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of the correlation coefficient between the variables is needed,
and therefore, GGM can be easily applied to a wide variety
of data. However, straightforward applications of statistical
theory to practical data fail in some cases, and GGM also
fails frequently when applied to gene expression profiles; here
the expression profile indicates a set of the expression de-
grees of one gene, measured under various conditions. This
is because the profiles often share similar expression pat-
terns, which indicate that the correlation coefficient matrix
between the genes is not regular. Thus, we have devised a pro-
cedure, named ASIAN (automatic system for inferring a net-
work), to apply GGM to gene expression profiles, by a combi-
nation of hierarchical clustering {14}. First, the large number
of profiles is grouped into clusters, according to the standard
approach of profile analysis [15]. To avoid the generation
of a nonregular correlation coefficient matrix from the ex-
pression profiles, we adopted a stopping rule for hierarchical
clustering [10]. Then, the relationship between the clusters is
inferred by GGM. Thus, our method generates a framework
of gene regulatory relationships by inferring the relationships
between the clusters {11, 16], and provides clues toward es-
timating the global relationships between genes on a large
scale.

Methods for extracting biological knowledge from large
amounts of literature and arranging it in terms of gene
function have been developed. Indeed, ontologies have been
made available by the gene ontology (GO) consortium [17]
to construct a functional categorization of genes and gene
products, and by using the GO terms, the software deter-
mines whether any GO terms annotate a specified list of
genes at a frequency greater than that expected by chance
[18]. Furthermore, various software applications, most of
which are commercial software, such as MetaCore from
GeneGo http://www.genego.com/, have been developed for
the navigation and analysis of biological pathways, gene reg-
ulation networks, and protein interaction maps [19]. Thus,
advances in the processing of biological knowledge have
enabled us to correspond to the results of gene expres-
sion analyses for a large amount of data with the biological
functions.

In this study, we analyzed the gene expression profiles
from the CHC and HCC cell stages, by ASIAN based on the
graphical Gaussian Model, to reveal the framework of gene
group associations in hepatocellular carcinogenesis. For this
purpose, first, the genes characteristically expressed in hep-
atocellular carcinogenesis were selected, and then, the pro-
files of the genes thus selected were subjected to the associ-
ation inference method. In addition to the association in-
ference, which was presented by the network between the
clusters, the network was further interpreted systematically
by the biological knowledge of the gene interactions and by
the functional categories with GO terms. The combination
of the statistical network inference from the profiles with the
systematic network interpretation by the biological knowl-
edge in the literature provides a snapshot of the orchestration
of gene systems in hepatocellular carcinogenesis, especially
for bridging the gap between the information on the disease
mechanisms at the molecular level and at more macroscopic
levels.
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2. MATERIALS AND METHODS

2.1. Geneselection

We selected the up- and downregulated genes characteristi-
cally expressed in the CHC and HCC stages, as a prerequi-
site for defining the variables in the network inference by
the graphical Gaussian modeling. This involved the follow-
ing steps. (1) The averages and the standard deviations in the
respective conditions, AV; and SDj, for j = 1,..., N, are cal-
culated. (2) The expression degree of the ith gene in the jth
condition, e;;, is compared with |AV; + SDj|. (3) The gene
is regarded as a characteristically expressed gene, if the num-
ber of conditions that e;; > |AV; + SD;| is more than N./2.
Although the criterion for a characteristically expressed gene
is usually |AV; + 2SD;|, the present selection procedure de-
scribed above is simply designed to gather as many charac-
teristically expressed genes as possible, and is suitable to cap-
ture a macroscopic relationship between the gene systems es-
timated by the following cluster analysis.

2,2, Genesystems network inference

The present analysis is composed of three parts: first, the pro-
files selected in the preceding section are subjected to the
clustering analysis with the automatic determination of clus-
ter number, and then the profiles of clusters are subjected
to the graphical Gaussian modeling. Finally, the network in-
ferred by GGM is rearranged according to the magnitude of
partial correlation coefficients, which can be regarded as the
agsociation strength, between the clusters. The details of the
analysis are as follows.

2.2.1.  Clustering with automatic determination

of cluster number

In clustering the gene profiles, here, the Euclidian distance
between Pearson’s correlation coefficients of profiles and
the unweighted pair group method using arithmetic aver-
age (UPGMA or group average method) were adopted as the
metric and the technique, respectively, with reference to the
previous analyses by GGM [11, 16]. In particular, the present
metric between the two genes is designed to reflect the simi-
larity in the expression profile patterns between other genes
as well as between the measured conditions, that is,
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where # is the total number of the genes, and r;; is the Pear-
son correlation coefficient between the i and j genes of the
expression profiles that are measured at N, conditions, py,
(k=1,2,...,N.):
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In the cluster number estimation, various stopping rules
for the hierarchical clustering have been developed [20]. Re-
cently, we have developed a method for estimating the clus-
ter number in the hierarchical clustering, by considering the
following application of the graphical model to the clusters
{10]. In our approach, the variance inflation factor (VIF) is
adopted as a stopping rule, and is defined by
(3)
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where r;! is the ith diagonal element of the inverse of the
correlation coefficient matrix between explanatory variables
[21]. In the cluster number determination, the popular cutoff
value of 10.0 [21] was adopted as a threshold in the present
analysis, also with reference to the previous analyses.

After the cluster number determination, the average ex-
pression profiles are calculated for the members of each clus-
ter, and then the average correlation coefficient matrix be-
tween the clusters is calculated from them. Finally, the av-
erage correlation coefficient matrix between the clusters is
subjected to the graphical Gaussian modeling. Note that the
average coefficient correlation matrix avoids the difficulty
of the above numerical calculation, due to the distinctive
patterns of the average expression profiles of clusters. This
means that the GGM works well for the average coefficient
correlation matrix.

2.2.2. Graphical Gaussian modeling

The concept of conditional independence is fundamental to
graphical Gaussian modeling (GGM). The conditional inde-
pendence structure of the data is characterized by a condi-
tional independence graph. In this graph, each variable is
represented by a vertex, and two vertices are connected by
an edge if there is a direct association between them. In con-
trast, a pair of vertices that are not connected in the graph is
conditionally independent.

In the procedure for applying the GGM to the profile data
[11], a graph, G = (V,E), is used to represent the relation-
ship among the M clusters, where V is a finite set of nodes,
each corresponding to one of the M clusters, and E is a fi-
nite set of edges between the nodes. E consists of the edges
between cluster pairs that are conditionally dependent. The
conditional independence is estimated by the partial correla-
tion coefficient, expressed by
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where rjjrest is the partial correlation coefficient between
variables i and j, given the rest variables, and r;; is the (i, §)
element in the reverse of the correlation coefficient matrix.

In order to evaluate which pair of clusters is condition-
ally independent, we applied the covariance selection [22],
which was attained by the stepwise and iterative algorithm
developed by Wermuth and Scheidt [23]. The algorithm is
presented as Algorithm 1.

The graph obtained by the above procedure is an undi-
rected graph, which is called an independence graph. The in-
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Step 1. Prepare a complete graph of G(0) = (V, E). The nodes
correspond to M clusters. All of the nodes are connected. G(0)
is called a full model. Based on the expression profile data, con-
struct an initial correlation coefficient matrix C(0).

Step 2. Calculate the partial correlation coefficient matrix
P(7) from the correlation coefficient matrix C(7). 7 indicates
the number of the iteration.

Step 3. Find an element that has the smallest absolute value
among all of the nonzero elements of P(r). Then, replace the
element in P(71) with zero.

Step 4. Reconstruct the correlation coefficient matrix, C(t +
1), from P(7). In C(7 + 1), the element corresponding to the
element set to zero in P(t) is revised, while all of the other
elements are left to be the same as those in C(71).

Step 5. In the Wermuth and Sheidt algorithm, the termination
of the iteration is judged by the “deviance” values. Here, we
used two types of deviance, devl and dev2, with the following:

B |C(z +1)|
devl = N, log <__| O] ), -
dev2 = N, log (lcl(CT(—:)ll)l)

Calculate devl and dev2. The two deviances follow an asymp-
totic x? distribution with a degree of freedom = n, and that
with a degree of freedom = 1, respectively. n is the number of
elements that are set to zero until the (7 + 1)th iteration. In our
approach, n is equal to (7 + 1). |C(7)| indicates the determi-
nant of C(7). N, is the number of different conditions under
which the expression levels of M clusters are measured.

Step 6. 1f the probability value corresponding to devl < 0.05,
or the probability value corresponding to dev2 < 0.05, then
the model C(7 + 1) is rejected, and the iteration is stopped.
Otherwise, the edge between a pair of clusters with a partial
correlation coefficient set to zero in P(7) is omitted from G(71)
to generate G(1 + 1), and 71 is increased by 1. Then, go to
Step 1.

ALGORITHM 1

dependence graph represents which pair of clusters is con-
ditionally independent. That is, when the partial correlation
coefficient for a cluster pair is equal to 0, the cluster pair is
conditionally independent, and the relationship is expressed
as no edge between the nodes corresponding to the clusters
in the independence graph.

The genes grouped into each cluster are expected to share
similar biological functions, in addition to the regulatory
mechanism [24]. Thus, a network between the clusters can
be approximately regarded as a network between gene sys-
tems, each with similar functions, from a macroscopic view-
point. Note that the number of connections in one vertex is
not limited, while it is only one in the cluster analysis. This
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feature of the network reflects the multiple relationships of a
gene or a gene group in terms of the biological function.

2.2.3. Rearrangement of the inferred network

When there are many edges, drawing them all on one graph
produces a mess or “spaghetti” pattern, which would be dif-
ficult to read. Indeed, in some examples of the application
of GGM to actual profiles, the intact networks by GGM still
showed complicated forms with many edges [11, 16]. Since
the magnitude of the partial correlation coefficient indicates
the strength of the association between clusters, the intact
network can be rearranged according to the partial corre-
lation coefficient value, to interpret the association between
clusters. The strength of the association can be assigned by
a standard test for the partial correlation coefficient [25]. By
Fisher’s Z transformation of partial correlation coefficients,

that is,
/- b2,

Z is approximately distributed according to the following
normal distribution:
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where N, and M are the number of conditions and the num-
ber of clusters, respectively. Thus, we can statistically test the
observed correlation coefficients under the null hypothesis
with a significance probability.
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2,3. Statistical significance of the inferred network
with the biological knowledge

The inferred network can be statistically evaluated in terms
of the gene-gene interactions. The chance probability was es-
timated by the correspondence between the inferred cluster
network and the information about gene interactions. The
following steps were used. (1) The known gene pairs with
interactions in the database were overlaid onto the inferred
network. (2) The number of custer pairs, upon which the
gene interactions were overlaid, was counted. (3) The chance
probability, in which the cluster pairs connected by the estab-
lished edges in the network were found in all possible pairs,
was calculated by using the following equation:
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where N is the number of possible cluster pairs in the net-
work, # is the number of cluster pairs with edges in the in-
ferred network, f is the number of cluster pairs with edges
in the inferred network, including the known gene pairs with

interactions, and g is the number of cluster pairs, including
the known gene pairs with interactions.
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2.4. Evaluation of the inferred network in terms of
the biological knowledge

The inferred network can be evaluated in terms of the bi-
ological knowledge. For this purpose, we characterize the
clusters by GO terms, and overlay the knowledge about
the gene interactions onto the network. For this purpose,
we first use GO:TermFinder [18] to characterize the clus-
ters by GO terms with the user-defined significance prob-
ability (http://search.cpan.org/dist/GO-TermFinder). Then,
Pathway Studio [19] is used to survey the biological informa-
tion about the gene interactions between the selected genes.

