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antiviral response. The type I interferon (IFN) system plays a major role in
antiviral innate immunity (Samuel 2001; Stetson and Medzhitov 2006). Upon
viral infection, type I IEN is secreted in body fluid and expands IFN response
signals, resulting in the activation of various enzymes that prevent viral replica-
tion. In addition to antiviral activity, type I IFN has been known to exert vari-
ous biological effects such as cell cycle regulation, differentiation, and immune
modulation. Furthermore, innate immune responses lead to the activation of
specific cells with antigen-presenting functions to facilitate the initiation
of adaptive immunity.

The triggering of the IFN system is the activation of [FN genes. Since the
initial discovery of type I IFN, the activation mechanism of the type I IFN
genes has been a major focus of many researchers. Although several double-
stranded (ds) RNA-binding proteins such as protein kinase-activated by RNA
(PKR) have been attributed to the detection of replicating viral RNA, gene
knockout studies do not support its role (Yang et al. 1995). Recent functional
analyses revealed that TLRs function as pathogen receptors including those
of viral origin (Takeda and Akira 2005). TLR3 has been identified as a recep-
tor for exogenous dsRNA (Alexopoulou et al. 2001); however, TLR3-deficient
cells can still activate type I IFN genes (Diebold et al. 2003; Yoneyama et al.
2004), suggesting the existence of other receptor(s). Screening of an expres-
sion cDNA library identified RIG-I as an essential receptor for virus-derived
dsRNA (Yoneyama et al. 2004). In this article, we describe the recently identi-
fied function of the RIG-I family of RNA helicases in innate immune reactions
to infecting viruses.

2
The Role of TLR and RIG-1 Family Helicases in Viral Infection _

2.1
TLR Detects Extracellular Pathogen-Associated Molecular Patterns

Toll was first identified as a transmembrane receptor regulating insect mor-
phogenesis (Hashimoto et al. 1988). Toll mutation also results in increased
sensitivity to fungi in Drosophila (Lemaitre et al. 1996), leading to the identifi-
cation of mammalian Toll-like receptors (TLRs) as sensing receptors of various
pathogen-associated molecular patterns (PAMPs) (Medzhitov et al. 1997). Ten
members of human TLRs are expressed in a tissue-specific manner and many

~ are expressed in dendritic cells (DCs) and macrophages (Takeda and Akira

2005). Although each TLR detects a distinct set of PAMPs, a common extra-
cellular leucine-rich repeat (LRR) motif is responsible for sensing. When LRR




Regulation of Antiviral Innate Immune Responses : 195

detects a pathogen, a signal is generated in the cytoplasm, which is mediated
by the cytoplasmic domain of the receptor. TLR activation results in the

production of various cytokines, leading to the activation of innate immune
responses (as described in this volume by Severa and Fitzgerald). Upon TLR
activation, macrophages and DCs differentiate into antigen-presenting cells
initiating antigen-specific acquired immunity. Viral infection is sensed by three
TLRs: TLR3 (Alexopoulou et al. 2001), TLR7/8 (Diebold et al. 2004; Heil et al.
2004; Lund et al. 2004), and TLR9 (Hemmi et al. 2000; Krug et al. 2004; Lund

et al. 2003), which are mostly expressed on the endosomal membrane (Fig. 1).

Double-stranded RNA (dsRNA), single-stranded RNA, and unmethylated
CpG DNA are detected by TLR3, TLR7/8, and TLRS, respectively (Fig. 2). This
subset of TLRs activates transcription factors including NF-kB, IRF-3, and
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Fig.1 Recognition of PAMPs by TLR and RIG-I family helicases. Transmembrane
receptor TLR is expressed on the plasma or endosomal membranes and senses
extracellular PAMPs. RIG-I family helicases detect viral RNA in the cytoplasm. Activa-
_ tion of these receptors transduces signals resulting in overlapping, butin a different
set of target genes, including cytokines and chemokines
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Fig.2 Recognition of viral nucleic acids by different TLRs. TLR3, TLR7/8, and TLR9 ?
‘ detect dsRNA, ssRNA, and unmethylated CpG DNA. MyD88 adaptor is indispens- -

able for signaling by TLR7/8 and 9, whereas another adaptor TRIF is essential for
TLR-3 signaling

‘8

IRF-7 through common and distinct cytoplasmic adaptor molecules (Takeda
and Akira 2005).

