—_

D792 Nucleic Acids Research, 2008, Vol. 36, Database issue

. Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4,
406-425.

. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22,
4673-4680.

. Hedges,S.B. and Kumar,S. (2002) Genomics. Vertebrate genomes
compared. Science, 297, 1283-1285.

. Huttley,G.A., Wakefield, M.J. and Easteal,S. (2007) Rates of
genome evolution and branching order from whole genome
analysis. Mol. Biol. Evol., 24, 1722-1730.

. Ashburner,M., Ball,C A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T. et al.
(2000) Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nar. Genet., 25, 25-29.

. Mulder,N.J., Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A.,
Binns,D., Bork,P., Buillard,V., Cerutti,L., Copley,R. er al. (2007)
New developments in the InterPro database. Nucleic Acids Res., 35,
D224-D228.

Co

24. Endo,T., Ogishima,S. and Tanaka,H. (2002) ETools: Tools to

Handle Biological Sequences and Alignments for Evolutionary
Studies. Genome Inform., 13, 543-544.

.Ota,S. and Li,W.H. (2001) NJML +: an extension of the NJML

method to handle protein sequence data and computer software
implementation. Mol. Biol. Evol., 18, 1983-1992.

. Nei,M. and Gojobori,T. (1986) Simple methods for estimating the

numbers of synonymous and nonsynonymous nucleotide
substitutions. Mol. Biol. Evol., 3, 418-426.

. Zhang,J., Rosenberg,H.F. and Nei,M. (1998) Positive Darwinian

selection after gene duplication in primate ribonuclease genes.
Proc. Natl. Acad. Sci. USA, 95, 3708-3713.

. Takeda,)., Suzuki,Y., Nakao,M., Barrero,R.A., Koyanagi,K.O.,

Jin,L., Motono,C., Hata,H., Isogai,T., Nagai,K. et al. (2006) Large-
scale identification and characterization of alternative splicing
variants of human gene transcripts using 56,419 completely
sequenced and manually annotated full-length cDNAs. Nucleic
Acids Res., 34, 3917-3928.

. Gu,Z., Cavalcanti,A., Chen,F.C., Bouman,P. and Li,W.H. (2002)

Extent of gene duplication in the genomes of Drosophila, nematode,
and yeast. Mol. Biol. Evol., 19, 256-262.



Volff J-N (ed): Gene and Protein Evolution.
Genome Dyn. Basel, Karger, 2007, vol 3, pp 13-29

Evolution of Protein-Protein
Interaction Network

T Makino*®*, T. Gojobori**

*Center for Information Biology and DNA Data Bank of Japan, National Institute

of Genetics, Yata, Mishima, *Immunotherapy Division, Shizuoka Cancer Center
Research Institute, Shimonagakubo, Nagaizumi-cho, Shizuoka, Japan; “Department of
Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin, Ireland;
“Biological Information Research Center, National Institute of Advanced Industrial
Science and Technology, Aomi, Koto-ku, Tokyo, Japan

Abstract

Protein-protein interactions (PPIs) are one of the most important components of biolog-
ical networks. It is important to understand the evolutionary process of PPIs in order to eluci-
date how the evolution of biological networks has contributed to diversification of the existent
organisms. We focused on the evolutionary rates of proteins involved with PPIs, because it
had been shown that for a given protein-coding gene the number of its PPIs in a biological net-
_work was one of the important factors in determining the evolutionary rate of the gene. We
studied the evolutionary rates of duplicated gene products that were involved with PPIs,
reviewing the current situation of this subject. In addition, we focused on how the evolution-
ary rates of proteins were influenced by the characteristic features of PPIs. We, then, con-
cluded that the evolutionary rates of the proteins in the PPI networks were strongly influenced
by their PPI partners. Finatly, we emphasized that evolutionary considerations of the PPI pro-
teins were very important for understanding the building up of the current PPI networks.

Copyright © 2007 S. Karger AG, Basel

Protein-Protein Interaction Network as a Typical
Example of Biological Networks

Interactions between proteins and various molecules including proteins
themselves are absolutely necessary for sustaining life as a whole. For example,
cells are controlied by interacting proteins in metabolic and signaling pathways,
such as the molecular machines that replicate, translate and transcribe genes,
ard build up cell structures. We can classify the biological networks consisting
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of such various interactions basically into five types according to the molecules
interacting with proteins.

(i) Protein-chemical compound interaction: In the metabolic network,
some proteins interact with low-molecular chemical compounds. For example,
galactose is metabolized through a series of steps involving the enzymes that
are encoded by GALI, GAL5, GAL7, and GALI0 [1]. These enzymes interact
with the appropriate metabolic products.

(i) Protein-DNA interaction: In the regulatory network, transcriptional
factors interact with DNA segments such as the promoter region for transcrip-
tional regulation. For example, genes involved in the galactose metabolism are
regulated by the transcriptional factors encoded by GAL3, GAL4, and GALS0.
They interact with the appropriate upstream regions of open reading frames in
the DNA. ,

(iit) Proteiq;RNA interaction: For the interactions between proteins and
nucleotides, proteins interact with not only DNA but also RNA. For example,
proteins in the ribosomes in the translation machinery interact with messenger
RNAs. . .
(iv) Protein-lipid interaction: There are proteins interacting with lipids
such as phosphoinositides. The phosphoinositides serve as the second messen-
gers that regulate diverse cellular processes [2, 3]. For example, steroid hor-
mone receptors that are transcriptional factors interact with steroid hormones
for the transcriptional regulation of target genes [4].

