thus, allergic cutaneous disorders. It is interesting that this
Th2-preponderant suppression of chemokine production is
virtually the same as UVB (10). In addition, as fexofena-

dine inhibits the production of CCL5, but not CXCLS, this
antiallergic seems to prevent the skin infiltration of eosin-
ophils but not neutrophils. Given that the late-phase cuta-
neous reaction is mediated by Th2 cells and eosinophils,
fexofenadine may be effective especially for oedematous
and erythematous lesions of AD. In this context, it should
be carefully noted that the chronic eczematous lesion of
AD is induced by Th1 cells.

Cetirizine inhibits the release of CCL2 and CCL5 from
IFN-y-stimulated keratinocytes (54). It also suppresses the
production of CXCL8 as well as the expression of MHC
class I1 and CD54 molecules in our preliminary study. Lev-
ocetiridine is virtually the same as cetiridine, but some of
its effects are more remarkable than cetiridine.

Bepotastine  significantly downmodulates CXCL10,
CCL17 and IL-l1a. CD54 expression is also suppressed by
this antihistamine.

Olopatadine is unique in the preferential inhibition of
the release of tachykinins such as substance P from sensory
nerves (55). Moreover, this antihistamine downmodulates
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the antigen-presenting ability of LC, and as a result, sys-
temic administration of olopatadine suppresses CHS
responses (56). Its effect on the keratinocyte chemokine
production is detectable as those on substance P and LC,
and olopatadine significantly suppresses the production of
CXCL10 (56). The potential of olopatadine to suppress
CCL17 production was observed in the peripheral blood of
atopic patients administered with this antihistamine (57)
and in LC.

Taken together these findings, antihistamines may serve
as keratinocyte chemokine downmodulator with varia-
tions in their intensities. Their chemokine inhibitory
properties seem to be clinically relevant. In light of the
mechanisms of the CHS, the antihistamine-induced sup-
pression of proinflammatory cytokines, IL-1a, TNF-« and
granulocyte/macrophage colony-stimulating factor (GM-
CSF), downmodulates LC maturation, resulting in
depressed sensitization of the CHS. Inhibition of T cell
migration to the epidermis by antihistamines may also
occur, depending on their effect on Thl or Th2 cells.
The depressed production of Thl and Th2 chemokines
may lead to the delayed-type and late-phase reactions of
the CHS, respectively. In addition, the suppression of
CD54 expression on keratinocytes may inhibit T-cell
adherence to the epidermis during the development of
CHS. Epinastine has a potential to exert a therapeutic
effect on Thl-mediated skin disorders, as it depresses
pruritus in patients with not only AD (58) but also
Thl-mediated psoriasis (59). Accordingly, it was
approved by the ministry in Japan as a drug for psoria-
sis as well as eczematous diseases. Likewise, another Thl
chemokine inhibitor olopatadine has an approval for the
treatment of psoriasis. On the other hand, fexofenadine
is applicable for AD but not psoriasis because of its
moiety for the Th2 chemokine inhibitor.

Regarding the mechanism by which the antihistmines
exert their suppressive effects on keratinocyte cyto-
kine/chemokine production by keratinocytes, a novel con-
cept of Hl receptor function has been proposed. H1
receptors are G-protein-coupled receptors, and their inac-
tive and active conformations co-exist in equilibrium. The
activation level of the receptors in the absence of hista-
mine is their ‘constitutive activity’ (60). In this scenario,
histamine acts as an agonist and shifts the equilibrium
towards the activated state. Antihistamines classified previ-
ously as antagonists function as either inverse agonists or
neutral antagonists. Inverse agonists combine with and
stabilize the inactive conformation of the receptor to shift
the equilibrium towards the inactive state. Thus, they may
downregulate constitutive receptor activity, even in the
absence of histamine. Neutral antagonists combine equally
with both conformations of the receptor, do not affect
basal receptor activity, but do interfere with agonist bind-