K 2.2
Cytoplasmic Receptor, RIG-1 Helicase Family

N ' Since dsRNA such as polyl:polyC is known to induce [FN synthesis, it is gener-
: ally accepted that dsRNA is the major viral product responsible for the activation
i of innate immune responses. TLR3 was first shown to confer responsiveness to
exogenously added polyl:polyC in HEK293T cells (Alexopoulou et al. 2001),
and is thus hypothesized to function as a physiological sensor of replicating
viruses. However, TLR-3-deficient cells are still responsive to viral infection
: or poly I:poly C transfection (Yoneyama et al. 2004), suggesting an alternative
B cytoplasmic sensor. '
o . Functional screening identified human RIG-I as putative positive regulator
1B of IEN genes (Yoneyama et al. 2004). RIG-I is a putative RNA helicase con-
. taining two repeats of caspase recruitment domain (CARD) at the N-terminal
5 region and a DExH/D box helicase homology region at its C-terminal region
, (Fig. 3). RIG-I exhibits specific binding activity to dsRNA. Overexpression of
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Fig.3A,B Structure—function relationship of RIG-I. A Structure of RIG-1. B Biological
activity of RIG -I mutants

RIG-Iin cultured cells did not significantly activate the IEN promoter; how-
ever, overexpression of the N-terminal region containing two CARD repeats’

i s W N it et 1

alone constitutively activated the IFN promoter. This suggests that CARD is
essential and sufficient for signaling, and is under negative regulation by the
C-terminal region. Full-length RIG-I is present as an inactive form; however,
it can be activated by viral infection or transfection of dsRNA. This supports
the speculation that inhibition of CARD by the C-terminal region is reversed
by dsRNA. Interestingly, RIG-I lacking CARD acts as a dominant-negative
z inhibitor of virus-induced activation of IFN- promoter. Furthermore, K270A
ﬁ mutant, which has disrupted ATP binding motif within the conserved helicase
I8 domain, also functions as a dominant inhibitor. These observations suggest
that, in addition to dsRNA binding, ATP hydrolysis is necessary for the induced

unmasking of CARD.

In the human genome database, there are two other genes encoding RIG-I-

; related helicases, MDA5 and LGP2 (Yoneyama et al. 2005). MDA5 exhibits a simi-
f 1‘ ‘lar domain structure as RIG-I, characteristic of two repeat CARDs and the helicase
i domain (Fig. 4). The third helicase LGP2 lacks CARD. Functional analyses of these
] helicases, using cell culture, revealed that MDA5 functions as a positive signal-
i ing regulator, similar to RIG-L. Recent studies using gene disruption of RIG-I and
I . MDAS revealed that these helicases detect different viruses (Gitlin et al. 2006; Kato
et al. 2005, 2006). MDAS was essential for detection of picorna virus infection,
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Fig.4 Structure of RIG-I family helicases. Human and mouse RIG-I family consists
of RIG-I, MDAS5, and LGP2. Percentage indicates amino acid identity between
corresponding domains

while RIG-I was critical for detection of other viruses types tested. Interestingly,
this virus specificity likely reflects different RNA species generated by respective
viruses. At present, the chemical basis of this difference is not known. Functional
analyses of LGP2 in cell culture revealed that LGP2 dominantly inhibits the
virus-induced activation of IFN genes (Rothenfusser et al. 2005; Yoneyama et al.
2005). Since LGP2 is transcriptionally induced by autocrine IFN, its function as
a feedback negative regulator has been suggested.