(v) Protein-protein interaction: Finally, protein-protein interactions (PPIs)
are well-studied components of biological networks. PPIs are involved in a
number of biological processes such as protein transportation and degradation,
cell cycle progression, polarity, gene expression and DNA repair. For example,
the transcriptional factor encoded by GALS80 as already mentioned above inter-
acts with the other transcriptional factors encoded by GAL3 and GAL4 for the
regulation of galactose utilization.

Recently, global studies on PPIs have been investigated not only in
- prokaryotes, which are Helicobacter pylori [5] and Escherichia coli [6], but

also in eukaryotes, which are Plasmodium falciparum (7], Caenorhabditis
elegans [8], Drosophila melanogaster [9, 10] and human [11, 12].In particular,
Saccharomyces cerevisiae provides a great advantage for the study of PPIs,
because a vast amount of information about PPIs has been produced not only by
- hundreds of small-scale experiments but also by the high-throughput yeast two-
hybrid system (Y2H system,; [13, 14]) and mass spectrometry of coimmunopre-
cipitated protein complexes (Co-IP; [15-17]). However, the high-throughput
data on PPs are known to contain a number of false-negative and false-positive
interactions. In the case of the false-negative interactions, the PPIs sometimes
“ could not be detected in the Y2H system for full-length ORFs. This is because
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full-length proteins often show much weaker signals than appropriately
trimmed protein regions containing interacting proteins. On the other hand, pro-
teins having low expression levels will not be able to be identified by the Co-IP,
because of the limitation of the sensitivity for the system. Therefore, the detec-
tion of the PPIs should be conducted by the both methods that are mutually
complementary. Proteins such as transcriptional factors activate the expression
of a reporter gene in the Y2H system and lead to false-positive interactions.
Contaminant proteins with high expression levels tend to be recovered in coim-
munoprecipitated protein complexes (Co-IP), even if they do not actually inter-
act with one another. Consequently, the high-throughput data require further
examination for their accuracy. Several methods for removing dubious PPls
from the original data were developed, and as a result, the credible PPIs have
become enriched [18-20].

Evolutionary Studies of Proteln—Protein-lnteraction Networks

Until now, molecular evolutionary analyses have mainly focused on indi-
vidual genes regardless of how they are involved with the interactions among
their gene products. However, it is interesting to carry out evolutionary analyses
of a group of genes in which the encoding proteins interact with one another in
the PPI network. In these analyses, it is important to examine how selective
pressures affect gene products as theé components of PPI networks. It is of
particular interest to study how the organization of proteins as members of PPI A
network affects the evolutionary rates of their corresponding genes.

It should be noted that duplicated genes encoding proteins in PPI networks
provide us with a unique opportunity of making fair comparisons of the genes
under the same ‘initial condition. The pair of proteins encoded by a duplicated
gene pair often share PPI partners [20, 21}, although some of the PPI partners
may be lost later in the evolutionary process. In fact, there are a Iot of dupli-
cated pairs encoding proteins not having the shared PPI partners [21].
Therefore, we examined the relationship in the evolutionary rates between a
duplicated protein in PPIs and its counterpart (‘Differential evolutionary rates
of duplicated genes in protein interaction network’ in this chapter; [22]).

It has been shown that proteins sharing functions tend to interact in the PPI
networks [23, 24]. There is a strong correlation between the structure of the PPI
network and the functions of the proteins in the network [25]. In other words,
many functions appear to be particular parts in the PPI networks. On the other
hand, the recent study gave us an interesting insight [26]. The authors have
shown that there are many proteins interacting with their PPI partners having
different functions. For example, mitogen-activated protein kinase (MAPK)
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interacts with proteins having different functions that are involved in ribosomal
biogenesis, cytoskeleton and directional cell growth. In particular, it has been
shown that such PPIs have biological importance according to an experiment of
double gene deletion for genes encoding the protein and its PPI partner. PPIs
are not in a uniform state as mentioned above. It is of great interest to study how
the interacting proteins have been evolutionarily influenced by their PPI part-
ners in the PPI network. Therefore, we examined the differences in evolutionary
rate among the interacting proteins involved in different PPIs (‘The evolution-
ary rate of a protein is influenced by features of the interacting partners’ in this
chapter; [27]).

Differential Evolutionary Rates of Duplicated Genes in
Protein Interaction Network

The functional constraints of proteins involved in the PPI network are com-
posed of several factors. The so-called fitness effects as well as the gene expres-
sion level are typical factors, because they are known to be negatively correlated
with the rate of amino acid substitutions [28-31]. The number of PPIs for a given
protein is also an important factor for determining its evolutionary rate. It has
been reported that the number of PPI partners for proteins is negatively correlated
with their evolutionary rates [32, 33]. Therefore, after gene duplication, the dif-
ferentiation of PPIs through the PPI losses and/or PPI gains during evolution may
affect the evolutionary rates of duplicated pairs. For a duplicated gene pair, it has
been shown that 6ne copy usually has more PPI partners than the other [34].

