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and therefore, GGM can be easily applied to a wide variety
of data. However, straightforward applications of statistical
theory to practical data fail in some cases, and GGM also
fails frequently when applied to gene expression profiles; here
the expression profile indicates a set of the expression de-
“grees of one gene, measured under various conditions. This
is because the profiles often share similar expression pat-
terns, which indicate that the correlation coefficient matrix
between the genes is not regular. Thus, we have devised a pro-
cedure, named ASIAN (automatic system for inferring a net-
work), to apply GGM to gene expression profiles, by a combi-
nation of hierarchical clustering [14]. First, the large number
of profiles is grouped into clusters, according to the standard
approach of profile analysis [15]. To avoid the generation
of a nonregular correlation coefficient matrix from the ex-
pression profiles, we adopted a stopping rule for hierarchical
clustering [10]. Then, the relationship between the clusters is
inferred by GGM. Thus, our method generates a framework
of gene regulatory relationships by inferring the relationships
between the clusters [11, 16], and provides clues toward es-
timating the global relationships between genes on a large
scale.

Methods for extracting biological knowledge from large
amounts of literature and arranging it in terms of gene
function have been developed. Indeed, ontologies have been
made available by the gene ontology (GO) consortium [17]
to construct a functional categorization of genes and gene
products, and by using the GO terms, the software deter-
mines whether any GO terms annotate a specified list of
genes at a frequency greater than that expected by chance
[18]. Furthermore, various software applications, most of
which are commercial software, such as MetaCore from
GeneGo http://www.genego.com/, have been developed for
the navigation and analysis of biological pathways, gene reg-
ulation networks, and protein interaction maps [19]. Thus,
advances in the processing of biological knowledge have en-
abled us to correspond to the results of gene expression anal-
yses for a large amount of data with the biological func-
tions.

In this study, we analyzed the gene expression profiles
from the CHC and HCC cell stages, by ASIAN based on the
graphical Gaussian Model, to reveal the framework of gene
group associations in hepatocellular carcinogenesis. For this
purpose, first, the genes characteristically expressed in hep-
atocellular carcinogenesis were selected, and then, the pro-
files of the genes thus selected were subjected to the associ-
ation inference method. In addition to the association in-
ference, which was presented by the network between the
clusters, the network was further interpreted systematically
by the biological knowledge of the gene interactions and by
the functional categories with GO terms. The combination
of the statistical network inference from the profiles with the
systematic network interpretation by the biological knowl-
edge in the literature provides a snapshot of the orchestration
of gene systems in hepatocellular carcinogenesis, especially
for bridging the gap between the information on the disease
mechanisms at the molecular level and at more macroscopic
levels.

2. MATERIALS AND METHODS
2.1. Gene selection

We selected the up- and downregulated genes characteristi-
cally expressed in the CHC and HCC stages, as a prerequi-
site for defining the variables in the network inference by
the graphical Gaussian modeling. This involved the follow-
ing steps. (1) The averages and the standard deviations in the
respective conditions, AV; and SDy, for j = 1,..., N, are cal-
culated. (2) The expression degree of the ith gene in the jth
condition, e;;, is compared with [AV; = SDj|. (3) The gene
is regarded as a characteristically expressed gene, if the num-
ber of conditions that e;; > |AV; £ SDj| is more than N,/2.
Although the criterion for a characteristically expressed gene
is usually |AV; + 2SD;|, the present selection procedure de-
scribed above is simply designed to gather as many charac-
teristically expressed genes as possible, and is suitable to cap-
ture a macroscopic relationship between the gene systems es-
timated by the following cluster analysis.

2.2. Gene systems network inference

The present analysis is composed of three parts: first, the pro-
files selected in the preceding section are subjected to the
clustering analysis with the automatic determination of clus-
ter number, and then the profiles of clusters are subjected
to the graphical Gaussian modeling. Finally, the network in-
ferred by GGM is rearranged according to the magnitude of
partial correlation coefficients, which can be regarded as the
association strength, between the clusters. The details of the
analysis are as follows.

Clustering with automatic determination
of cluster number

2.2.1.