3
Signaling Cascades of Antiviral Innate Responses

A comparison of signaling cascades initiated by the detection of dsRNA by TLR3
and RIG-I/MDAS5 is illustrated in Fig. 5. TLR3 activation by dsRNA occurs in the
endosome and the signal is transmitted through TRIF (Hoebe et al. 2003; Oshiumi
etal. 2003; Yamamoto et.al. 2002, 2003), TBK-1 (NAK, T2K)/IKKi (IKK-€) kinases
(Fitzgerald et al. 2003; Hemmi et al. 2004; McWhirter et al. 2004; Perry et al. 2004;
Sharma et al. 2003). The latter kinases are responsible for a specific phosphoryla-
tion and activation of IRF-3: It was shown that TBK-1/IKXi kinases are under
positive and negative régulation by NAP1 and SIKE, respectively (Huang et al.
2005; Sasai et al. 2005). RIG-I/MDADS activates a novel adaptor IPS-1 (MAVS, Car-
dif, VISA) containing a single copy of CARD (Kawai et al. 2005; Kumar et al. 2006;
Meylan et al. 2005; Seth et al. 2005; Sun et al. 2006; Xu et al. 2005). Interestingly,
IPS-1 is anchored on the outer membrane of mitochondria via its C-terminal

transmembrane domain (Seth et al. 2005). Although a mitochondrial association
is critical for the signaling, its mechanism is.elusive. IPS-1 apparently activates the
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Fig.5 Signaling cascade induced by dsRNA. TLR3 recognizes extracellular dsRNA
in endosomes. Upon dsRNA binding, the cytoplasmic domain of TLR3 transmits a
signal to an adaptor, TRIE Cytoplasmic dsRNA is recognized by RIG-1 and MDAS5.
CARD of these helicases interacts with an adaptor, IPS-1, which localizes on the
outer membrane of mitochondria. Signals mediated by TRIF and IPS-1 activate
common protein kinases TBK-1 and IKK-], resulting in phosphorylation-mediated
activation of transcription factor IRF-3. IRF-3, as a complex with co-activator CBP
or p300, activates target genes including type I IFN genes. Secreted IFN activates
secondary signals through IFN receptor and JAK-STAT pathway to activate ISGs

IRF-3 kinases TBK-1/IKKi. Thus, RIG-I/MDAD5 activates a distinct signaling cas-
cade from TLR3 and the signal is converged at TBK-1/IKKi (Fig. 5).

4 V
Cell-Type-Specific Function of TLRs and the RIG-I Family

As mentioned earlier, TLR7/8 and TLRO detect distinct viral PAMPs and acti-
vate signaling cascades, MyD88, IRAK1, and IRF-7 (Takeda and Akira 2005). So

far, this signaling has been showed to be specific for plasmacytoid DCs (pDCs),

which are responsible for the production of high levels of serum IFN-« (Fig. 6).
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Fig.6 Tissue-specific signaling cascade for IFN gene activation. Virus infection

triggers a distinct signaling cascade in pDCs and other cell types including cDCs.

TLR7/8 and TLR9 are specifically expressed in pDCs, whereas TLR3 is expressed in
¢DCs. IFN induction in pDC is dependent on MyD88, IKKq, and IRF-7, whereas
these adaptors are dispensable in other cell types

pDCs and other cell types, including ¢cDCs, use distinct pathways in a mutually
exclusive manner to sense viral infections. As revealed by analysis using knock-
out mice, MyD88 but not RIG-1 is essential in pDCs, and RIG-I but not MyD88
is critical in cDCs (Kato et al. 2005, 2006) (Fig. 6). The biological 51gmﬁcance
of TLR3 function in viral infection is not well established.

Viral Evasion Strategies for Antiviral Responses

With the elucidation of host antiviral response mechanisms, it has become
_evident that replication-competent viruses are equipped to counteract the anti-
viral mechanisms. It is well known that acutely infecting viruses, which undergo
a lytic infection, selectively inhibit host macromolecular syntheses collectively
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own as shut off. Apart from this nonspecific blockade, viruses encode inhibitory
PIOIEINS, Wch Target sprofiie processes of Ine anivird) Signding.