Gene duplication is one of the major evolutionary mechanisms for gener-
ating novel genes [35]. After gene duplication, one of the pair may be redun-
dant, such that functional constraint is relaxed to allow one or both to
differentiate as long as the original function is retained as a whole, Three path-
ways have been proposed for functional differentiation of duplicated genes
[36]. First, one copy may be silenced by accumulation of deleterious mutations
and eventually become indistinguishable from the nearby noncoding genomic
regions in the absence of functional constraints, while the other copy retains the
original function. Second, while one copy maintains the original function, the
other acquires a novel function possibly by advantageous mutations. Third, both
copies accumulate mutations that alter the original function, but compensate for
the original function cooperatively. When a duplicated gene pair functionally
differentiates, the evolutionary rate may be accelerated in one or both due to the
relaxation of negative selection or the enhancement of positive selection [37).
In yeast, it has been proposed that the differentiation process is asymmetrical
rather than symmetrical to minimize the risk of deleterious mutations [34]. Itis
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therefore expected that the acceleration of evolutionary rates occurs mainly in
one of two copies after gene duplication. However, it is not yet known how the
duplicated gene products affect their PPIs in evolution.

Duplicated products often interact with the same proteins [20]. One pro-
posed model for the losses and/or gains of PPIs provides the reason why the
products of a duplicated gene pair often share PPI partners [21]. In this model,
although some duplicated pairs lose PPIs during the evolutionary process,
many duplicated pairs retain some shared PPI partners. In a recent study, the

‘magnitude of functional divergence for duplicated pairs was measured by using

the number of shared PPI partners between all pairs in the PPI networks [38]. To
examine the relationship between the evolutionary rate and the functional dif-
ferentiation of duplicated gene products, we focused on the shared PPI partners
that were considered to represent characteristics of the functional differentia-
tion of the duplicated gene products, because the products sharing PPI partners
would not have largely diverged. .
The purpose of the study is to understand how gene duplication influences
the evolution of PPI networks. To study the relationship between gene duplica-
tion and the evolutionary rates of the gene products with PPI partners, we used
the PPIs in Saccharomyces cerevisiae that have well been documented based
not only on hundreds of small-scale experiments but also on high throughout
methods. We set: up and examined the hypothesis that the ratios of evolutionary
rates (faster rate/slower rate) for the pairs sharing any PPI partners are lower
than those for the pairs sharing no PPI partners. We then discuss the mecha-

nisms of the functional differentiation after gene duplication on the basis of the
results obtained.

Losses of PPIs for Proteins Encoded by Duplicated Genes

Soon after gene duplication, the protein encoded by one copy should inter-
act with the same set of proteins as the other, because both proteins are identi-
cal. It has been proposed tbat PPI partners of proteins encoded by duplicated
genes change through PPI losses or PPI gains during evolution [21]. For a
duplicated gene pair, it has been shown that one copy usually has more PPI
partners than the other [34]. However, it was unclear which of the two mecha-
nisms, namely PPI losses and PP gains, is the major force of the evolution of
PPIs. Proteins under strong functional constraints would be hard to change their
PPI partners during evolution, because they are conservative. The PPI losses of
the proteins may accelerate their evolutionary rates, because it has been
reported that the evolutionary rate is negatively correlated with the number of
PPIs [32, 33]. If the PPI losses occur more often than the PPI gains for a dupli-
cated pair, the protein encoded by one copy evolving at a slower rate would have
more PPI partners than the other.
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To examine this possibility, we used duplicated pairs generated by genome
duplication in Saccharomyces cerevisiae, which occurred about 100 million
years ago [39, 40]. For each pair of gene products, we examined whether the
protein with more PPI partners evolved more slowly than the other with less
partners. We then found that a protein with more PPI partners evolved at a
slower rate in 134 (62%) out of the 216 pairs examined, which was significantly
greater than expected under the null hypothesis of random association between
the number of PPI partners and the evolutionary rate (50%). We found that the
protein encoded by one copy evolving at a slower rate had more PPI partners
than the other copy. The results indicated that the PPI losses have occurred
more often than the PPI gains for a copy evolving at a faster rate, on the

assumption that PPIs of a copy evolving at a slower rate are conservative in the
evolutionary process.

Functional Divergence through Changes in PPIs

After gene duplication, there are at least two possibie pathways for PPI
divergence of the proteins encoded by a duplicated gene pair. First, one encoded
by a duplicated pair keeps the shared PPI partners, and the other loses all the
shared PPI partners. The evolutionary rate of the former would be slower than
that of the latter, because the former has to maintain the original function while
the latter is free from it. In other words, they are likely to evolve at different
rates. Second, both proteins share some of the PPI partners. In this case, both
proteins will still have similar functions, and their sequences would not change
by mutations as.drastically as in the latter of the first case. The evolutionary
- rates of the gene products sharing PPI partners may not significantly differ
from one another. If duplicated gene products lose the shared PPI partners, the
ratio of evolutionary rates for the pair (faster rate/slower rate) may be higher
than that for functionally similar pairs.

To test this hypothesis, we examined whether F\/S, were higher than F,/S,,
where F and S denote faster rate and slower rate, respectively, and subscripts 1
and 2 refer to the cases of sharing no PPIs and sharing PPIs, respectively (fig. 1).
Here we defined duplicated pairs sharing PPIs as the pairs sharing at least one
PPI partner. There were 124 duplicated pairs sharing no PPI partners and 130
duplicated pairs interacting with one another or sharing PPI partners. F,/S, was
significantly higher than F,/S, (fig. 2). .