2.5. Software

All calculations of the present clustering and GGM were per-
formed by the ASIAN web site [26, 27] (http://www.eureka.
cbrejp/asian) and “Auto Net Finder,” the commercialized
PC version of ASIAN, from INFOCOM CORPORATION,
Tokyo, Japan (http://www.infocom.co.jp/bio/download).

2.6. Expression profile data

The expression profiles of 8516 genes were monitored in 27
CHC samples and 17 HCC samples [28].

3. RESULTS AND DISCUSSION

3.1. Clustering

Among the 8516 genes with expression profiles that were
measured in the previous studies [28], 661 genes were se-
lected as those characteristically expressed in the CHC and
HCC stages. As a preprocessing step for the association in-
ference, the genes thus selected were automatically divided
into 18 groups by ASIAN (26, 27]. Furthermore, each cluster
was characterized in terms of the GO terms, which define the
macroscopic features of the cluster in terms of the biological
function.

Figure 1 shows the dendrogram of clusters, together with
their expression patterns. As seen in Figure 1, the genes were
grouped into 18 clusters, in terms of the number of mem-
bers and the expression patterns in the clusters. The average
number of cluster members was 36.7 genes (SD, 14.2), and
the maximum and minimum numbers of members were 69
in cluster 14 and 18 in cluster 9, respectively. As for the ex-
pression pattern, five clusters (10, 12, 14, 15, and 18) and
ten clusters (1-7, 9, 16, and 17) were composed of up- and
downregulated genes, respectively, and three clusters (8, 11,
and 13) showed similar mixtures of up- and downregulated
genes,

Table 1 shows the GO terms for the clusters (clus-
terGOB), which characterized them well (see details at
http://www.cbrc.jp/ ~horimoto/HCGO.pdf). Among the 661
genes analyzed in this study, 525 genes were characterized by
the GO terms, and among the 18 clusters, 11 clusters were
characterized by GO terms with P < .05. In addition, 188
genes (28.3% of all characterized genes) corresponded to the
GO terms listed in Table 1. As seen in the table, although
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most clusters are characterized by several GO terms, reflect-
ing the fact that the genes function generally in multiple
pathways, the clusters are not composed of a mixture of genes
with distinctive functions. For example, cluster 2 is charac-
terized by 10 terms, and most of the terms are related to
the energy metabolism. Thus, the GO terms in the respective
clusters share similar features of biological functions, which
cause the hierarchical structure of the GO term definitions.

In Table 1, most of the clusters characterized by GO
terms with P < .05 are related to response function and to
metabolism. Clusters 1, 6, 8, 12, and 13 are characterized by
GO terms related to different responses, and clusters 2, 3, 4,
and 7 are characterized by GO terms related to different as-
pects of metabolism. Although the genes in two clusters, 14
and 16, did not adhere to this dichotomy, the genes charac-
teristically expressed in HCC in the above nine clusters were
related to the responses and the metabolic pathways. As for
the remaining clusters with lower significance, three clusters
(9, 10, and 11) were also characterized by response functions,
and four clusters (5, 15, 17, and 18) were related to morpho-
logical events at the cellular level. Note that none of the clus-
ters characterized by cellular level events attained the signifi-
cance level. This may be because the genes related to cellular
level events represent only a small fraction of genes relative
to all genes with known functions, in comparison with the
genes related to molecular level events in the definition of
GO terms.

It is interesting to determine the correspondence between
the up- and downregulated genes and the GO terms in the
clusters. In the five clusters of upregulated genes, clusters 10
and 12 were characterized by different responses, and two
clusters were characterized by morphological events, which
were the categories of “cell proliferation” in cluster 15 and of
“development” in cluster 18. The remaining cluster, 14, was
characterized by regulation, development, and metabolism.
As for the clusters of downregulated genes, four of the ten
clusters were characterized by GO terms related to various
aspects of metabolism. In the remaining six clusters, three
clusters were characterized by GO terms related to responses,
two clusters were characterized by morphological events, and
one cluster was characterized by mixed categories.

In summary, the present gene selection and the follow-
ing automatic clustering produced a macroscopic view of
gene expression in hepatocellular carcinogenesis. Although
the clusters contain many genes that do not always share the
same functions, the clusters were characterized by their re-
sponses, morphological events, and metabolic aspects from
a macroscopic viewpoint. The clusters of upregulated genes
were characterized by the former two categories, and those
of the downregulated genes represented all three categories.
Thus, the present clustering serves to interpret the network
between the clusters in terms of the biological function and
the gene expression pattern.

3.2. Known gene interactions in the inferred network

The association between the 18 clusters inferred by GGM is
shown in Figure 2. In the intact network by ASIAN, 96 of 153
possible edges between 18 clusters (about 63%) were estab-
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FIGURE 1: Dendrogram of genes and profiles. The dendrogram was
constructed by hierarchical clustering with the metric of the Euclid-
ian distances between the correlation coefficients and the UPGMA.
The blue line on the dendrogram indicates the cluster boundary es-
timated automatically by ASIAN. The gene expression patterns of
the respective clusters in the CHC and HCC stages are shown by
the degree of intensity: the red and green colors indicate relatively
higher and lower intensities. The cluster number and the number of
member genes in each cluster (in parentheses) are denoted on the
right side of the figure.

lished by GGM. Since the intact network is still messy, the
network was rearranged to interpret its biological meaning
by extracting the relatively strong associations between the
clusters, according to the procedure in Section 2.2.3. After
the rearrangement, 34 edges remained by the statistical test
of the partial correlation coefficients with 5% significance.
In the rearranged network, all of the clusters were nested,
but each cluster was connected to a few other clusters. In-
deed, the average number of edges per cluster was 2.3, and
the maximum and minimum numbers of edges were seven
in cluster 15 and one in cluster 9, respectively. In particular,
the numbers of edges are not proportional to the numbers
of constituent genes in each cluster. For example, while the
numbers of genes in clusters 15and 17 are equal to each other
(24 genes), the number of edges from cluster 15 (2 edges) dif-
fers from that from cluster 17 (5 edges). Thus, the number of
edges does not depend on the number of genes belonging to
the cluster, but rather on the gene associations between the
cluster pairs.
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To test the validity of the inferred network in terms of
biological function, the biological knowledge about the gene
interactions is overlaid onto the inferred network. For this
purpose, all of the gene pairs belonging to cluster pairs are
surveyed by Pathway Assist, which is a database for bio-
logical knowledge about molecular interactions, compiled

based on the gene ontology [17]. Among the 661 genes an-

alyzed in this study, the interactions between 90 gene pairs
were detected by Pathway Assist, and 50 of these pairs were
found in Figure 2. Notice that the number of gene pairs re-
ported in the literature does not directly reflect the impor-
tance of the gene interactions, and instead is highly depen-
dent on the number of scientists who are studying at the cor-
responding genes. Thus, we counted the numbers of clus-
ter pairs in which at least one gene pair was known, by
projecting the gene pairs with known interactions onto the
network. By this projection, the interactions were found in
35 (g in the equation of Section 2.3) cluster pairs among
153 (N) possible pairs (see details of the gene pair projection
at http://www.cbrc jp/ ~horimoto/GPPN.pdf). Then, 19 (f)
of the 35 cluster pairs were overlapped with 34 (n) cluster
pairs in the rearranged network. The chance probability that
aknown interaction was found in the connected cluster pairs
in the rearranged network was calculated as P < 10~*3, Thus,
the rearranged network faithfully captures the known inter-
actions between the constituent genes.

Furthermore, the genes with known interactions were
corresponded to the genes responsible for the GO terms of
each cluster, as shown in Table 1. The genes responsible for
the GO terms were distributed over all cluster pairs, includ-
ing gene pairs with known interactions, except for only two
pairs, clusters 15 and 17, and 15 and 18. Thus, the network
can be interpreted not only by the known gene interactions
but also by the GO terms characterizing the clusters.

3.3. Genesystems network characterized by GO terms

3.3.1. Coarse associations between the clusters

To elucidate the associations between the clusters, the clus-
ter associations with 1% significance probability were further
discriminated from those with 5% probability. This gener-
ated four groups of clusters, shown in Figure 3(a).

First, we will focus on the groups including the clus-
ters that were characterized by GO terms with a signifi-
cance probability, and that were definitely occupied by up-
or downregulated genes (clusters depicted by triangles with
bold lines in the figure). Groups I and III attained the above
criteria. In group I, the clusters were a mixture of the clusters
of the up- and downregulated genes. Note that three of the
six clusters were composed of upregulated genes, which were
characterized by responses (cluster 12), mixed categories
(cluster 14), and morphological events (cluster 15). In group
I11, all three clusters were of downregulated genes. One clus-
ter was characterized by responses, and two were character-
ized by amino-acid-related metabolism. In contrast, groups
IT and IV were composed of the clusters that were somewhat
inadequately characterized by GO terms and expression pat-
terns. Thus, groups I and I1I provide the characteristic fea-
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tures about the orchestration of gene expression in hepato-
cellular carcinogenesis.

Secondly, a coarse grinning for group associations pro-
vides another viewpoint, shown in Figure 3(b). When the
groups with at least one edge between the clusters in the re-
spective groups were presented, regardless of the number of
edges, groups I, 1I, and IV were nested, and group III was
connected with only group I. In the second view, group I,
which includes three of the five dusters of upregulated genes
in all clusters, was associated with all of the other groups.
This suggests that group I represents a positive part of the
gene expression in hepatocellular carcinogenesis, which is
consistent with the interpretation by the first view, from the
significant GO terms and the clear expression patterns. Inter-
estingly, among the clusters characterized by morphological
events (clusters 5, 15, 17, and 18), three of the four clusters
were distributed over groups I, I, and IV, and the distribu-
tion was consistent withthe nested groups. This suggests that
the upregulated genes of the clusters in group I are responsi-
ble for the events at the cellular level.

Thirdly, the clusters not belonging to the four groups
were clusters 1, 3, and 5. Clusters 1, 3, and 5 were directly
connected with groups I, III, and IV, groups I and 1III, and
group IV, respectively. Interestingly, cluster 1, characterized
by only “anti-inflammatory response,” was connected with
five clusters belonging to three groups, in which four clus-
ters were downregulated clusters. Although cluster 5 was not
clearly characterized by the GO terms, cluster 3 was charac-
terized by metabolic terms that were quite similar to those
for cluster 2, a downregulated cluster. Thus, the three clus-
ters may be concerned with downregulation in hepatocellu-
lar carcinogenesis.

3.3.2. Interpretations of the inferred network

in terms of pathogenesis

The coarse associations between the clusters in the preceding
section can be interpreted on the macroscopic level, such as
the pathological level. The interpretation of the network in-
ferred based on the information at the molecular level will be
useful to bridge the gap between the information about the
disease mechanisms at the molecular and more macroscopic
levels.