In clustering the gene profiles, here, the Euclidian distance
between Pearson’s correlation coefficients of profiles and
the unweighted pair group method using arithmetic aver-
age (UPGMA or group average method) were adopted as the
metric and the technique, respectively, with reference to the
previous analyses by GGM [11, 16]. In particular, the present
metric between the two genes is designed to reflect the simi-
larity in the expression profile patterns between other genes
as well as between the measured conditions, that is,
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where n is the total number of the genes, and r;; is the Pear-
son correlation coefficient between the i and j genes of the
expression profiles that are measured at N, conditions, pi,
(k=1,2,...,N.):
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In the cluster number estimation, various stopping rules
for the hierarchical clustering have been developed [20]. Re-
cently, we have developed a method for estimating the clus-
ter number in the hierarchical clustering, by considering the
following application of the graphical model to the clusters
[10]. In our approach, the variance inflation factor (VIF) is
adopted as a stopping rule, and is defined by

VIF; = ', 3)
where r;! is the ith diagonal element of the inverse of the
correlation coefficient matrix between explanatory variables
[21]. In the cluster number determination, the popular cutoff
value of 10.0 [21] was adopted as a threshold in the present
analysis, also with reference to the previous analyses.

After the cluster number determination, the average ex-
pression profiles are calculated for the members of each clus-
ter, and then the average correlation coefficient matrix be-
tween the clusters is calculated from them. Finally, the av-
erage correlation coefficient matrix between the clusters is
subjected to the graphical Gaussian modeling. Note that the
average coefficient correlation matrix avoids the difficulty
of the above numerical calculation, due to the distinctive
patterns of the average expression profiles of clusters. This
means that the GGM works well for the average coefficient
correlation matrix.

2.2.2. Graphical Gaussian modeling

The concept of conditional independence is fundamental to
graphical Gaussian modeling (GGM). The conditional inde-
pendence structure of the data is characterized by a condi-
tional independence graph. In this graph, each variable is
represented by a vertex, and two vertices are connected by
an edge if there is a direct association between them. In con-
trast, a pair of vertices that are not connected in the graph is
conditionally independent.

In the procedure for applying the GGM to the profile data
[11], a graph, G = (V, E), is used to represent the relation-
ship among the M clusters, where V is a finite set of nodes,
each corresponding to one of the M clusters, and E is a fi-
nite set of edges between the nodes. E consists of the edges
between cluster pairs that are conditionally dependent. The
conditional independence is estimated by the partial correla-
tion coefficient, expressed by

ril
G

where rijjes is the partial correlation coefficient between
variables i and j, given the rest variables, and r;; is the (i, j)
element in the reverse of the correlation coefficient matrix.
In order to evaluate which pair of clusters is condition-
ally independent, we applied the covariance selection [22],

4
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which was attained by the stepwise and iterative algorithm

developed by Wermuth and Scheidt [23]. The algorithm is
presented as Algorithm 1.

The graph obtained by the above procedure is an undi-
rected graph, which is called an independence graph. The in-

Step 0: Prepare a complete graph of G(0) = (V, E). The nodes
correspond to M clusters. All of the nodes are connected.
G(0) is called a full model. Based on the expression profile
data, construct an initial correlation coefficient matrix C(0).

Step 1: Calculate the partial correlation coefficient matrix P(1)
from the correlation coefficient matrix C(1). 1 indicates the
number of the iteration.

Step 2: Find an element that has the smallest absolute value
among all of the nonzero elements of P(t). Then, replace the
element in P(r) with zero.

Step 3: Reconstruct the correlation coefficient matrix,
C(r + 1), from P(). In C(7 + 1), the element corresponding
to the element set to zero in P(t) is revised, while all of the
other elements are left to be the same as those in C(7).

Step 4: In the Wermuth and Sheidt algorithm, the termination
of the iteration is judged by the “deviance” values. Here, we
used two types of deviance, devl and dev2, with the
following: oo

_ |C(x +1)]
devl = N.log (———l 0] ), “
dev2 = N_log (%ﬂ)

Calculate devl and dev2. The two deviances follow an
asymptotic x? distribution with a degree of freedom = n, and
that with a degree of freedom = 1, respectively. n is the
number of elements that are set to zero until the (7 + 1)th
iteration. In our approach, n is equal to ( + 1). |C(7)|
indicates the determinant of C(7). N, is the number of
different conditions under which the expression levels of M
clusters are measured.