For a duplicated gene pair, if the protein encoded by one copy evolving at
a faster rate has not been silenced during evolution, it would have lost its PPI
partners and have a chance of finding a new PPI partner under the weak or no
functional constraints. On the other hand, the PPIs for the protein encoded by
one copy evolving at a slower rate would be conservative with relatively strong
functional constraints. For duplicated pairs, the gene product evolving at a
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Duplicated pair sharing no PP partners Duplicated pair sharing PPI partners

Fig. 1. Schematic representations of F,, S,, F,, and S,. Closed circles and open circles
respectively mean proteins encoded by duplicated gene pair sharing no PPI and sharing PPlIs. F
(light gray arrow) and S (gray arrow) mean faster rate and slower rate, respectively, and
subscripts 1 and 2 refer to the cases of sharing no PPI and sharing PPIs for duplicated pairs,
respectively. The ratio of evolutionary rates for duplicated pairs after gene duplication was esti-
mated by a faster evolutionary rate of one copya slower rate of another copy (F/S,; FJ/S,).

The proportion of duplicated pairs

® O 6 S & O 6 o
[ 0’ ) o - e

Ratio of evolutionary rates

Fig. 2. Ratios of evolutionary rates for duplicated pairs sharing PPI partners and shar-
ing no PPI partners. Open bars indicate duplicated pairs interacting with one another or shar-
ing PPI partners, while closed bars indicate duplicated pairs sharing no PPI partners.
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Table I. Results of relative rate test for duplicated pairs having PPI partners
and sharing no PPI partners in functional class * transcription’

Number of duplicated pairs
sharing PPI not sharing
partners PPI partners
Significant difference of rates 10 19
No significant difference of rates 13 "7

faster rate will lose the shared PPI partners more frequently than the other. This
implies that a pair of proteins encoded by a duplicated gene pair having few
shared PPI partners evolves at different rates. In fact, the present study indicates
that pairs sharing no PPI partners show a larger ratio of evolutionary rates than
those sharing PPI partners, although it has been reported that a simple relation-
ship between sequence divergence and their functional divergence revealed by
the PPI network analysis could not be established [38]. When a duplicated gene
pair shares no PPI partners, it is possible that the gene products interact with
different PPI partners with different functions. This means that gene duplication
will lead to the functional differentiation of the duplicated gene products
through the PPI losses and/or PPI gains, which will then cause a change in their
evolutionary rates.

Tendency of PPI Divergence for Duplicated Pair in

Different Functional Classes

For investigating the functions of duplicated gene products, we used func-
tional classification established by the MIPS database [41]. In the functional
class of ‘transcription’, there were significantly many duplicated pairs }haring
no PPI partners and having significant difference in evolutionary rates (table 1).
There were also statistically significant differences in the rate between the two
copies in the functional class of ‘protein fate’ (table 2). These results indicate
that the PPIs of the proteins included in these functional classes tend not to be
conservative in the evolutionary process, resulting in a change in their evolu-
tionary rates. The other functional classes showed no significant difference in
ratio of evolutionary rates between duplicated pairs sharing PPI partners and
those sharing no PPI partners.

We found many cases of pairs sharing no PPI partners in the functional
classes such as ‘transcription’ and ‘protein fate’. For example, YNR023W and
YCRO52W (a duplicated pair in ‘transcription’) do not share PPI partners, and
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Table 2. Results of relative rate test for duplicated pairs having PPI partners
and sharing no PPI partners in functional class ‘protein fate’

Number of duplicated pairs

sharing PPI " not sharing

partners : PPI partners
Significant &ﬁ"ctence of rates 2 11

No significant difference of rates 10 s

YOL042C

YFRO37C
YNR023W
YBR283W YCROS2W
" YHRO77C YBR245C

~ Fig. 3. An example for the pair of proteins encoded by duplicated gene pairs and their
PPI partners. The circles and lines represent proteins and PPIs, respectively. The circles in
gray are PP partoers. The closed circles represent proteins encoded by the duplicated gene
pair (YNRO23W and YCRO52W), which are a subunit of SWI/SNF global transcription acti-
vator complex and a subunit of the RSC chromatin-remodeling complex, respectively.

have a significant difference in evolutionary rate between them. In addition,
they are subunits in different protein complexes. YNR0O23W is a subunit of
SWI/SNF global transcription activator complex, and YCR052W is a subunit of
the RSC chromatin-remodeling complex (fig. 3; {42]). We consider the signifi-
cant difference in evolutionary rate between the two copies is caused by drastic
changes in the PPI partners during evolution. Although the proteins encoded by
these duplicated gene pairs would have interacted with the same PPI partners
immediately after the gene duplication, one of the copies would have subse-
quently changed its PPI partners and diverged its functions. It is thus suggested
that YCRO52W, which evolves at a faster rate than YNRO23W, would have
obtained novel functions by changing their PPI partners. Thus, the evolutionary
comparison of the PPI partners of one copy in a duplicated pair with those of
the other is important for understanding their functional differentiations
through PPI network divergence.
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VPS16

a b

Fig. 4. a A protein in a functional module and (5) a protein in a framework module o
the PPI network. The filled circles and lines represent proteins and PPIs, respectively. The
black lines indicate interactions between VPS16 and its PPI partners and between SPS1 anc
its PPI partners. The gray lines indicate interactions among PPl partners. VPS16 interact:
with proteins classified into the same functional class ‘protein fate’ on Munich Informatior
Center for Protein Sequences database [41]. The different grey scales of the circles in & mear
different functional classes. SPS] interacts with proteins classified into different functiona
classes ‘protein fate’, ‘cell cycle/DNA processing’, ‘metabolism’, ‘cellular transport’, anc
‘transcription’, respectively.