One of the most remarkable associations is found in
group L. Cluster 12, with upregulation, was associated at a
1% significance level with cluster 2, with downregulation.
The former cluster is characterized by the GO terms related
to the immune response, and the latter is characterized by
those involved with metabolism. In general, CHC and HCC
result in serious damage to hepatocytes, which are important
cells for nutrient metabolism, and the damage induces dif-
ferent responses. Indeed, HCC is a suitable target for testing
active immunotherapy [29]. Furthermore, cluster 2 was also
associated at a 1% significance level with cluster 14, char-
acterized by prostaglandin-related terms. This may reflect
the fact that one mediator of inflammation, prostaglandin,
shows elevated expression in human and animal HCCs [30].
Thus, the associations in group I are involved in the molecu-
lar pathogenesis of the CHC and HCC stages.



Sachiyo Aburatani et al.

TasLe 1: Cluster characterization by GO terms®.

Cluster no. GO no. Category P-value Fraction
1 G0:0030236 Anti-inflammatory response 0.18% 2 0f 22/6 of 26081
2 GO:0006094 Gluconeogenesis 0.06% 3 0of 37/19 of 26081
2 GO:0006066 Alcohol metabolism 0.12% 6 of 37/312 of 26081
2 GO:0006091 Generation of precursor metabolites and energy 0.14% 9 0f 37/961 of 26081
2 GO:0019319 Hexose biosynthesis 0.34% 3 0f 37/33 of 26081
2 GO:0046165 Alcohol biosynthesis 0.34% 3 of 37/33 of 26081
2 GO:0046364 Monosaccharide biosynthesis 0.34% 3 of 37/33 of 26081
2 GO:0006067 Ethanol metabolism 0.48% 2 0f 37/5 of 26081
2 GO:0006069 Ethanol oxidation 0.48% 2 of 37/5 of 26081
2 GO:0006629 Lipid metabolism 1.47% 7 0f 37/722 of 26081
2 GO:0009618 Response to pathogenic bacteria 4.96% 2 0f 37/15 of 26081
3 GO:0006094 Gluconeogenesis 0.61% 2 of 15/19 of 26081
3 GO:0019319 Hexose biosynthesis 1.87% 20f15/33 of 26081
3 GO:0046165 Alcohol biosynthesis 1.87% 2 0f 15/33 of 26081
3 GO:0046364 Monosaccharide biosynthesis 1.87% 2 of 15/33 of 26081
3 GO:0009069 Serine family amino acid metabolism 4.49% 2 of 15/51 of 26081
4 GO:0006725 Aromatic compound metabolism 0.07% 4 0f 20/140 of 26081
4 GO:0009308 Amine metabolism 0.38% 5 of 20/454 of 26081
4 GO:0006570 Tyrosine metabolism 0.59% 20f20/11 of 26081
4 GO:0050878 Regulation of body fluids 1.65% 3 0f20/113 of 26081
4 GO:0006950 Response to stress 2.70% 6 of 20/1116 of 26081
4 GO:0006519 Amino acid and derivative metabolism 4.12% 4 0f 20/398 of 26081
4 G0:0007582 Physiological process 4.63% 20 of 20/17195 of 26081
5 GO:0006917 Induction of apoptosis* 16.06% 2 0f 13/132 of 26081
5 G0:0012502 Induction of programmed cell death* 16.06% 2 of 13/132 of 26081
6 GO:0009613 Response to pest, pathogen, or parasite 0.00% 8 0f 29/522 of 26081
6 GO:0043207 Response to external biotic stimulus 0.00% 8 of 29/557 of 26081
6 GO:0006950 Response to stress 0.00% 10 0of 29/1116 of 26081
6 GO:0009605 Response to external stimulus 0.05% 10 of 29/1488 of 26081
6 GO:0006953 Acute-phase response 0.05% 3 0f 29/25 of 26081
6 GO:0006955 Immune response 0.34% 8 of 29/1098 of 26081
6 GO:0006956 Complement activation 0.48% 3 of 29/52 of 26081
6 GO:0006952 Defense response 0.68% 8 of 29/1209 of 26081
6 GO:0050896 Response to stimulus 1.15% 11 0f 29/2619 of 26081
6 G0:0009607 Response to biotic stimulus 1.65% 8 of 29/1372 0f 26081
6 GO:0006629 Lipid metabolism 2.20% 6 0f 29/722 of 26081
7 GO:0006559 L-phenylalanine catabolism 0.83% 2 0f 31/9 of 26081
7 GO:0019752 Carboxylic acid metabolism 1.00% 6 of 31/590 of 26081
7 GO:0006082 Organic acid metabolism 1.02% 6 of 31/592 of 26081
7 GO:0006558 L-phenylalanine metabolism 1.26% 20f31/11 of 26081
7 GO:0009074 Aromatic amino acid family catabolism 1.26% 2 0f31/11 0of 26081
7 GO:0006519 Amino acid and derivative metabolism 1.67% 5 0f31/398 of 26081
7 G0:0019439 Aromatic compound catabolism 1.79% 2 0f31/13 of 26081
7 GO:0006629 Lipid metabolism 3.04% 6 0f31/722 of 26081
7 GO:0009308 Amine metabolism 3.09% 5 of 31/454 of 26081
8 GO:0001570 Vasculogenesis 0.09% 2 0f 21/4 of 26081
8 GO:0006950 Response to stress 0.42% 7 0f 21/1116 of 26081
8 GO:0050896 Response to stimulus 2.33% 9 0f 21/2619 of 26081
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TasLE 1: Continued.
9 GO:0009611 Response to wounding* 11.19% 3 of 13/394 of 26081
10 GO:0009607 Response to biotic stimulus* 6.66% 6 of 19/1372 of 26081
11 GO:0050896 Response to stimulus* 72.68% 6 of 17/2619 of 26081
12 GO:0006955 Immune response 0.01% 8 of 18/1098 of 26081
12 GO:0006952 Defense response 0.01% 8 of 18/1209 of 26081
12 GO:0050874 Organismal physiological process 0.02% 10 of 18/2432 of 26081
12 GO:0009607 Response to biotic stimulus 0.03% 8 0f 18/1372 0f 26081
12 GO:0050896 Response to stimulus 0.39% 9 of 18/2619 of 26081
12 GO:0030333 Antigen processing 0.97% 3 0f 18/108 of 26081
12 GO:0019882 Antigen presentation 2.62% 3 0f 18/151 of 26081
12 GO:0019884 Antigen presentation, exogenous antigen 3.97% 2 of 18/32 of 26081
12 GO:0019886 Antigen processing, exogenous antigen via MHC class 11 4.22% 2 0f 18/33 of 26081
13 G0O:0009611 Response to wounding 0.08% 6 of 30/394 of 26081
13 GO:0009613 Response to pest, pathogen, or parasite 0.38% 6 of 30/522 of 26081
13 GO:0043207 Response to external biotic stimulus 0.55% 6 of 30/557 of 26081
13 GO:0006955 Immune response 3.12% 7 of 30/1098 of 26081
13 GO:0006950 Response to stress 3.44% 7 of 30/1116 of 26081
13 GO:0050874 Organismal physiological process 3.98% 10 of 30/2432 of 26081
14 GO:0051244 Regulation of cellular physiological process 0.51% 8 of 45/665 of 26081
14 GO:0007275 Development 0.94% 13 of 45/2060 of 26081
14 GO:0001516 Prostaglandin biosynthesis 3.30% 2 of 45/9 of 26081
14 GO:0046457 Prostanoid biosynthesis 3.30% 2 0f 45/9 of 26081
14 GO:0051242 Positive regulation of cellular physiological process 4.35% 5 of 45/289 of 26081
15 GO:0008283 Cell proliferation™ 29.37% 4 of 26/488 of 26081
16 GO:0042221 Response to chemical substance 0.16% 50f 31/237 of 26081
16 GO:0008152 Metabolism 1.29% 250f31/11891 of 26081
16 GO:0009628 Response to abiotic stimulus 1.89% 5 of 31/400 of 26081
16 GO:0006445 Regulation of translation 2.82% 3 0f 31/87 of 26081
17 GO:0050817 Coagulation* 13.92% 2 of 12/118 of 26081
18 GO:0007275 Development* 11.67% 6 of 16/2060 of 26081

* The gene ontology terms in each cluster, detected with 5% significance probability by using GO::TermFinder {18], are listed. When the terms with that
significance probability were not found in the cluster, the terms with the smallest probability were listed as indicated by an asterisk. In the last column, “Frac-
tion,” the numbers of genes belonging to the corresponding category in the cluster, of genes belonging to the cluster, of genes belonging to the corresponding

category in all genes of the GO term data set, and of all genes are listed.

The associated clusters 4 and 7 in group III, which were
characterized by GO terms related to amino acid and lipid
metabolism, also show downregulation. Indeed, the prod-
ucts of dysregulated (aberrant regulation) metabolism are
widely used to examine liver function in common clinical
tests {8]. In addition, the connection between the clusters
in groups 11T and I implies that the downregulation of the
clusters in group IIT may be related to abnormal hepatocyte
function.

In addition, cluster 15 in group L, which is characterized
by the GO term “proliferation,” was associated with differ-
ent clusters in groups I, II, and IV. It is known that abnormal
proliferation is one of the obvious features of cancer [31].
This broad association may be responsible for the cellular
level events in hepatocellular carcinogenesis.

N
S

In summary, the inferred network reveals a coarse snap-
shot of the gene systems related to the molecular pathogene-
sis and clinical characteristics of hepatocellular carcinogene-
sis. Although the resolution of the network is still low, due to
the cluster network, the present network may provide some
clues for further investigations of the pathogenic relation-
ships involved in hepatocellular carcinoma.

3.3.3. Interpretations of the inferred network in terms of

gene-gene interactions

In addition to the macroscopic interpretations above, the
gene functionality from the gene-gene interactions listed
in Figure2 is also discussed in the context of hepato-
cellular carcinoma. Although the consideration of gene-
gene interactions is beyond the aim of the present study,
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FIGURE 2: Network between clusters, together with a projection of biological knowledge about the gene interactions. The clusters are indicated by
triangles and circles, in which the cluster numbers correspond to those in Figure 1, and the edges between the clusters are associations with
5% significance probability. The red triangles, the green upside-down triangles, and the circles indicate the clusters of up- and downregulated
genes, and the mixture of them, respectively, and the dotted triangles indicate the clusters that were not characterized by GO terms with less
than 5% significance probability. The known gene interactions in Pathway Assist are indicated between the clusters, in which the genes

highlighted by bold letters are characterized by the GO terms in Table 1.

some examples may provide possible clues about the disease
mechanisms.

First, we surveyed the frequencies of GO terms (gene-
GOB listed in the supplemental data at http://www.cbrc
Jp/~horimoto/suppl/HCGO.pdf) in the selected genes
in the present analysis, to investigate the features of
gene-gene interactions in the inferred network. A few
general terms appeared frequently, such as “response” (122
times in the geneGOB column of the supplemental data
at  http://www.cbrc.jp/~horimoto/suppl/HCGO.pdf) and
“metabolism” (183), as expected from the coarse associations
between the clusters in the preceding section. As for more
specific terms about the gene function, “lipid” (46), “apopto-
sis” (31), and “cell growth” (27) are remarkably found in the
list. The “lipid” is expected from the relationship between
groups I and III, and the “apoptosis” and the “cell growth”
are also expected from the frequent appearance of GO terms
(clusterGOB listed in Table 1) related to the morphological
events. Since the frequent appearance of “lipid” may be a
sensitive reflection of the protein-protein interactions in
lipid metabolic pathways to the expression profiles, here,
we focus on the gene-gene interactions characterized by the
“apoptosis” and the “cell growth.”