ing. All H1 antihistamines examined to date are inverse
agonists (60), including desloratadine, cetiridine, epinas-
tine, loratadine and fexofenadine (61,62). In this concept,
the term ‘HI receptor antagonists’ is a misnomer. The
observation that H1 receptors modulate nuclear factor-
kappaB (NF-kB) activation (63) supports this receptor-
dependent mechanism underlying anti-inflammatory
actions of Hl antihistamines, including suppression of
cytokines/chemokines and inhibition of CD54 expression.
As basal activation of NF-kB through the HI1 receptor is
important for allergic inflammation, and antihistamines
have no effect on NF-kB activity in the absence of the H1
receptor, it is likely that the suppressive effects of antihis-
taimines on the cytokine/chemokine production is medi-
ated by the HI receptor. In our experimental system,
keratinocytes were stimulated by IFN-y and TNF-a to
produce chemokines. The fact that IFN-y induces translo-
cation of NF-xkB in keratinocytes (64) further supports
this concept.

Antibacterial drugs as a modulator of
keratinocyte chemokine production

Some of the antibacterial agents have been known to serve
as immunomodulators. Among them, macrolide antibacte-
rial agents are the representative immunomodulatory drugs
and well known to inhibit cytokine production by various
cells (65-67). Erythromycin-derived 15-membered ring
macrolides are structurally modified to permit unusually
enhanced intracellular accumulation and have various
modulatory bioactivities to immunocompetent cells that
are involved in allergy and inflammation. Roxithromycin
(RXM) (68), azithromycin (67,69) and clarithromycin (67)
have been well studied and used for inflammatory condi-
tions such as diffuse panbronchiolitis.

As summarized in Table 3, RXM modifies cutaneous
immunity. RXM suppresses the functions of LC by down-
modulating the expression of MHC class II and co-stimula-
tory molecules and the production of cytokines such as
IL-18 (68), suggesting the potency of RXM to depress aller-
gic contact dermatitis. Keratinocytes are another target of
macrolides, as RXM downregulates the IFN-y-enhanced
expression of MHC class II molecules and the production
of IL-1o and TNF-« and inhibits the superantigen-present-
ing function of keratinocytes (70). In accordance with these
experimental findings, RXM exerts beneficial therapeutic
effects on various inflammatory or immunologic skin dis-
orders, including psoriasis, pustulosis palmaris et plantaris,
AD, ecosinophilic pustular folliculitis and prurige pigmen-
tosa (71-73).

RXM also downmodulates keratinocyte production of
chemokines and T cell expression of chemokine receptors,
suggesting its immunoregulatory capacity in the epidermal

© 2007 The Authors

86 Journal compilation @ 2007 Blackwell Munksgaard, Experimental Dermatology, 17, 81-90

— 431 —



milieu (11). In our study, RXM significantly suppressed the
production/expression of Th2 chemokines CCL22 and
CCL17 in keratinocytes, but the production of CXCL10
was not affected. The expression level of Th2 chemokine
receptor CCR4 was decreased by RXM, whereas the expres-
sion of Thl chemokine receptor CXCR3 was unchanged.
Thus, the chemokine production and receptor expression
in Th2 cells are preferentially downmodulated by RXM as
compared with those in the Thl cells. The optimal dose of
RXM to suppress CCR4 expression and CCL22/CCL17
production ranges from 1 to 10 uM. As the concentration
of RXM in the skin of individuals orally given 300 mg of
RXM is approximately 13 uM (69), this optimal dose is
considered to be meaningful in clinical settings. It is possi-
ble that RXM blocks the step of signalling common to
these pathways in which NF-«B and other transcriptional
factors are involved (66,74). In the production of CCL17
by HaCaT cells, it has been clarified that RXM suppresses
the production through the inhibition of p38 and NF-xB,
independent of IxB degradation (75).

Although a recent study (21) has suggested that CCL17
and CCL22 are derived mainly from LC, the differentiated
roles of keratinocytes and LC for Thl and Th2 chemokine
production is still controversial. Therefore, the production
of these Th2 chemokines by keratinocytes and their inhibi-
tion by RXM may be still potentially important. RXM inhi-
bition of Th2 chemokine production in LC is an issue to
be clarified in future.