The Evolutionary Rate of a Protein is Influenced by
Features of the Interacting Partners

When a two-dimensional presentation of PPI networks is made using :
node and a line between neighboring nodes as a protein and an interactior
between neighboring proteins, respectively, the PPI network is represented by :

- very complex structure of spider web-like networks. It has been reported, in thi
type of representation, that there are proteins tightly clustered in a particula:
part of the PPI network [43]. In particular, the proteins sharing a particula:
functional class tend to appear in the same part of a PPI network, making a clus
ter of the so-called ‘functional module’ in the PPI network [25]. Here, a func.
tional class represents a category into which a group of particular proteins i
classified according to the functional definitions. In other words, a functiona
module of the network is generally defined as a cluster of proteins sharing the
same functional class that occupies a specific part of the network. In the PP’
networks, the proteins building up a functional module have more interaction:
to other proteins within the functional module than to those outside the module
For example, VPS16 of Saccharomyces cerevisiae is clustered in a functiona
module that is required for sorting proteins in vacuolare (fig. 4a).

On the other hand, there are proteins known to interact with those having
different functional classes [26]. Calmodulin, which is a master regulator o
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calcium-mediated signaling [44], interacts with several proteins of different
functional classes such as homeostasis of cations, protein folding and stabiliza-
tion, budding, cell polarity and filament formation [26]. For these proteins, the
gene expression patterns do not correlate with those of their PPI partner pro-
teins, suggesting that they interact with the PPI partners at different subcellular
localizations or different time points. Let us call these the proteins in a frame-
work module. In other words, the protein in a framework module is defined as a
protein mediatingdifferent functions by interactions of proteins having differ-
ent functional classes. For example, SPS1 encoding ser/thr protein kinase of .
cerevisiae is in a framework module, and interacts with proteins classified into
different functional classes (fig. 4b). Therefore, the number of interactions
among the PPI partners of these proteins in the framework module is expected
to be smaller than that of the proteins in the functional module.

It is interesting to investigate the extent to which the evolutionary rate of
proteins is influenced by the nature of PPIs. Therefore, we examined the differ-
ences in evolutionary rate among the proteins having different types of PPI part-
ners. The difference in the evolutionary rate can be interpreted by the difference
in functional constraints if the mutation rate does not vary much with the pro-
teins. Thus, we would also discuss the differences in functional constraint among
the proteins having different types of PPI partners in the PPI network.

SF vs. DF Proteins

Proteins in the PPI networks would have evolved under the influence of
their PPI partners. It has been reported that the number of PPI partners is corre-
lated significantly to their evolutionary rates [32, 33]. A recent study reported
that proteins in the center of the PPI networks evolve more slowly, regardless of
the number of PPI partners [45]. When the proteins lose or gain their PPI part-
ners during evolution, an allowable degree of their amino acid substitutions may
depend not only on the number of their PPI partners but also on the features of
their PPI partners. It has been known that proteins sharing the same functional
class tend to interact with each other [23, 24]. On the contrary, there are pro-
teins that interact with those belonging to different functional classes [26].
Here, we defined a protein having PPI partners of the same functional class
with a high frequency as an SF (the Same Function) protein, on the other hand,
a protein having PPI partners of different functional classes with a high fre-
quency as a DF (the Different Function) protein. It is of particular interest to
know which of the SF or DF proteins is under stronger functional constraints in
the evolutionary process. Therefore, we examined whether the evolutionary
rates of the proteins in the PPI network have been strongly influenced by the
PPI partners having the same or different functional classes. To answer the
question, we compared the evolutionary rates of the SF proteins with those of
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the DF proteins in yeast PPI networks. For this comparative study, we used the
evolutionary distances for 1,035 SF and 763 DF proteins for the comparison. As
a result, we found that the DF proteins evolved at a slower rate, with statistical
significance, than the SF proteins. Thus, we concluded that the DF proteins are
under much stronger functional constraints than the SF proteins.

DP vs. SP Proteins

It has been reported that there are proteins tightly clustered in a particular
part of the PPI network [43]. Denoting proteins in dense and sparse parts of the
PPI network as the DP (Dense Part) and SP (Sparse Part) proteins, respectively,
we defined them using the clustering coefficient [46]. We examined the differ-
ences in evolutionary rates between DP proteins in a dense part of PPI networks
and SP proteins in a sparse part of PPI networks. When we compared the evolu-
tionary rates of the 668 DP proteins with those of the 965 SP proteins, we found
that the SP proteins evolved at a slower rate, with statistical significance, than
the DP proteins. Interestingly enough, this is also opposite to our expectation.
Before conducting the present study, we speculated that the DP proteins would
have slower rates, because it has been reported that proteins having cohesive
patterns of PPIs are more evolutionarily conservative than other proteins in the
PPI network [47). In contrast, our observation suggests that the proteins in a
sparse part of the PPI network could be more important than those in a dense
part. It is possible that the PPI partners in a sparse part in the PPI network are
indispensable because of possible scarceness of substitutable PPI parters. This
is an interesting and meaningful finding.