Among the gene-gene interactions listed in Figure 2, the
gene-gene interactions characterized by the cell growth or
death are found in the coarse associations between the clus-

NS

ters. Group I contains the gene-gene interactions related to
apoptosis. The expression of HTAIP2 (HIV-1 Tat interactive
protein 2, 30kd) in cluster 14 induces the expression of a
number of genes, including NME2 (nonmetastatic cells 2,
protein) in cluster 15 as well as the apoptosis-related genes
Bad and Siva [32]. MAGEDI (melanoma antigen, family
D, 1) in cluster 13, and its binding partner BIRC4 (bac-
uloviral AP repeat-containing 4) in cluster 14 are known
to play some roles in apoptosis [33]. In addition, the ex-
pression of COL1A2 (collagen, type I, alpha 2) in clus-
ter 12, which is related to cell adhesion and skeletal devel-
opment, is regulated by RFX5 (regulatory factor X, 5) in
cluster 14 [29, 34]. In group IV, the expression of CSF2
(colony-stimulating factor 2) in cluster 8 is dependent on
the cooperation between NFAT (nuclear factor of activated
T cells) and JUN (Jun oncogene) in cluster 10 [35]. Be-
tween groups I and II, ASCLI (achaete-scute complex-like
1) in cluster 13 and BMP4 (bone morphogenetic protein
4) in cluster 18 share the function of cell differentiation
[36].

As a result, the gene-gene interactions listed above are re-
lated to the mechanisms of cell growth or death at the molec-
ular level. On the other hand, the cluster associations reveal
the relationship between the cancer-induced events and var-
ious aspects of metabolisms at the pathogenesis and clinical
characteristics. Thus, the metabolic pathways might directly
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Group II

Group IV
(a)

0
@@'@

(b)

FiGuRre 3: Orchestration of gene systems. (a) The association with
1% significance probability is indicated by a bold line, and the clus-
ters with 1% significance association are naturally divided into four
groups, which are enclosed by broken lines. (b) The connections
between the groups are drawn schematically, as a coarse grinning of
the cluster association.

influence the mechanisms of cancer-induced cell growth or
death at the molecular level in unknown ways.

3.4. Merits and pitfalls of the present approach

The present analysis reveals a framework of gene system as-
sociations in hepatocellular carcinogenesis. The inferred net-
work provides a bridge between the events at the molec-
ular level and those at macroscopic levels: the associations
between clusters characterized by cancer-related responses
and those characterized by metabolic and morphological
events can be interpreted from pathological and clinical
views. In addition, the viewpoint of the gene-gene interac-
tions in the inferred network indicates the relationship be-
tween cancer and cell growth/death. Thus, the gene systems
network may also be useful as a bridge between the gene-gene
interactions and the observations at macroscopic levels, such
as clinical tests.

The present method assumes linearity in the cluster asso-
ciations by using a partial correlation coefficient to identify
the independence between clusters. It is well known that the
interactions among genes and other molecular components
are often nonlinear, and the assumption of linearity misses
many important relationships among genes. In the present

DN
(@3}

study, our aim was not the inference of detailed gene-gene
interactions, but of coarse gene system interactions. Indeed,
the use of a partial correlation coefficient is employed as a
feasible approach for gene association inference as a first ap-
proximation in some studies [37, 38]. Thus, the assumption
of the linearity is not suitable for a fine analysis of dynamic
gene behaviors, but may be useful for the approximate anal-
ysis of static gene associations.

ACKNOWLEDGMENTS

S. Aburatani was supported by a Grant-in-Aid for Scientific
Research (Grant 18681031) from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan, and K.
Horimoto was partly supported by a Grant-in-Aid for Scien-
tific Research on Priority Areas “Systems Genomics” (Grant
18016008) and by a Grant-in-Aid for Scientific Research
(Grant 19201039) from the Ministry of Education, Culture,
Sports, Science, and Technology of Japan. This study was
supported in part by the New Energy and Industrial Tech-
nology Development Organization (NEDO) of Japan and by
the Ministry of Health, Labour, and Welfare of Japan.

REFERENCES

[1] M.]. Alter, H. S. Margolis, K. Krawczynski, et al., “The natu-
ral history of community-acquired hepatitis C in the United
States. The sentinel counties chronic non-A, non-B hepatitis
study team,” The New England Journal of Medicine, vol. 327,
no. 27, pp. 1899-1905, 1992.

(2] A. M. Di Bisceglie, “Hepatitis C,” The Lancet, vol. 351,
no. 9099, pp. 351355, 1998.

[3] S. Zeuzem, S. V. Feinman, J. Rasenack, et al., “Peginterferon
alfa-2a in patients with chronic hepatitis C,” The New England
Journal of Medicine, vol. 343, no. 23, pp. 1666-1672, 2000.

(4] S. S. Thorgeirsson, J.-S. Lee, and J. W. Grisham, “Molecular
prognostication of liver cancer: end of the beginning,” Journal
of Hepatology, vol. 44, no. 4, pp. 798-805, 2006.

[5] N.Iizuka, M. Oka, H. Yamada-Okabe, et al., “Oligonucleotide
microarray for prediction of early intrahepatic recurrence of
hepatocellular carcinoma after curative resection,” The Lancet,
vol. 361, no. 9361, pp. 923-929, 2003.

[6] H. Okabe, S. Satoh, T. Kato, et al., “Genome-wide analysis
of gene expression in human hepatocellular carcinomas using
c¢DNA microarray: identification of genes involved in viral car-
cinogenesis and tumor progression,” Cancer Research, vol. 61,
no. 5, pp. 2129-2137, 2001.

(7] L.-H. Zhang and ].-F. Ji, “Molecular profiling of hepatocellular
carcinomas by cDNA microarray,” World Journal of Gastroen-
terology, vol. 11, no. 4, pp. 463—468, 2005.

[8] J. Jiang, P. Nilsson-Ehle, and N. Xu, “Influence of liver can-
cer on lipid and lipoprotein metabolism,” Lipids in Health and
Disease, vol. 5, p. 4, 2006.

[9] A. Zerbini, M. Pilli, C. Ferrari, and G. Missale, “Is there a role
for immunotherapy in hepatocellular carcinoma?” Digestive
and Liver Disease, vol. 38, no. 4, pp. 221-225, 2006.

[10] K. Horimoto and H. Toh, “Statistical estimation of cluster
boundaries in gene expression profile data,” Bioinformatics,
vol. 17, no. 12, pp. 1143-1151, 2001.

(11] H.Tohand K. Horimoto, “Inference of a genetic network by a
combined approach of cluster analysis and graphical Gaussian
modeling,” Bioinformatics, vol. 18, no. 2, pp. 287-297, 2002.




Sachiyo Aburatani et al.

11

[12] S. Lauritzen, Graphical Models, Oxford University Press, Ox-
ford, UK, 1996.

[13] J. Whittaker, Graphical Models in Applied Multivariate Statis-
tics, John Wiley & Sons, New York, NY, USA, 1990.

[14] H. Tohand K. Horimoto, “System for automatically inferring a
genetic network from expression profiles,” Journal of Biological
Physics, vol. 28, no. 3, pp. 449464, 2002.

[15] D. K. Slonim, “From patterns to pathways: gene expression

data analysis comes of age,” Nature Genetics, vol. 32, no. 5, pp.

502-508, 2002.

S. Aburatani, S. Kuhara, H. Toh, and K. Horimoto, “Deduction

of a gene regulatory relationship framework from gene expres-

sion data by the application of graphical Gaussian modeling,”

Signal Processing, vol. 83, no. 4, pp. 777-788, 2003.

M. Ashburner, C. A. Ball, . A. Blake, et al., “Gene ontology:

tool for the unification of biology,” Nature Genetics, vol. 25,

no. 1, pp. 25-29, 2000.

E. L Boyle, S. Weng, J. Gollub, et al., “GO::TermFinder—open

source software for accessing gene ontology information and

finding significantly enriched gene ontology terms associated

with a list of genes,” Bioinformatics, vol. 20, no. 18, pp. 3710—

3715, 2004.

A. Nikitin, S. Egorov, N. Daraselia, and 1. Mazo, “Pathway

studio—the analysis and navigation of molecular networks,”

Bioinformatics, vol. 19, no. 16, pp. 2155-2157, 2003.

[20] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, John Wiley & Sons, New York,
NY, USA, 1990.

[21] R.]. Freund and W. J. Wilson, Regression Analysis: Statistical

Modeling of a Response Variable, Academic Press, San Diego,

Calif, USA, 1998.

A. P. Dempster, “Covariance selection,” Biometrics, vol. 28,

no. 1, pp. 157-175, 1972.

N. Wermuth and E. Scheidt, “Algorithm AS 105: fitting a

covariance selection model to a matrix,” Applied Statistics,

vol. 26, no. 1, pp. 88-92, 1977.

L. E Wy, T. R. Hughes, A. P. Davierwala, M. D. Robinson, R.

Stoughton, and S. J. Altschuler, “Large-scale prediction of Sac-

charomyces cerevisiae gene function using overlapping tran-

scriptional clusters,” Nature Genetics, vol. 31, no. 3, pp. 255—

265, 2002.

T. W. Anderson, An Introduction to Multivariate Statistical

Analysis, John Wiley & Sons, New York, NY, USA, 2nd edition,

1984.

S. Aburatani, K. Goto, S. Saito, et al., “ASIAN: a website for

network inference,” Bioinformatics, vol. 20, no. 16, pp. 2853—

2856, 2004.

S. Aburatani, K. Goto, S. Saito, H. Toh, and K. Horimoto,

“ASIAN: a web server for inferring a regulatory network

framework from gene expression profiles,” Nucleic Acids Re-

search, vol. 33, pp. W659-W664, 2005.

M. Honda, S. Kaneko, H. Kawai, Y. Shirota, and K. Kobayashi,

“Differential gene expression between chronic hepatitis B and

C hepatic lesion,” Gastroenterology, vol. 120, no. 4, pp. 955-

966, 2001.

T. Wu, “Cyclooxygenase-2 in hepatocellular carcinoma,” Can-

cer Treatment Reviews, vol. 32, no. 1, pp. 28—44, 2006.

H. Xiao, V. Palhan, Y. Yang, and R. G. Roeder, “TIP30 has an

intrinsic kinase activity required for up-regulation of a subset

of apoptotic genes,” The EMBO Journal, vol. 19, no. 5, pp. 956~

963, 2000.

W. B. Coleman, “Mechanisms of human hepatocarcinogene-

sis,” Current Molecular Medicine, vol. 3, no. 6, pp. 573-588,

2003.

(16]

(17]

(18}

(19]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(31]

NS
~J

[32} Y. Xu, P. K. Sengupta, E. Seto, and B. D. Smith, “Regulatory
factor for X-box family proteins differentially interact with hi-
stone deacetylases to repress collagen a2(I) gene (COL1A2) ex-
pression,” Journal of Biological Chemistry, vol. 281, no. 14, pp.
92609270, 2006.