V proteins of paramyxoviruses bind to MDA5 and inhibit its signaling
(Andrejeva et al. 2004; Yoneyama et al. 2005). V protein of Sendai virus spe-
cifically binds to MDAS but neither interaction nor blockade was observed
with RIG-I; however, in light of the fact that paramyxoviruses are specifically
detected by RIG-I, as evidenced by RIG I knockout mice, its physiological
relevance is controversial.

Hepatitis C virus (HCV) is known to be poorly adaptable to tissue culture
for replication. One reason is its high sensitivity to IFN-mediated reaction: HCV
replication requires host cell mutations that inactivate RIG-I signaling (Sumpter
et al. 2005). HCV encodes a protein complex, NS3/4A, which acts as RNA heli-
case and protease. NS3/4A protease cleaves IPS-1 at its cytoplasmic domain,
thus releasing it from mitochondria (Lin et al. 2006; Loo et al. 2006; Meylan et al.
2005). As IPS-1 is an essential adaptor for both RIG-I and MDA5 signaling and
its association with mitochondria is obligatory, this cleavage completely blocks
RIG-I/MDAS signaling. Indeed, IPS-1 mutation at the cleavage motif or NS3/4A
protease inhibitor restores the activation cascade stimulating the IFN genes.

NS1 protein of influenza A virus has been implicated in the inhibition of
IFN gene activation. Using influenza A virus with NS1 mutation and RIG-I
knockout mice, it was shown that NS1 blocks the signaling cascade triggered
by RIG-I (Kato et al. 2006). NS1 is a dsRNA binding protein, thus sequestra-
tion of RIG-I from its ligand is one mechanism; however, the dsSRNA-binding-
deficient mutant of NS1 remains inhibitory (Donelan et al. 2003), suggesting
multiple actions of this protein.

Ebola virus VP35 protein is another dsRNA binding protein inhibiting RIG-
I-mediated signaling (Cardenas et al. 2006). Like NS1 of influenza A virus,
VP35 may have dual inhibitory functions: in addition to dsRNA sequestration,
it may be inhibiting steps downstream of IPS-1and IRF-3 kinases.

Since RIG-I and MDAS5 are IFN-inducible and positive feedback is an
important trait of the system, inhibition of IFN action, including IFN-R, by
the JAK-STAT pathway remotely inhibits RIG-I and MDAS. In this regard, viral
proteins that target IFN action are also inhibitory for IFN production.

6
Ligands for RIG-1 and MDA5

In vitro binding studies revealed that RIG-I exhibits a specific binding activ-
ity to dsRNA, such as poly I:C, poly A:U, 5" or 3’ non-coding genomic RNA of
HCV synthesized in vitro, but not to poly A, tRNA, single-stranded region of
HCYV genomic RNA and dsDNA (Sumpter et al. 2005; Yoneyama et al. 2004).
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MDAS exhibits a much weaker binding activity to poly I:C. Inconsistent with
the in vitro binding, functional analysis using knockout mice and cells deficient
in either RIG-I or MDAS revealed that dsRNA produced by in vitro transcrip-
tion and poly I:C are specifically detected by RIG-T and MDAS, respectively
(Kato et al. 2006). Furthermore, the RNA viruses tested were classified into two
groups; picorna viruses (including EMCV) are specifically sensed by MDAS5 and
other viruses (including VSV, influenza virus and Sendai virus) by RIG-I. The
specificity arises from different classes of RNA structure, as suggested by the
results that RNA extracted from VSV and EMCV viral particles activated RIG-I
and MDADS, respectively. This result includes noteworthy facts: VSV genomic
RNA is unlikely to be highly double-stranded; under certain circumstances,
viral replication may not be necessary to activate RIG-I. For dsRNA recogni-
tion, one report suggests the importance of end structure for selective activa-
tion of IFN genes or RNA interference (Marques et al. 2006). The search and
elucidation for true ligands present in virus-infected cells for RIG-I and MDA5
is absolutely necessary to further our understanding of how self and non-self
is recognized at the RNA level. At present there is no reasonable explanation to
satisfy all these observations. :
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