Comparison of Evolutionary Rates among SF-DP,. SF-SP. DF-DP and

DF-SP Proteins _

According to the results described above, we reasonably hypothesized that
the DF-SP proteins would evolve at the slowest rate in the proteins examined.
To test the hypothesis, we statistically compared the evolutionary rates among
the 443 SF-DP, 353 SF-SP, 122 DF-DP and 457 DF-SP proteins. We found that
out of all proteins examined the DF-SP proteins evolved certainly at the slowest
relative evolutionary rate (fig. S). The result suggests that the proteins having
the PPI partners belonging to different functional classes and being in a sparse
part of the PPI network are under the strongest functional constraints, implying
that those proteins are possibly important for the maintenance and survival of
the PPI network.

We have found that the DF proteins evolved at a slower rate than the SF
proteins. The observation suggests that the proteins involved with multi-different
biological processes in the PPI network are under strong functional constraints.
We have also shown that the SP proteins evolved at a slower rate than the DP
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Fig. 5. Distribution of evolutionary distances for the SF-DP, SF-SP, DF-DP, and DF-SP

proteins. The evolutionary distance is measured as the number of amino acid substitutions
per site.

proteins. In fact, we have shown that the DF-SP proteins evolved at the slowest
rate among all interacting proteins studied. This might be explained if loss of
function in DF-SP proteins affected multiple biological processes more so than
that of proteins with other interaction properties. These results strongly suggest
that the evolutionary rates of proteins depend on the nature of interacting pro-
teins in the PPI network.

For the evolutionary studies of proteins in the PPI networks, it has been
shown that proteins involved in protein complexes are more evolutionarily con-
servative than other proteins in the PP] networks [48]. A protein complex can be
considered as a typical example of SF proteins, because all the subunits are
regarded as belonging to the same functional class due to a particular functional
manifestation of the whole protein complex. To confirm this consideration, we
compared a proportion of subunits in protein complexes for the SF proteins
with that for DF proteins using the protein complex data set in the MIPS data-
- base [41]. As expected, we found that the SF proteins contained more subunits
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of protein complexes than the DF proteins (data not shown). Although the SF
proteins contained relatively many subunits of a protein complex, our results
clearly showed that the SF proteins are evolutionarily much less conservative
than the DF proteins. Moreover, it has been reported that proteins having cohe-
sive patterns of PPIs are more evolutionarily conservative than other proteins in
the PPI network, and tend to be subunits of protein complexes [47]. The pro-
teins would be under strong structural constraints, because many of the proteins
are in an extremely dense part of the PPI network. Although the authors particu-
larly showed high evolutionary conservation of the proteins having cohesive
patterns of PPIs, our finding is that the DF-SP proteins are under the strongest
functional constraints among all interacting proteins studied. This conclusion
highlights the importance of studying the evolution of the DF-SP proteins for
understanding essential features of PPI network evolution,

Prospect of Studi.es in PPI Network Evolution

We focused on two themes to study the evolution of protein-protein inter-
-action networks as a typical example of biological networks.

First, we focused on a relationship between the PPI divergences of dupli-
cated gene products and their evolutionary rates, and examined whether the dif-
ference in evolutionary rate exists between a duplicated pair of genes euc:ding
proteins involved in PPIs. Our results showed the evolutionary rate of a protein
having more PPI partners is much slower than that of the other having fewer PPI
partners. Moreover, we found that the ratios for duplicated pairs sharing PPI
partners are significantly lower than the ratios for pairs sharing no PPI partners.
When a duplicated pair shares no PPI partners, it is possible that the gene prod-
ucts interact with the PPI partners having different functions. These resuits
clearly indicate that gene duplication leads to the functional differentiation of the
duplicated gene pairs through PPI losses and/or PPI gains. The functional dif-
ferentiation would cause eventually the change in their evolutionary rates. The
evolutionary comparison of the PPI partners of one copy in a duplicated pair
with those of the other copy gives an important clue for understanding their
functional differentiations through PPI network divergence.

Second, we focused on the differences in evolutionary rates among inter-
acting proteins having different types of PPI partners, because it is of particular
interest to know how the PPIs influence the evolutionary rate, namely the rate
of amino acid substitutions. In fact, we showed that the DF proteins, which
interact with PPI partners in different functional classes with a high frequency,
evolve at a slower rate than the SF proteins do, which interact with PPI
_ partners in the same functional class with a high frequency. It suggests that the
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interacting proteins involved in multi-different biological processes would be
under strong functional constraints. We also showed that SP proteins, which are
in sparse parts of the PPI networks, evolve at a slower rate than the DP proteins,
which are in dense parts of the networks. The result indicates that the weaker
relationship among PPI partners of proteins is, the more slowly the interacting
proteins evolve. These results strongly suggested that the evolutionary features
of the interacting proteins have been influenced by the type of their PPIs such as
functional and framework modules.