P. A. Barker and A. Salehi, “The MAGE proteins: emerging

roles in cell cycle progression, apoptosis, and neurogenetic dis-

ease,” Journal of Neuroscience Research, vol. 67, no. 6, pp. 705~

712, 2002.

Y. Xu, L. Wang, G. Buttice, P. K. Sengupta, and B. D. Smith,

“Interferon y repression of collagen (COLIA2) transcription

is mediated by the RFX5 complex,” The Journal of Biological

Chemistry, vol. 278, no. 49, pp. 49134-49144, 2003.

E Macian, C. Garcia-Rodriguez, and A. Rao, “Gene expression

elicited by NFAT in the presence or absence of cooperative re-

cruitment of Fos and Jun,” The EMBO Journal, vol. 19, no. 17,

pp. 4783-4795, 2000.

J.Fu, S. S. W. Tay, E. A. Ling, and S. T. Dheen, “High glucose al-

ters the expression of genes involved in proliferation and cell-

fate specification of embryonic neural stem cells,” Diabetolo-

gia, vol. 49, no. 5, pp. 1027-1038, 2006.

(37} J. Schifer and K. Strimmer, “An empirical Bayes approach to
inferring large-scale gene association networks,” Bioinformat-
ics, vol. 21, no. 6, pp. 754-764, 2005.

[38] A. de la Fuente, N. Bing, I. Hoeschele, and P. Mendes, “Dis-
covery of meaningful associations in genomic data using par-
tial correlation coefficients,” Bioinformatics, vol. 20, no. 18, pp.
3565-3574, 2004.

{33]

[34]

(35]

(36]



Lipid-Induced Oxidative Stress Causes Steatohepatitis
in Mice Fed an Atherogenic Diet

Naoto Matsuzawa,'? Toshinari Takamura,' Seiichiro Kurita,' Hirofumi Misu,! Tsuguhito Ota, Hitoshi Ando,"
Masayoshi Yokoyama,' Masao Honda,' Yoh Zen,? Yasuni Nakanuma,? Ken-ichi Miyamoto,? and Shuichi Kaneko'

Recently, nonalcoholic steatohepatitis (NASH) was found to be correlated with cardio-
vascular disease events independently of the metabolic syndrome. The aim of this study
was to investigate whether an atherogenic (Ath) diet induces the pathology of steato-
hepatitis necessary for the diagnosis of human NASH and how cholesterol and triglyc-
eride alter the hepatic gene expression profiles responsible for oxidative stress. We
investigated the liver pathology and plasma and hepatic lipids of mice fed the Ath diet.
The hepatic gene expression profile was examined with microarrays and real-time poly-
merase chain reactions. The Ath diet induced dyslipidemia, lipid peroxidation, and
stellate cell activation in the liver and finally caused precirrhotic steatohepatitis after 24
weeks. Cellular ballooning, a necessary histological feature defining human NASH, was
observed in contrast to existing animal models. The addition of a high-fat component to
the Ath diet caused hepatic insulin resistance and further accelerated the pathology of
steatohepatitis. A global gene expression analysis revealed that the Ath diet up-regulated
the hepatic expression levels of genes for fatty acid synthesis, oxidative stress, inflam-
mation, and fibrogenesis, which were further accelerated by the addition of a high-fat
component. Conversely, the high-fat component down-regulated the hepatic gene ex-
pression of antioxidant enzymes and might have increased oxidative stress. Conclusion:
The Ath diet induces oxidative stress and steatohepatitis with cellular ballooning. The
high-fat component induces insulin resistance, down-regulates genes for antioxidant
enzymes, and further aggravates the steatohepatitis. This model suggests the critical role
of lipids in causing oxidative stress and insulin resistance leading to steatohepatitis.
(HEPATOLOGY 2007;46:1392-1403.)

Abbreviations: 4-HNE, 4-hydroxy-2-nonenal; &-SMA, «-smooth muscle actin; ALT, alanine aminotransferase; Ath, atherogenic; Ath=+HF, atherogenic and high-fat;
AUGC, area under the curve; BW, body weight; Collal, procollagen type I alpha 1; Colla2, procollagen type I alpha 2; Coldal, procollagen type IV alpha I; CPT-1a,
carnitine palmitoyltrangferase 1a; FAS, fatty acid synthase; FFA, free fatty acid; GPCR, G protein-coupled recepror; GPCRDB, G Protein-Coupled Receptor Database;
GTT, glucose tolerance test; HGE, hematoxylin-eosin; HDL-C, high-density lipoprotein-cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; HPLC,
high-performance liquid chromatography; HSC, hepatic stellate cell; IRS, insulin receptor substrate; ITT, insulin tolerance test; LDL, low-density lipoprotein; LDL-C;
low-density lipoprotein-cholesterol; MAPK, mitogen-activated protein kinase; MCD, methionine- and choline-deficient; mRNA, messenger RNA; NADPH, reduced-form
nicorinamide adenine dinucleotide phosphase; NAFLD, nonalcobolic fatty liver disease; NASH, nonalcoholic steatohepativis; ND, not determined; PAI-1, plasminogen
activator inhibitor 1; PCR, polymerase chain reaction; PPARw, peroxisome proliferator-activated receptor a; ROS, reactive oxygen species; SEM, standard error of the mean;
SREBP-1c, sterol regulatory element binding protein Ic; TBS-T, rrishydroxymethylaminomethane-tuffered saline Tween 20; TCA, tricarboxylic acid cycle; TG, triglyc-
eride; TGF-B, transforming growth factor B; TNF-t, tumor necrosis factor o; VLDL-C, very low density lipoprotein-cholesterol.
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onalcoholic fatty liver disease (NAFLD) is cur-
N rently the most common chronic liver condition

in the Western world. Clinical, epidemiological,
and biochemical data strongly support the conceprt that
NAFLD is the hepatic manifestation of the metabolic
syndrome, the constellation of metabolic abnormalities
including obesity, dyslipidemia, and insulin resistance.’
NAFLD includes not only steatosis (without other injury)
but also various degrees of inflammation and fibrosis.2
Simple steatosis is usually considered benign, but the de-
velopment of inflammatory changes in the liver [called
nonalcoholic steatohepatitis (NASH)] is recognized as a
precursor to more severe liver disease and sometimes
evolves into cryptogenic cirrhosis.? It has been recently
proposed that NASH is strongly correlated with cardio-
vascular disease events independently of the metabolic
syndrome.# Therefore, further investigations of NASH
are required to elucidate the pathogenesis of this process
and to develop treatments.

To date, however, studies of NASH have been ham-
pered by the absence of a suitable experimental model.
The use of genetic defects or targeted overexpression to
produce obesity® or impaired hepatic lipid metabolism® in
rodents has been used as an NAFLD model. Although
these genetic manipulations can assess the biological im-
portance of each gene in vivo, they might not reflect the
natural etiology of NAFLD in patients and rarely lead to
the pathology of NASH. The other models frequently
used are based on nutritional manipulations. Natural nu-
tritional models have been described, including the use of
a sucrose-rich and fat-rich diet.” However, in these mod-
els, rodents accumulate minimal fat and develop subtle
inflammartion of the liver. The methionine- and choline-
deficient (MCD) model, which is frequently used to pro-
duce more progressive liver pathology, leads to the
development of steatosis with lobular inflammation and
with perisinusoidal and pericentral fibrosis.8-? However,
this model lacks lipotrophic factors, insulin resistance,'®
or the cellular ballooning that is observed only with the
addition of a high-fat component to the MCD diet.!

In this study, we focused on an atherogenic (Ath) diet,
which contains cholesterol and cholic acid. Because the
diet produces not only an Ath lipoprotein profile but also
vascular fatty streak lesions, it has been widely used to
study atherosclerosis in animals, including mice.'? Al-
though the Ath diet has recently been reported to induce
liver steatosis, inflammation, and fibrosis,'3 lipid metab-
olism, insulin resistance, and hepatic gene expression pro-
files responsible for liver pathology remain to be
determined in this model. To address this issue, we inves-
tigated the time course of the pathological changes and
gene expression profiles of the liver in mice fed the Ath

MATSUZAWA ET AL. 1393
Table 1. The Composition of the 3 Diets
Composition Cantrol Ath Ath +HF
CRF-1 (%) 100 90.75 38.25
Cocoa butter (%) - 7.50 60.0
Cholesterol (%) - 1.25 1.25
Cholate (%) - 0.50 0.50
(wt/wt %)
Energy
composition Control Ath Ath+HF
Carbohydrate (g) 60.9 55.2 233
Protein (g) 224 20.3 8.6
Fat (g) 6.0 14.0 60.0
Total calorie (kcal) 363 411 669
(/100 g)

The contents of vitamins and minerals in each diet are presented in Supple-
mentary Table 1.

diet. In addition, by adding a high-fat component to the
Ath diet, we elucidated the impact of insulin resistance,
which is commonly observed in NASH patients, on the
development of oxidative stress in the liver and pathology
of steatohepatitis.

Materials and Methods

Animals and Experimental Design. Male C57B1/6]
mice were purchased from Charles River Laboratories Ja-
pan (Yokohama, Japan) at 6 weeks of age. After 2 weeks of
acclimation, the mice were divided into the following 3
groups: (1) control mice given a standard chow (CRF-1,
Charles River Laboratories Japan), (2) mice given an Ath
diet, and (3) mice fed an atherogenic and high-fat
(Ath+HF) diet. The Ath and Ath+HF diets were pre-
pared by the addition of cocoa butter, cholesterol, and
cholate to CRF-1. These diets were prepared by Oriental
Yeast (Tokyo, Japan). The compositions of each diet are
shown in Table 1 and Supplementary Table 1. At 6 weeks
of age, the mice were housed in colony cages with a 12-
hour light/12-hour dark cycle, and they were given food
and water ad libitum. All animal procedures were in ac-
cordance with the standards set forth in the Guidelines for
the Care and Use of Laboratory Animals at the Takara-
Machi campus of Kanazawa University (Japan).

Blood Sampling and Analysis. At 6, 12, or 24 weeks,
blood samples were obtained from the tail vein following
a 12-hour fast. Enzymatic assays for the total cholesterol,
free cholesterol, free fatty acids (FFAs), triglyceride (TG),
and alanine aminotransferase (ALT) were performed with
kits purchased from Wako Pure Chemical Industries
(Osaka, Japan). The cholesterol and TG profiles in
plasma lipoproteins were analyzed with a dual-detection
high-performance liquid chromatography (HPLC) sys-
tem with 2 tandem connected TSKgel LipopropakXL
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columns (300 X 7.8 mm; Tosoh, Japan) by Skylight Bio-
tech (Akita, Japan).!4

Glucose Tolerance Tests (GTTs) and Insulin Tol-
erance Tests (ITTs). At 12 weeks, GTTs and ITTs were
conducted. For GTTs, glucose was administered (1.5
g/kg body weight) following a 12-hour fast. For ITTs,
mice were injected intraperitoneally with insulin (0.5
U/kg of body weight; Humulin R, Eli Lilly, Indianapolis,
IN) following a 4-hour fast. The glucose values were mea-
sured from whole venous blood with a blood glucose
monitoring system (FreeStyle, Kissei, Matsumorto, Japan)
0, 15, 30, 60, and 120 minutes after the administration of
glucose or insulin.