The selective modulation of Th2 cells by RXM is infor-
mative for the clinical usage of this drug. A considerable
number of diseases are known to be caused or mediated by
Th2 cells. AD is a representative disorder, in which circu-
lating and skin-infiltrating Th2 cells play an essential role
in the pathogenesis. Others include subacute prurigo,
eosinophilic pustular folliculitis, Wells’ syndrome and angi-
olymphoid hyperplasia with eosinophilia or Kimura’s dis-
ease. In some of these diseases, good therapeutic responses
to RXM have already been reported or personally experi-
enced. On the other hand, as for psoriasis, the mechanisms
underlying the effectiveness involve improvement of T cell
recruitment (71) and neutrophil activity (73).

" Besides macrolides, nadifloxacin, an antiacne quinolone
antimicrobial agent, is known to inhibit the production of
proinflammatory cytokines by peripheral blood mononu-
clear cells and keratinocytes (76,77). Nadifloxacin sup-
presses the antigen-presenting function of LC for T cells.
The ability of MHC class II" keratinocytes to present a
superantigen to T cells is also suppressed by preincubation
of keratinocytes with nadifloxacin. These functional reduc-
tions in LC and keratinocytes, together with the reduction
in cytokine production by peripheral lymphocytes provide
a possibility for nadifloxacin to inhibit chemokine produc-
tion by keratinocytes.

Epidermal chemokines and modulation by drugs |

Antifungal drugs as a modulator of
keratinocyte chemokine production

While evidence for the role of innate immunity in fungal
infection has been growing, another line of studies has sug-
gested that antimycotic drugs are effective for some of the
inflammatory skin diseases. For example, griseofulvin
improves lichen planus (78), and ketoconazole is beneficial
for AD (79) and seborrheic dermatitis (80). It has been
shown that 0.5% of ketoconazole has a stronger
anti-inflammatory capacity than 1% hydrocortisone (81).
In this action, ketoconazole suppresses the production of
5-hydroxyeicosatetraenoic acid and leukotriene B4 without
affecting cyclooxygenase or 12-lipoxygenase (82). Inversely,
certain immunosuppressive drugs may have antifungal
effects (83).

In human keratinocytes, it has been reported that
ketoconazole and terbinafine hydrochloride suppress TNF-
a-induced CCL27, CCL2 and CCL5 secretion and mRNA
expression (84) as shown in Table 3. However, such
inhibition was not found in HaCaT 17.5 keratinocytes by
northern blot analysis (85).

B-glucans are a constituent of the cell wall of fungi
including dermatophytes and can stimulate keratinocytes to
produce proinflammatory cytokines and chemokines. As
dermatophytes reside in the stratum corneum of the epi-
dermis, it is a scenario in superficial dermatophytosis that
the fungi stimulate keratinocytes to secrete chemokines
attracting inflammatory cells. In this concept, we stimu-
lated cultured keratinocytes with f-glucan or trichophytin
from Trichophyton (T.) rubrum or T. mentagrophytes, and
chemokines and cytokines in the culture supernatants were
quantified. The production of CXCL8 and IL-1a was signif-
icantly enhanced by f-glucan or trichophytin. The increase
of IL-8 was especially remarkable, and CXCL9 or CCL22
was not enhanced. Thus, CXCL8 was the most greatly
enhanced chemokine/cytokine by the fungal elements, as
has been reported previously (86). In this in vitro system,
we added liranaftate, a Japanese representative thiocarba-
mate antifungal agent (87). B-glucan-augmented produc-
tion of CXCL8 was profoundly suppressed by the addition
of liranaftate to the culture in a dose-dependent manner.
Liranaftate also depressed the trichophytin-promoted
CXCL8 production significantly but at a lesser degree.
Although the mechanism underlying the antifungal inhibi-
tion of CXCL8 remains unelucidated, the suppressed pro-
duction of 5-hydroxyeicosatetraenoic acid, leukotriene B4
(82), CCL27, CCL2 and CCL5 (84) as well as CXCLS pro-
vides an implication that antifungals finally can directly or
indirectly inhibit NF-«B.