We clearly pointed out the advantage of utilizing a vast amount of infor-
mation about PPIs in the molecular evolutionary studies of biological networks.
In particular, we successfully showed that the evolution of proteins-as the com-
ponents of PPI networks can be understood, to a reasonably great extent,
through the evolutionary rates. Finally, we would like to emphasize that this line
of studies will give us an important insight into the understanding of evolution-
ary processes of the PPI networks. '
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Genetic Stability of Human T Lymphotropic Virus Type I
despite Antiviral Pressures by CTLs!
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Mitsuhiro Osame,* Takashi Gojobori,* and Shuji Izumo*

Human T lymphotroepic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is an inflammatory
neurological disease. Patients with HAM/TSP show high proviral load despite increased HTLV-I Tax-specific CTL. It is still
unknown whether the CTL efficiently eliminate the virus in vive and/or whether a naturally occurring variant virus becomes
predominant by escaping from the CTL. To address these issues, we sequenced a large number of HTLV-I tax genes from
HLA-A*02 HAM/TSP patients and estimated synonymous and nonsynonymous changes of the genes to detect positive selection
pressure on the virus. We found the pressures in three of six CTL epitopes in HTLV-I Tax, where amino acid substitutions
preferentially occurred. Although seme of variant viruses were not recognized by the CTL, no variant viruses accumulated
within 3-8 years, indicating genetic stability of HTLV-I tax gene. These results suggest that CTL eliminate the infected cells
in vivo and naturally occurring variant viruses do not predominate. As Tax is a regulatory protein which controls viral
replication, the amino acid substitutions in Tax may reduce viral fitness for replication. Viral fitness and host immune
response may contribute to the viral evolution within the infected individuals. Furthermore, the genetic stability in the
epitopes despite the antiviral pressures suggests that the three epitopes can be the candidate targets for HTLV-I vaccine
development. The Journal of Immunology, 2007, 178: 5966 -5972.

uman T lymphotropic virus type 1 (HTLV-I)* is a retro- and progression of HAM/TSP. However, an effective treatment to

virus, which causes two different human diseases in reduce the virus has not yet been developed.

some infected individuals: HTLV-I-associated myelop- HAM/TSP patients have high frequency of circulating CTL spe-
athy/tropical spastic paraparesis (HAM/TSP) and adult T cell leu- cific for HTLV-I Tax and CTL efficiently kill Ag-expressed target
kemia (1, 2). Adult T cell leukemia is severe leukemia, for which cells in an in vitro assay (7-9). However, the fact that the proviral

an effective treatment has not yet been established. HAM/TSP is  oad is still high despite these vigorous CTL responses may raise
an inflammatory disease in the spinal cord, where CD4" and the question of whether the CTL really eliminate the virus in vivo.
CD8™ T cells infilrate to the perivascular area (3). The patients  Recently, it was proposed that the killing activity of Tax-specific
show spastic gait and sphincter dysfunction with mild sensory dys-  CTL may be disturbed (10). It has been difficult to show that CTL
function (4). They have increased proviral load as compared with  il| virus-infected cells in vivo; however, calculation of synony-
HTLV-] carriers, which is a strong predictor for the development  moug (without amino acid substitution) and nonsynonymous (with
of HAM/TSP from the carrier state (5). Furthermore, an increase amino acid substitution) changes of virus genes has been devel-
of proviral load is associated with disease progression (6). These oped to show an immunological antiviral pressure in vivo (11). If
suggest that reducing the proviral load prevents the development the rate of nonsynonymous change is greater than that of synon-
ymous change in a region of the virus, this will suggest that an in
vivo positive selection pressure occurs on the region. In HTLV-I
o o ] . infection, it is shown that the ratio of nonsynonymous changes to

*Center for Chronic Viral Diseases, 'Division of Blood Transfusion Medicine, and . . . .
*Department of Neurology and Geriatrics, Graduate School of Medical and Dental synonymous changes in the rax gene is greater in HTLV-I carriers
Sciences, Kagoshima University, Kagoshima, Jupan; and ¥Center for Informaton than in HAM/TSP patients (12). We had previously sequenced
Biology, National Institutes of Genetics, Shizuoka, Japan the HTLV-I rax gene that codes for an immunodominant and
viral regulatory protein, Tax, in a large number of viruses from
patients with HAM/TSP. In this study, using the sequence data,
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FIGURE 1. Amino acid replacements in HTLV-I Tax 1-122 in three HAM/TSP patients with HLA-A*02. The consensus fax gene sequence in each
patient is the same as the ATK-1 sequence first reported. The prototype amino acid sequence from the ATK-| is described above the line. The transverse
bars indicate all the known CTL epitopes which can bind to HLA-A*02. The numbers above the prototype sequence indicate position number of the Tax
protein. The capital letter under the line represents a single occurrence of amino acid replacement found at the position.

infection. In HTLV-I infection, it is unclear whether naturally
occurring variant viruses escape from the host immune system
and become predominant in the infected individuals. We ana-
lyzed longitudinal changes of variant virus proportion in asso-
ciation with variant virus-specific CTL.

Materials and Methods

Patients

Three patients with HAM/TSP (nos. 31, 38, 48) who had HLA-A*0201
allele were included (17). They were residing in Kagoshima, an endemic
area of HTLV-I in Japan. The patients were diagnosed as HAM/TSP based
on the neurological symptoms and seroreactivity to HTLV-I in accordance
with the World Health Organization guidelines. These patients had not
been treated with any antiretroviral drugs. PBMC were separated by Ficoll
gradient centrifugation from heparinized blood repeatedly obtained from
the patients and stored in liquid nitrogen until use. The Institutional Ethical
Committee of Kagoshima University approved this study and informed
consents were obtained from the patients.