Pyruvate Challenge Test. At 6 weeks, we conducted
the pyruvate challenge test.!'>'¢ The mice, deprived of
food for 16 hours, were injected intraperitoneally with
pyruvate dissolved in saline (2 g/kg). The blood glucose
values were measured 0, 15, 30, 60, and 90 minutes after
the injection of pyruvate.

Tissue Preparation and Histological Examination.
At 6, 12, or 24 weeks, the mice were killed by cervical
dislocation under diethyl ether anesthesia following a 12-
hour fast. The livers were immediately removed and
weighed. A large portion of each liver was snap-frozen in
liquid nitrogen for later RNA studies. The remaining tis-
sue was fixed in 10% buffered formalin, processed, and
embedded in paraffin for hematoxylin-eosin (H&E),
Azan, and Sirius red staining and was blindly scored by a
single pathologist. Steatosis, fibrosis, and acinar inflam-
mation were semiquantitatively evaluated according to
the standard criteria of grading and staging for NASH,
with minor modifications.!” To evaluate steatosis, we
used the absolute percentage of the macrovesicular fat
dropler area in the section area (that is, 8 X 10> hepato-
cytes in 4 mm?). For inflammation, 0 was defined as no
hepatocyte injury or inflammation, 1 was defined as mild
focal injury, 2 was defined as noticeable injury, and 3 was
defined as severe zone 3 hepatocyte injury or inflamma-
tion. For fibrosis, 0 was defined as no fibrosis, 1 was de-
fined as pericellular and perivenular fibrosis, 2 was defined
as focal bridging fibrosis, 3 was defined as much bridging
fibrosis with lobular distortion, and 4 was defined as cir-
rhosis.

Slides were immunostained with monoclonal mouse
anti-human a-smooth muscle actin (a-SMA; Dako Ja-
pan, Kyoto, Japan). This was followed by the application
of the immunoperoxidase technique with an Envision kit
(Dako Japan). The peroxidase activity was identified by a
reaction with 3’,3’-diaminobenzidine (Sigma, St Louis,
MO). Areas staining for a-SMA were quantified morpho-
metrically with WinROOF version 5.7 (Mitani Shoji,
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Fukui, Japan) and expressed as percentages of the field
area.

Measuring the Hepatic Lipid Content. Hepatic lip-
ids were extracted with chloroform/methanol (2:1) ac-
cording to a published method.'® With a kit (Wako), the
extract was dissolved in water and subsequently analyzed
for TG, total cholesterol, free cholesterol, and FFAs.

Measuring the Hepatic Hydroxyproline Content.
The hydroxyproline content in liver samples was quanti-
fied colorimetrically according to a published method."
Briefly, 2 0.2-g liver sample was homogenized in 6 N HCI
and hydrolyzed at 110°C for 16 hours. The hydrolysate
was filtered, aliquots were evaporated under a vacuum,
and the sediment was redissolved in 50% isopropanol.
Then, the samples were incubated in a solution contain-
ing 0.84% chloramine-T, 42 mM sodium acetate, 2.6
mM citric acid, and 39.5% (vol/vol) isopropanol (pH
6.0) for 10 minutes at room temperature. Next, the sam-
ples were incubated in a solution containing 0.248 g of
p-dimethylaminobenzaldehyde dissolved in 0.27 mL of
60% perchloric acid and 0.73 mL of isopropanol for 90
minutes at 50°C. The hydroxyproline content was quan-
tified photometrically at 558 nm.

Measuring Hepatic Protein Carbonyls. The con-
centration of hepatic proteins containing carbonyl groups
(those that react with 2,4-dinitrophenylhydrazine to form
the corresponding hydrazone) was determined spectro-
photometrically according to the instructions with a pro-
tein carbonyl assay kit (Cayman Chemical, Ann Arbor,
MI).

RNA Preparation for the Microarray Analysis. To-
tal RNA was isolated from the frozen liver with the To-
TALLY RNA kit (Applied Biosystems, Foster City, CA).
Each sample was prepared by equal amounts of total RNA
being pooled from 3 mice in the same group. Three mi-
crograms of total RNA was used to synthesize antisense
RNA with the AminoAllyl MessageAmp II antisense
RNA kit (Applied Biosystems) for oligo-microarrays
(AceGene Mouse Oligo Chip 30K, DNA Chip Research,
Yokohama, Japan). Each microarray hybridization sam-
ple and the reference amino allyl antisense RNA were
labeled with Cy5 and Cy3, respectively. Hybridization
and washing were performed according to the manufac-
turer’s instructions; this was followed by scanning with a
G2505B microarray scanner (Agilent Technologies, Palo
Alto, CA) and then image analysis with GenePix Pro 4.1
software (Axon Instruments, Union City, CA). Microar-
ray data were normalized (LOWESS [locally weighted
polynomial regression] method) with GeneSpring version
7.2 software (Agilent Technologies). For the pathway
analysis, we used the GenMAPP and MAPPFinder soft-
ware package.202! The GenMAPP program contains
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Fig. 1. Effects of 3 diets on the liver weight and morphology and
serum ALT. (A) Liver weight with respect to the body weight (BW) of
control mice fed standard chow (white bars), the Ath diet (gray bars), or
the Ath+HF diet (black bars) after 6 or 24 weeks. (B) Photograph of
livers after 12 weeks of feeding with the standard chow, Ath diet, or
Ath+HF diet (scale bars: 10 mm). (C) Serum ALT levels after 6 or 24
weeks. The values represent the means = the SEM. The number of
animals per group is indicated in or just above the bars. *P < 0.05 and
**p < 0.01 versus the control group.

many pathway maps that can be associated with imported
microarray data. The MAPPFinder program, which links
gene expression data to the pathway maps, can calculate
the z score (standardized difference score) and the per-
centage of genes measured that meet user-defined criteria
(£25% in the change fold in our analysis). With the z
score and the percentage, the pathways were ranked ac-
cording to the relative change in the gene expression. The
microarray data sets have been submitted to the Genome
Expression Omnibus Database (available at htep://ww-
w.ncbi.nlm.nih.gov/geo/) under series GSE5852.
Quantitative Real-Time Polymerase Chain Reac-
tion (PCR). The reverse transcription of 100 ng of total
RNA (the same sample used for the microarray analysis)
was performed with Oligo(dT);.15 primer and Super-
Script III reverse transcriptase (Invitrogen, Carlsbad,
CA). PCR was performed on an ABI-Prism 7900HT
(Applied Biosystems). The specific PCR primers and
TagMan probe used in this study were obtained from
Applied Biosystems. The PCR conditions were 1 cycle at
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50°C for 2 minutes and at 95°C for 10 minutes followed
by 40 cycles at 95°C for 15 s and at 60°C for 1 minute.

Western Blot Analysis. Livers were homogenized in a
buffer containing 20 mM trishydroxymethylaminometh-
ane-HCI (pH 7.5), 5 mM ethylene diamine tetraacetic
acid, 1% NP-40, and a protease inhibitor cockrail (Pierce,
Rockford, IL). Homogenated proteins (30 ug/lane) were
separated by 4%-20% gradient sodium dodecyl sulfate—
polyacrylamide gels (Daiichi Chemicals, Tokyo, Japan)
and resolved with 130 V over 2 hours. Proteins were
transferred to polyvinylidene difluoride membranes (Mil-
lipore, Billerica, MA) with a Transblot apparatus (Bio-
Rad, Hercules, CA). The membranes were blocked in a
buffer containing 5% nonfat milk, 50 mM trishydroxym-
ethylaminomethane (pH 7.6), 150 mM NaCl, and 0.1%
Tween 20 [trishydroxymethylaminomethane-buffered
saline Tween 20 (TBS-T)] for 12 hours at 4°C. They were
then probed with the monoclonal anti-4-hydroxy-2-
nonenal (4-HNE) antbody (NOF, Tokyo, Japan) at a
1:200 dilution, with the polyclonal anti-insulin receptor
substrate 2 (IRS-2) antibody (Millipore) at a 1:500 dilu-
tion, or with the polyclonal anti-glyceraldehyde 3-
phosphate dehydrogenase antibody (Santa Cruz Biotech-
nology, Santa Cruz, CA) at a 1:3000 dilution in 5% bo-
vine serum albumin TBS-T for 12 hours at 4°C. After the
membranes had been washed in TBS-T, the blots were
incubated with the horseradish peroxidase-linked sec-
ondary antibody (Cell Signaling Technology, Beverly,
MA). Signals were detected with a chemiluminescence
detection system (ECL Plus, GE Healthcare Bio-Sciences,
Piscataway, NJ) and exposure to X-ray film. The hepatic
4-HNE contents were quantified with WinROOF ver-
sion 5.7 (Mitani Shoji).

control Ath
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Fig. 2. HPLC analysis of plasma lipoproteins: fractionation by HPLC of
cholesterol and free TG from mouse plasma after 24 weeks on the diet.
The chromatograms for 1 representative sample are presented. The
chylomicron, VLDL-C, LDL-C, and HDL-C fractions are labeled C, V, L, and
H, respectively. The shaded fractions correspond to the level of small
dense LDL-C.
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Table 2. Effects of the 3 Diets on Body Weight
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and Lipid Levels at 6 or 24 Weeks of Feeding

6 weeks 24 weeks

Diet type Control (n = 3) Ath (n = 3) Ath+HF (n =3) Control (n = 4) Ath (n = 6) Ath+HF (n = 6)
Body weight (g) 24.7 £ 05 249 *+0.4 23.2+04 29.0 0.7 281 =18 26.4 + 1.1**
Epididymal fat pad weight (g) 0.14 £ 0.01 0.15 = 0.01 0.15 = 0.02 0.25 = 0.01 0.09 = 0.01** 0.17 £ 0.01**
Plasma triglycerides (mg/dL) 68.0 = 5.2 54.6 = 10.1 24.0 = 3.6** 415+ 4.6 338=x35 20.8 + 1.7*
Plasma total cholestero! (mg/dL) 85.0 = 85 173.6 £ 53**  168.1 = 5.3** 846 + 3.8 257.1 £ 10.8**  204.4 = 8.8**
Plasma free cholesterol (mg/dL) 239+ 22 45.9 = 2.7** 40.2 = 0.7+* 17303 475 £ 5.6%* 31.3 + 2.3*
Plasma FFA (mEq/L) 0.58 * 0.09 0.75 = 0.10 0.46 £ 0.07 0.48 = 0.04 0.48 = 0.04 0.24 + 0.06*
Plasma insulin (uU/mL) N.D. N.D. N.D. 62+03 112 =17 138+ 29
Fasting blood glucose (mg/dl) N.D. N.D. N.D. 93 x4 85+ 4 93+ 8
HOMA-IR N.D. N.D. N.D. 14 +0.1 23x03 3.1+ 0.4*
Hepatic triglycerides (1.g/mg protein) 67.2 = 104 89.3 = 19.7 150.8 = 21.6* 148.6 =209 52.8 = 17.4* 64.5 + 9.2*
Hepatic total cholesterol (j.g/mg protein) 42028 206.8 £ 22.5** 342.8 x 40.8** 343+22 1435 = 24.1* 192.8 = 25.0**
Hepatic free cholesterol (g/mg protein) 221+ 39 304 4.2 52.6 * 6.6* 199 +23 33.0 = 2.6* 309 =59
Hepatic FFA (uEq/mg protein) 456 + 4.0 52.6 =33 63.0 = 2.8* 531+ 18 81.1 + 6.3* 83.6 = 8.7*

Data are means = SEM. Significantly different from control value: *P < 0.05;
assessment insulin resistance; N.D., Not determined.