In dermatophytosis, fungi exist in the horny layer and
cannot invade the lower part of the epidermis. When kerat-
inocytes come in contact with fungi or their elements, a
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strong inflammatory reaction seems to be evoked by the
produced proinflammatory cytokine IL-la and neutrophil
chemoattractant CXCL8. In macrophages, it has been dem-
onstrated that f-glucan is recognized by the Toll-like
receptor (TLR) 2 and dectin-1 (88). It is likely that kerati-
nocytes also recognize B-glucan through certain TLR or
possibly dectin-1, leading to cutaneous inflammation as a
consequence of the innate immune reactions.

In the cases of tinea pedis or tinea corporis, treatment of
the associated inflammation is occasionally necessary for
clinical improvement in addition to antifungal therapies.
Antifungal agents possessing an anti-inflammatory property
may be ideal in the treatment of tinea pedis. Evaluation of
the anti-inflammatory action of antifungal drugs might
provide valuable information. To assess this potential, the
ability of a given agent to inhibit CXCL8 production is
considered useful. CXCL8 is the key chemokine for neu-
trophils. Clinically, the antifungal drugs with CXCLS-
decreasing activity may reduce infiltration of neutrophils in
the skin and their invasion into the epidermis. Such drugs
may improve unpleasant symptoms such as pustules and
erosions in patients with tinea. On the other hand, how-
ever, the recruitment of neutrophils is an important
defense mechanism against infection, and the inhibition of
neutrophil infiltration by antifungals might prolong the
fungal infection. The clinical benefit seems to be expressed
as the sum of these beneficial and adverse effects.

Future perspectives

Drugs generally have various side effects. Provided that the
effects are beneficial, not adverse, they might further
improve conditions. Skin is exposed to internally or exter-
nally given drugs. It is likely that the chemokine produc-
tion by keratinocytes is prone to be modulated by the
given drugs. As keratinocyte-derived chemokines control
the infiltration of T cells and polymorphonuclear leucocytes
involved in the pathogenesis of cutaneous inflammatory
diseases, the chemokine modulation resulting from antihis-
tamines, antibiotics and antifungals is considered to sub-
stantially alleviate disease activity in patients administered
with these drugs. The chemokine modulatory moiety may
provide important information and therefore should be
investigated in drugs used for inflammatory or infectious
skin diseases.
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Abstract. Biotin, a water-soluble vitamin of the B complex, functions as a cofactor
of carboxylases that catalyze indispensable cellular metabolism. It was reported that
the concentrations of biotin were significantly lower in sera of patients with chronic
inflammatory diseases. However, the biological roles of biotin in inflammatory
responses are unclear. In this study, we investigated the effects of biotin-deficiency
on tumor necrosis factor (TNF)-a production in vivo and in vitro. Mice were fed
a basal diet or a biotin-deficient diet for 8 weeks. After intravenous administration
of lipopolysaccharide (LPS), serum TNF-a levels in biotin-deficient mice were
significantly higher than those in biotin-sufficient mice. A murine macrophage-like
cell line, J774.1, was cultured in biotin-sufficient or biotin-deficient medium. Biotin-
deficient J774.1 cells produced TNF-a significantly higher than biotin-sufficient
J774.1 cells in response to LPS and even without LPS stimulation. Moreover, biotin-
supplementation inhibited TNF-a production of biotin-deficient cells. Addition of
cyclic guanosine 5-monophosphate (cGMP) significantly decreased TNF-a pro-
duction of the biotin-deficient cells, indicating that up-regulation of TNF-o produc-
tion was regulated by cGMP-dependent signaling pathways. In conclusion, these
results suggest that biotin is critically involved in inflammatory diseases via the
regulation of TNF-a production in vivo and in vitro.