Sequence analysis of HTLV-I tax gene

We used three samples from each patient as previously described (17).
Cellular immune responses have predominantly been detected in a regu-
latory protein, HTLV-I Tax. in HTLV-I-infected individuals (7-9). The T
cell epitopes restricted to HLA-A*02 accumulate in the N-terminal portion
of the HTLV-I Tax protein (18). We therefore sequenced N-terminal of
Tax (amino acid position 1-133). The method was previously described
(17). Briefly. 100 ng of DNA extracted from the PBMC was amplified by
35 cycles of PCR. The first PCR products were further amplified by 20
cycles of nested PCR. The amplified products were purified using the QIA
quick purification kit (Qiagen). The purified tax gene was subcloned into
pCR-Blunt II-TOPO cloning vector (Invitrogen Life Technologies). After
linearization by EcoRI digestion. the vector was purified by the QIA quick
purification kit. The rux gene was sequenced using the Dye Terminator
DNA Sequencing kit (Applied Biosystems) in an automatic sequencer (377
DNA Sequencer; Applied Biosystems). Approximately 50 clones were se-
quenced in each sample.

Comparison of selective pressures between CTL epitopes and
the remaining regions

The CTL epitopes in the HTLV-I Tax were previously reported by epitope
mapping (18-21). The reported CTL epitopes that restricted to HLA-A*02
in aa 1-133 are as follows: Tax 11-19 (aa 11-19; LLFGYPVYV), XN3 (aa
21-35: GDCVQGDWCPISGGL). XN4 (aa 31-45; ISGGLCSARL
HRHAL). XN9 (aa 80-95; TQRTSKTLKVLTPPIT), XNi1 (aa 101-115;
IPPSFLQAMRKYSPF), and XNI2 (aa 111-125; KYSPFRNGYMEP).
Based on our sequence data of the rax genes, three phylogenetic trees were
independently constructed by the maximum likelihood method for each
patient (22). The ancestral sequence was inferred at each node in the phy-
logenetic tree using the maximum parsimony method (23). Then, the num-
bers of synonymous and nonsynonymous substitutions throughout each
phylogenetic tree were estimated for each codon site. The total numbers
(count) of synonymous (Cs) and nonsynonymous substitutions (Cn) inde-

pendently occurring in three patients were summed in each codon site. The
total numbers of Cs and Cn were counted in six regions identified as CTL
epitopes and the remaining regions in rax genes. Also, we computed the
total numbers of synonymous (sS) and nonsynonymous (sN) sites in the
regions of compared sequences. To examine selective pressure in the re-
gions, the test of significance between the rate of Cs to sS and the rate of
Cn to sN was performed in the regions by the two-tailed )* test (24).
Values of p < 0.05 were considered significant.

Detection of positively selected regions of the tax gene

Positive selection pressure to the rax gene was examined by the modified
method of Suzuki and Gojobori (25, 26) by three sequence data isolated
from three patients. In this method, a phylogenetic tree was reconstructed
and the ancestral sequence was inferred as described above. Then, the
average number of synonymous (sS) and nonsynonymous (sN) sites and
the total number of synonymous (Cs) and nonsynonymous (Cn) substi-
tutions throughout the phylogenetic tree were estimated for each codon
site by the Nei-Gojobori method (11). To examine positively selected
regions in the rax gene, Cs, Cn, sS, and sN for a window size of five
codon sites were calculated by sliding the window on the tax gene. The
test of significance between the rate of Cs to sS and the rate of Cn to sN
was performed in each window by the two-tailed Fisher's exact test
(22).

Peptides

Substituted amino acids were predicted from the obtained sequence data of
the rax gene. The variant epitope peptides of Tax 11-19 and influenza virus
M1 peptide (GILGFVFTL) were synthesized using F-moc solid-phase
methodology (Kurabo). All the variant epitopes were designated as G4R,
when the glycine at position 4 of the Tax 11-19 was substituted to
arginine. Influenza virus M1 peptide was used as a control peptide that
binds to HLA-A*02 (27). Purity of the peptides was over 90% by HPLC
analysis. The synthetic peptides were resolved in 50% DMSO in PBS
at | mM.

Intracellular cytokine detection by flow cytometry

The assay was conducted by a modified protocol as previously described
(17). Briefly, Hmy2.CIR cells transfected with HLA-A*0201 (Hmy-A2)
were prepulsed with 1 M Tax 11-19 or variant epitopes for 1 h and were
washed. Cryopreserved PBMC were quickly thawed and washed. A total of
5 X 10° PBMC were cocultivated with the same number of peptide-pre-
pulsed Hmy-A?2 cells for 6 h. Brefeldin A (Sigma-Aldrich) was added to
the cells at a final concentration of 10 pg/ml at the beginning of the culture
to minimize the endogenous expression of HTLV-I protein on the infected
cell surface. After culture. cells were harvested. washed, and stained with
anti-human CD8 Ab conjugated with PC5 (Beckman Coulter) at 4°C for 20
min. Cells were washed and fixed with 4% paraformaldehyde for 5 min.
then washed again. The cells, resuspended in 50 pl of permeabilization
buffer containing 0.1% saponin (Sigma-Aldrich), were stained with anti-
human IFN-y Ab conjugated with FITC (BD Pharmingen) at 4°C for 20
min. Epics-XL flow cytometer and SYSTEM II software were used for
fluorescent signal detection and data analysis (Beckman Coulter). Lym-
phocytes were readily distinguished from Hmy-A2 cells by size and were