Statistical Analysis. The results are shown as the
means = the standard error of the mean (SEM). The data
were analyzed with a 1-way analysis of variance to com-
pare the means of all groups. The Bonferroni multiple-
comparison procedure was used to determine which pairs
of means were different. Differences in the histological
scores between the Ath and Ath+HF groups were com-
pared with the Mann-Whitney U test. All calculations
were performed with SPSS version 12.0 software for Win-
dows (SPSS, Chicago, IL).

Results

Ath Diet Causes Hepatomegaly and Liver Injury.
Hepatomegaly was observed in the Ath and Ath+HF
groups (Fig. 1A). As shown in Fig. 1B, the livers of mice
fed the Ath diet were grossly enlarged and pale in color.
The serum ALT level was also elevated in the Ath and
Ath+HF groups (Fig. 1C). Splenomegaly, frequently as-
sociated with cirrhosis, was detected in the Ath and
Ath+HF groups at 24 wecks.

Effect of the Ath Diet on the Plasma Lipid Levels
and Hepatic Lipid Content. As shown in Table 2, the
plasma cholesterol levels were significantly elevated in the
Ath diet group after both 6 and 24 wecks. An HPLC
analysis revealed that the Ath and Ath+HF diets mark-
edly increased the very low density lipoprotein-choles-
terol (VLDL-C), low-density lipoprotein-cholesterol
(LDL-C), and small dense LDL-C fractions, whereas they
lowered high-density lipoprotein-cholesterol (HDL-C)
in comparison with the controls (Fig. 2). As reported
previously, we also confirmed atherosclerotic lesions in
the mice fed the Ath and Ath+HF diets but not in the
mice fed normal chow (data not shown).

2

**P < (0.01. Abbreviations: FFA, free fatty acid; HOMA-IR, homeostasis model

The Ath and Ath+HF diets accumulated cholesterol
in the liver after both 6 and 24 weeks. In addition to
cholesterol, TG and FFA also accumulated with the
Ath+HF diet. In comparison with hepatic lipid levels
after 6 weeks, cholesterol and TG decreased in the livers of
mice fed the Ath and Ath+HF diets after 24 weeks, and
this indicated the progression of extensive hepatic fibrosis
and impaired hepatocellular function. As is often found in
patients with advanced liver disease, the serum ALT levels
decreased with the progression of hepatic fibrosis, proba-
bly because of the impaired regeneration of hepatocytes
and the production of ubiquitous liver enzymes.2?

Effects of the Ath Diet on Systemic or Hepatic
Insulin Resistance. GTT and ITT after 12 weeks
showed that the mice fed the Ath diet were remarkably
sensitive to insulin (Fig. 3A,B). This ameliorating effect
on the glucose tolerance and insulin sensitivity may be
atcributable to decreased adipose tissue in the mice fed the
Ath or Ath+HF diet (Table 2). Therefore, we next eval-
uated the hepatic insulin sensitivity. For this purpose, we
performed the pyruvate challenge test, an established
method for evaluating hepatic insulin sensitivity,'>'6 by
investigating the rise in blood glucose in response to the
administration of pyruvate, a precursor for gluconeogen-
esis. The mice fed the Ath+HF diet showed an increased
rise in the blood glucose concentration after pyruvate in-
jection (Fig. 3C) compared with the mice fed the standard
chow, and this suggested that the Ath+HF diet causes
hepatic insulin resistance. Furthermore, as shown in Ta-
ble 2, the homeostasis model assessment of insulin resis-
tance (HOMA-IR) was significantly higher in the mice
fed the Ath+HEF diet than in the control mice. The ex-
pression of messenger RNA (mRNA) for phosphoenol-
pyruvate carboxykinase, the rate-controlling enzyme of

2
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gluconeogenesis for which the expression is negatively sponse to stimuli such as oxidative stress and

regulated by insulin, was significantly higher in the mice
fed the Ath+HF diet than in the control mice (Fig. 3D).
These results suggest that the Ath+HF diet causes hepatic
insulin resistance.

Ath Diet Induces Steatosis, Fibrosts, and Cellular
Ballooning of the Liver. Figure 4 shows the time course
of histological changes in the livers of mice fed the Ach or
Ath+HF diet. The Ath diet induced progressive steatosis,
inflammation, and fibrosis in a time-dependent manner
from 6-24 weeks. Moreover, cellular ballooning, an im-
portant histological feature for the diagnosis of human
NASH, was observed in the Ath group after 24 weeks.
The addition of a high-fat component to the Ath diet
accelerited the development of steatosis, inflammation,
and fibrosis. Furthermore, before the Ath group, cellular
ballooning was already observed in the Ath+HF group
after 12 weeks. The hepatic hydroxyproline content, an
indicator of collagen accumulation in the liver, increased
significantly in the mice fed the Ath diet and increased
further in the mice fed the Ath+HF diet (Fig. 4C).
Therefore, the Ath diet induces steatohepatitis, and the
addition of 2 high-fat component exacerbates the histological
severity of steatohepatitis and hepatic insulin resistance.

High-Fat Component Further Enhances the Activa-
tion of Hepatic Stellate Cells (HSCs) with the Ath
Diet. The major sources of collagen and other extracel-
lular matrix proteins in liver fibrosis are HSCs.23 In re-

2

inflammatory cytokines, HSCs become activated and
transform into proliferative fibrogenic cells.¢ We per-
formed an immunohistochemical analysis of a-SMA, an
activated HSC marker, at different times. Representative
photomicrographs of liver sections stained with the anti—
a-SMA antibody are shown in Fig. 5A. We quantified the
areas in the liver sections positive for a-SMA morpho-
metrically in the 3 groups at different times as described
(Fig. 5A, lower panel). The activation of HSCs was pro-
moted in the livers of mice fed the Ath diet in a time-
dependent manner from 6-24 weeks and was further
accelerated by the addition ofa high-fat component to the
Ath diet.

To evaluate oxidative stress causing HSC activation,
we assayed proteins modified with 4-HNE, which is a
major aldehyde end product of membrane lipid peroxida-
tion due to oxidative stress (Fig. 5B). In concert with the
increase in a-SMA-positive cells, 4-HNE-modified pro-
teins accumulated in the livers of mice fed the Ath diet
and further accumulated in those of mice fed the
Ath+HF diet. In addition to 4-HNE-modified proteins,
hepatic protein carbonyls, another marker of oxidative
stress, also increased with the Ath and Ath+HEF diets (Fig.
5C). These results are consistent with the observation that
the Ath+HF diet induced more severe inflammation and

fibrosis than the Ath diet.
3
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Fig. 4. Representative liver histology, scoring, and occurrence of hepatocyte ballooning. (A) Liver sections were stained with H&E, Azan, and Sirius
red after 6, 12, and 24 weeks. The arrows indicate infiltration of the inflammatory cells in the hepatic parenchyma. The characteristic initial pattern
of fibrosis in steatohepatitis is collagen deposition, as identified by blue and red staining. The original magnification was X200. The scale bars
represent 10 um. Ballooning hepatocytes were seen only in the Ath and Ath+HF groups (shown in the inset). (B) The absolute percentage of the
macrovesicular fat droplet area in the H&E-stained area was determined to evaluate steatosis. The values represent the means % the SEM. The
number of animals per group is indicated just above the points. ##P < 0.01 versus the Ath group. Inflammation and fibrosis scores were assigned
in a blinded fashion to H&E-stained samples for inflammation and to Azan-stained samples for fibrosis. The criteria for each score are described in
the Materials and Methods section. Differences in the inflammation and fibrosis histological scores between the Ath and Ath+HF groups were
compared with the Mann-Whitney U test. The control, Ath, and Ath+HF groups are tabeled C (white circles), A (gray triangles), and A+H (black
squares), respectively. (C) The hydroxyproline content was determined in the livers of mice fed standard chow (white bars; n = 3), the Ath diet (gray
bars; n = 3), or the Ath+HF diet (black bars; n = 3) at 6, 12, and 24 weeks. The values represent the means = the SEM. **P < 0.01 versus
the control group. ##P < 0.01 versus the Ath group.

ulation of the genes involved in fibrogenesis, such as the
transforming growth factor B (T'GF-B) signaling path-

Gene Expression in the Livers of Mice Fed the Ath
Diet. To address the molecular basis of Ath diet—induced

steatohepatitis, we performed a microarray analysis, using
livers at early (6 weeks) and precirrhosis stages (24 weceks)
in the development of steatohepatitis. We screened 103
pathways determined with GenMAPP and extracted the
metabolic pathways significantly altered in the livers of
the mice fed the Ath and Ath+HF diets (Table 3). In the
livers of the mice fed the Ath diet, genes involved in the
inflammatory response and p38 mitogen-activated pro-
tein kinase (MAPK) signaling pathway were up-regulated
significantly, whereas genes involved in fatty acid B-oxi-
darion were down-regulated significantly in the early stage
(6 weeks), and this was followed by coordinated up-reg-

2

way, in the late stage (24 weceks). Adding the high-fac
component to the Ath diet accelerated the up-regulation
of the genes involved in inflammation (electron-transport
chain, p38 MAPK signaling pathway, and Fas pathway
and stress induction) and fibrogenesis (TGF-f3 signaling
pathway and matrix metalloproteinases). Of these path-
ways altered in the models, we present the expression
levels of representative genes involved in lipid metabo-
lism, inflammation, oxidative stress, and fibrogenesis in
Fig. 6 and Supplementary Table 2.

In the livers of mice fed the Ath diet, the expression of
genes for farty acid synthesis, such as sterol regulatory
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Fig. 5. Activation of HSCs and oxidative stress in the livers of mice fed
the Ath or Ath+HF diet. (A) Hepatic a-SMA-positive cells (indicated by
arrows) were detected by immunohistochemical staining at 6, 12, or 24
weeks. The original maghnification was X200. The scale bars represent
10 pm. The a-SMA-positive area was quantified morphometrically in the
liver sections of mice fed standard chow (white bar; n = 3), the Ath diet
(gray bar; n = 3), or the Ath+HF diet (black bar; n = 3) at different
times, as described in the Materials and Methods section. (B) Westem
blot of 4-HNE-modified proteins in the liver after 24 weeks. The hepatic
content of 4-HNE-modified proteins was quantified in mice fed standard
chow (white bar; n = 4), the Ath diet (gray bar; n = 4), or the Ath+HF
diet (black bar; n = 4), as described in the Materials and Methods
section. (C) Hepatic protein carbonyls were determined in the mice fed
standard chow (white bar; n = 3), the Ath diet (gray bar; n = 4), or the
Ath+HF diet (black bar; n = 4) after 24 weeks, as described in the
Materials and Methods section. The values represent the means =+ the
SEM. *P < 0.05 and **P < 0.01 versus the control group. #P < 0.05
and ##P < 0.01 versus the Ath group.

element binding protein 1¢ (SREBP-1c), a transcriptional
regulator of fatty acid synthesis,2% and fatty acid synthase
(FAS), was coordinately up-regulated. In contrast, the ex-
pression levels of genes for the mitochondrial fatty acid
B-oxidation pathway were coordinately repressed in con-
cert with a decrease in the expression of peroxisome pro-
liferator-activated receptor o (PPARw), a transcriptional
up-regulator of fatty acid B-oxidation in the liver.2¢ It is
recognized that mitochondrial B-oxidation and the levels
of carnitine palmitoyltransferase la (CPT-la) and
PPAR« expression are increased compensatively in the
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livers of patients with NAFLD?7:28 and obese-diabetic
(ob/ob) mice with severe stearosis of the liver.2? There-
fore, although the levels of PPARa and CPT-1a mRNA
expression in the Ath+HF group were higher than those
in the Ath group, it may not have been enough to metab-
olize the excessive fatty acids from the high-fat compo-
nent and intrahepatic fatty acid synthesis.