Key words. biotin, macrophage, TNF-o, cGMP

1 Introduction

Biotin is a water-soluble vitamin of the B complex found in all organisms [1].
Biotin functions as a cofactor of four carboxylases: pyruvate carboxylase, acetyl-
CoA carboxylase, propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carbox-
ylase [1]. These enzymes catalyze the metabolism of glucose, amino acids, and
fatty acids. In addition to this classical function as a cofactor of carboxylases, biotin
is involved in various cellular events. Biotin regulates the mRNA expression of
holocarboxylase synthetase and biotin-dependent carboxylases via cGMP-
dependent pathway [2]. Moreover, some transcription factors, such as Spl, Sp3,
and NF-xB, were regulated by biotin, and the biotinylation of histones in human
cells was also reported [3, 4]. These reports clearly indicate that biotin regulates
the various cellular events at the transcriptional levels.
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Biotin-deficiency causes alopecia and scaly erythematous dermatitis [5]. More-
over, it was reported that serum biotin levels are significantly lower in atopic der-
matitis patients than in healthy subjects [6]. Biotin has a therapeutic effect on
pustulosis palmaris et plantaris, a type of chronic dermatitis which is restricted to
the palms and soles [7]. These reports suggest that biotin-deficiency is involved in
inflammatory diseases. However, few reports are available on the biological roles
of biotin in inflammatory responses.

In this study, we investigate the effects of biotin-deficiency on the production
of TNF-a in vivo and in vitro.

2 Experimental procedures
2.1 Mice

Female BALB/c mice (4 weeks old) received a basal diet (AIN-76) or a biotin-
deficient AIN-76 diet. The Ethical Board for nonhuman species of the Tohoku
University Graduate School of Medicine approved the experimental procedure
followed in this study. Concentrations of biotin in serum were measured with
ELISA [8].

2.2 Measurement of TNF-o

Concentrations of TNF-o were measured with a commercial ELISA kit.

2.3 Cells and cell culture

Murine macrophage-like J774.1 cells were grown in biotin-sufficient or biotin-
deficient medium. The biotin-sufficient medium was RPMI 1640 containing d-
biotin (0.2 mg/pg) supplemented with 10% FCS. The biotin-deficient medium was
biotin free RPMI 1640 supplemented with 10% biotin-deficient FCS. Biotin in FCS
was depleted with immobilized avidin-agarose. J774.1 cells were cultured with
biotin-deficient medium for 4 weeks, and then further incubated in the medium
without biotin (biotin-deficiency) or with biotin (biotin-supplementation) for 2
weeks. J774.1 cells were also cultured in biotin-sufficient medium for 6 weeks
(biotin-sufficiency).

2.4 Data analysis

All of the experiments in this study were performed at least three times to confirm
the reproducibility of the results. The data shown are representative results. Experi-
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mental values are given as the mean + SD of triplicate assays. Statistical analysis
was performed with the unpaired ¢-test or one-way ANOVA using Dunnett’s method,
and P < 0.05 was considered significant.

3 Results

3.1 Augmentation of serum TNF-a levels in biotin-deficient mice
injected with LPS

After 8 weeks of feeding with biotin-sufficient or biotin-deficient diets, the serum
concentrations of biotin in biotin-deficient group were significantly (P < 0.01) lower
than those in biotin-sufficient group. No clinical symptoms were detected in the
biotin-deficient group, and no significant differences of body weights were detected
between biotin-sufficient and biotin-deficient groups. A significant (P < 0.01)
increase of the serum TNF-a level was induced 90 min after i.v. injection of LPS
(2 pg/kg) (Fig. 1). In biotin-deficient group, the concentration of TNF-o. was
significantly (P < 0.05) higher than that in biotin-sufficient group. These results
indicated that biotin-deficiency augments TNF-a production in vivo.

3.2 Augmentation of TNF-a production in biotin-deficient
J774.1 cells

Next, we analyzed TNF-a production by biotin-sufficient and biotin-deficient
J774.1 cells. As shown in Fig. 2, both types of cells were produced TNF-¢ in a
dose-dependent manner with LPS stimulation. The concentration of TNF-a in the
culture supernatants of biotin-deficient cells was significantly (P < 0.01) higher
than that of biotin-sufficient cells even without LPS stimulation. These results
clearly indicated that biotin-deficiency induces the augmentation of TNF-o produc-
tion in vitro.
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Fig. 1. Serum level of TNF-o in biotin-sufficient and biotin-deficient mice. Biotin-sufficient and
biotin-deficient mice were challenged i.v. with LPS (2 pg/kg) or saline alone, and blood was taken
at 90 min after injection. The results were expressed as mean + SD for four mice. ND, Not
detected. **, P < 0.01, compared with saline. #, P < 0.05, compared with biotin-sufficiency
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