It is believed that oxidative stress due to the generation
of reactive oxygen species (ROS) or decreased antioxidant
defenses is directly involved in the development of steato-
hepatitis.3° The expression levels of genes for the reduced-
form nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase complex, an important source of
ROS,3! were coordinately elevated in mice fed the Ath
diet and further up-regulated in mice fed the Ath+HF
diet.

The Ath diet has previously been reported to induce
the expression of genes for inflammation.?2:33 Our results
further demonstrate that inflammatory cytokines, such as
tumor necrosis factor a (TNF-q), chemokines, and their
receptors, are up-regulated in mice fed the Ath diet.

The Ath diet also induced genes involved in collagen
accumulation, especially after 24 weeks. At 6 weeks, the
expression levels of collagen genes were higher in the
Ath+HF group than in the Ath group (Fig. 6). In addi-
tion, the expression levels of genes for TGF-B and plas-
minogen activator inhibitor 1 (PAI-1), key inducers of
fibrogenesis, were dramatically up-regulated in the
Ath+HF group compared with the Ath group at 24
weeks. These results support the finding that the
Ath+HEF diet induces more rapid progression of steato-
hepatitis than the Ath diet.

Discussion

Whether cholesterol, TG, or FFA contributes to the
development of NASH remains controversial.34 Because
the feeding of cholesterol and cholic acid, which are the
main components of the Ath diet, leads to the additive
accumulation of cholesterol in the liver, the main pathol-
ogy in Ath diet-induced steatohepatitis is caused by cho-
lesterol-induced toxicity.3s

In this study, we have shown that Ath diet—induced
steatohepatitis with atherosclerosis is a better experimen-
tal model of human NASH for the following reasons: (1)
this model seems to be a more physiological dietary model
of NASH than existing animal models, which require
genetic defects, chemical agents such as carbon tetrachlo-
ride, or the depletion of nutrients, such as the MCD
diet—induced model; (2) the liver pathology involves ste-
atohepatitis with cellular ballooning, a necessary histolog-
ical feature defining human NASH; (3) the addition of a
high-fat component to the Ath diet causes hepatic insulin
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Table 3. Biological Pathways of Liver Genes Regulated by the Ath or Ath+HF Diets After 6 or 24 Weeks

Number of Genes

Pathway Name Changed Number of Genes Measured Z Score Permuted P Value
Ath diet
Up-regulated at 6 weeks

Inflammatory Response 23 41 3.22 < 0.01
DNA replication Reactome 21 41 2.56 0.010
Cell Cycle-G1 to S control Reactome 32 68 2.56 0.016
G1 to S cell cycle Reactome 32 68 2.56 0.016
RNA transcription Reactome 20 40 2.36 0.036
p38 MAPK signaling 15 28 2.38 0.037

Down-regulated at 6 weeks

Amino Acid Metabolism 23 45 294 < 0.01
Cholesterol Biosynthesis 11 . 15 3.56 < 0.01
Complement and Coagulation Cascades 29 59 3.04 < 0.01
Mitochondrial fatty acid betaoxidation 11 16 3.28 < 0.01
Blood Clotting Cascade 11 18 277 0.012
Unsaturated Fatty Acid Beta Oxidation 5 6 278 0.014
Biogenic Amine Synthesis ) 8 14 2.13 0.042
Krebs-TCA Cycle 14 29 2.03 0.045

Up-regulated at 24 weeks

mRNA processing binding Reactome 196 438 591 <0.01
TGF Beta Signaling Pathway 62 124 437 < 0.01
Translation Factors 27 49 3.50 < 0.01
Complement Activation Classical 9 15 2.34 0.021

Down-regulated at 24 weeks

GPCRDB Other 52 147 3.58 <0.01
Small ligand GPCRs 11 19 3.61 < 0.01
Synthesis and Degradation of Ketone Bodies 4 4 3.66 <0.01
Mitochondrial fatty acid betaoxidation 9 16 3.16 < 0.01
Cholesterol Biosynthesis 8 15 2.79 < 0.01
Metabotropic glutamate pheromone 6 10 2.78 0.020
Ath + HF diet

Up-regulated at 6 weeks
Electron Transport Chain 35 82 4.93 < 0.01
mRNA processing binding Reactome 120 434 3.64 < 0.01
Translation Factors 20 49 3.48 < 0.01
p38 MAPK signaling pathway 13 28 3.36 < 0.01
Unsaturated Fatty Acid Beta Oxidation 4 6 2.78 0.018
Matrix Metalloproteinases 9 24 2.03 0.034
TGF Beta Signaling Pathway 35 124 2.08 0.039
Fas pathway and stress induction 41 149 2.07 0.042

Down-regulated at 6 weeks
Focal adhesion 56 186 3.51 < 0.01
Steroid Biosynthesis 8 12 4.06 < 0.01
Complement and Coagulation Cascades 20 59 2.70 < 0.01
G Protein Signaling 26 83 2.62 0.013
Calcium regulation in cardiac celfls 41 145 2.54 0.014
Cholesterol Biosynthesis 7 15 2.60 0.016

Up-regulated at 24 weeks
Translation Factors 21 49 3.993 < 0.01
mRNA processing binding Reactome 121 437 4.055 <0.01
p38 MAPK signaling pathway 12 28 3.016 < 0.01
TGF Beta signaling pathway 35 124 2,077 0.039

Down-regulated at 24 weeks

Amino Acid Metabolism 19 45 3.891 <0.01
Urea cycle and metabolism of amino groups 10 20 3.472 < 0.01
Striated muscle contraction 16 42 3.080 < 0.01
Steroid Biosynthesis 6 12 2.689 0.015
Smallt ligand GPCRs 8 19 2513 0.020
Glycolysis and Gluconeogenesis 14 236 41 2.402 0.023
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Fig. 6. Quantitative real-time PCR for representative genes involved in
steatohepatitis. The mRNA levels of genes for SREBP-1¢, FAS, PPAR¢,
CPT-1a, TNF-q, p22rhex, p47ehox gp91phox TGF-B1, procollagen type |
alpha 1 (Col1al), procoliagen type | alpha 2 (Col1a2), procollagen type
IV alpha 1 (Col4al), and PAI-1 in the livers of mice fed standard chow
(n = 3), the Ath diet (n = 3), or the Ath+HF diet (n = 3) were
quantified with real-time PCR after 6 and 24 weeks. The RNA samples
used for real-time PCR were the same as those used for the microarray
analysis. The gene expression was normalized with eukaryotic 18S
ribosomal RNA. The degree of change in the gene expression was based
on the mean expression levels of control mice at 6 weeks. The values
represent the means = SEM. *P < 0.05 and **P < 0.01 versus the
control group. #P < 0.05 and ##P < 0.01 versus the Ath group.

resistance and promotes oxidative stress, the activation of
HSCs, and all components of the liver pathology of
NASH (steatosis, inflammation, fibrosis, and cellular bal-
looning); and (4) there is a molecular signature indicative
of lipid-induced oxidative stress in the liver, which may
play a causal role in the development of steatohepatitis.

To diagnose human NASH, cellular ballooning, in ad-
dition to simple steatosis and inflammatory cell infiltra-
tion, is one of the most important pathological features.3¢
However, ballooning degeneration has scarcely been de-
termined in the existing animal models, including mice
fed the MCD diet. We believe that our study is the first to
report that cellular ballooning is frequently induced in the
livers of mice fed the Ath diet.

Recently, we proved that insulin resistance accelerates
the pathological development of steatohepatitis experi-
mentally.!" In this study, on the basis of the results of the
pyruvate challenge test and HOMA-IR, we concluded
that the Ath+HF diet causes hepatic insulin resistance. It

MATSUZAWA ET AL. 1401

is known that the excessive accumulation of FFAs caused
by the overexpression of lipoprotein lipase3” and an in-
crease in SREBP-1c-regulated lipogenesis3? leads to im-
paired tyrosine phosphorylation of IRS-1 and IRS-2,
resulting in hepatic insulin resistance. Furthermore, the
up-regulation of SREBP-1c-regulated lipogenesis con-
tributes to the development of insulin resistance via the
down-regulation of IRS-2 in the liver.3*4% Indeed, in our
study, the induction of lipoprotein lipase and SREBP-1c
and the repression of IRS-2 were detected in the livers of
mice fed the Ath diet (Fig. 7). Moreover, the up-regula-
tion of stearoyl—coenzyme A desaturase 1, an enzyme that
catalyzes the synthesis of monounsaturated fatty acids,
might contribute to lipid accumulation and insulin resis-
tance in the liver, as reported in skeletal muscle.#! There-
fore, the cholesterol-induced and TG-induced alteration
of fatty acid metabolism may cause hepatic insulin resis-
tance in this model of steatohepatitis.

Another possible cause of the liver pathology in our
model is lipid-induced oxidative stress and its down-
stream events, as we identified an accumulation of
4-HNE and protein carbonyls, the activation of stellate
cells, and hepatic inflammation with cell ballooning. In
this study, in addition to cholesterol, the accumulation of
TG and FFAs by the addition of a high-fat component
accelerated oxidative stress, possibly via the up-regulation
of genes involved in the generation of ROS, such as the
NADPH oxidase complex, and the down-regulation of
genes for antioxidant enzymes. While we were preparing
this article, Mari et al.?5 reported that the mitochondrial
loading of free cholesterol, but not TG and FFA, de-
creases mitochondrial glutathione and sensitizes it to the
TNF-a-mediated apoptosis of hepatocytes. Therefore,
the different kinds of accumulated lipids may cause oxi-
dative stress in the liver additively in different ways. In
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Fig. 7. The Ath and Ath+HF diets decreased the mRNA and protein
levels of IRS-2 in the liver. (A) MRNA levels of the IRS-2 genes in the livers
of mice fed standard chow (white bar; n = 3), the Ath diet (gray bar; n =
3), or the Ath+HF diet (black bar; n = 3) after 12 weeks. The values
represent the means = the SEM. *P < 0.05 versus the control group. #P <<
0.05 versus the Ath group. (B) Westem blot of IRS-2 in the livers of mice fed
the standard chow, Ath diet, or Ath+HF diet after 12 weeks.
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