Step 5: If the probability value corresponding to devl < 0.05,
or the probability value corresponding to dev2 < 0.05, then
the model C(7 + 1) is rejected, and the iteration is stopped.
Otherwise, the edge between a pair of clusters with a partial
correlation coefficient set to zero in P(1) is omitted from G(1)
to generate G(7 + 1), and 7 is increased by 1. Then, go to Step
1.

ALGORITHM 1

dependence graph represents which pair of clusters is con-
ditionally independent. That is, when the partial correlation
coefficient for a cluster pair is equal to 0, the cluster pair is
conditionally independent, and the relationship is expressed
as no edge between the nodes corresponding to the clusters
in the independence graph.

The genes grouped into each cluster are expected to share
similar biological functions, in addition to the regulatory
mechanism [24]. Thus, a network between the clusters can
be approximately regarded as a network between gene sys-
tems, each with similar functions, from a macroscopic view-
point. Note that the number of connections in one vertex is
not limited, while it is only one in the cluster analysis. This
feature of the network reflects the multiple relationships of a
gene or a gene group in terms of the biological function.
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2.2.3. Rearrangement of the inferred network

When there are many edges, drawing them all on one graph
produces a mess or “spaghetti” pattern, which would be dif-
ficult to read. Indeed, in some examples of the application
of GGM to actual profiles, the intact networks by GGM still
showed complicated forms with many edges {11, 16]. Since
the magnitude of the partial correlation coefficient indicates
the strength of the association between clusters, the intact
network can be rearranged according to the partial corre-
lation coefficient value, to interpret the association between
clusters. The strength of the association can be assigned by
a standard test for the partial correlation coefficient [25]. By
Fisher’s Z transformation of partial correlation coefficients,
that is,

1 1'*"'ij~rcst
2= Liog (1) :
2 B 1- Tij-rest ©

Z is approximately distributed according to the following
normal distribution:

1 1+ Tijorest i
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where N, and M are the number of conditions and the num-
ber of clusters, respectively. Thus, we can statistically test the

observed correlation coefficients under the null hypothesis
with a significance probability.

2.3. Statistical significance of the inferred network
with the biological knowledge

The inferred network can be statistically evaluated in terms
of the gene-gene interactions. The chance probability was es-
timated by the correspondence between the inferred cluster
network and the information about gene interactions. The
following steps were used. (1) The known gene pairs with
interactions in the database were overlaid onto the inferred
network. (2) The number of cluster pairs, upon which the
gene interactions were overlaid, was counted. (3) The chance
probability, in which the cluster pairs connected by the estab-
lished edges in the network were found in all possible pairs,
was calculated by using the following equation:

0

where N is the number of possible cluster pairs in the net-
work, n is the number of cluster pairs with edges in the in-
ferred network, f is the number of cluster pairs with edges
in the inferred network, including the known gene pairs with
interactions, and g is the number of cluster pairs, including
the known gene pairs with interactions.

P=1-

2.4. Evaluation of the inferred network in terms of the
biological knowledge

The inferred network can be evaluated in terms of the bi-
ological knowledge. For this purpose, we characterize the

clusters by GO terms, and overlay the knowledge about
the gene interactions onto the network. For this purpose,
we first use GO::TermFinder [18] to characterize the clus-
ters by GO terms with the user-defined significance prob-
ability (http://search.cpan.org/dist/GO-TermFinder). Then,
Pathway Studio [19] is used to survey the biological informa-
tion about the gene interactions between the selected genes.

2.5. Software

All calculations of the present clustering and GGM were per-
formed by the ASIAN web site {26, 27] (http://www.eureka.
cbrc.jp/asian) and “Auto Net Finder,” the commercialized
PC version of ASIAN, from INFOCOM CORPORATION,
Tokyo, Japan (http://www.infocom.co.jp/bio/download).

2.6. Expression profile data

The expression profiles of 8516 genes were monitored in 27
CHC samples and 17 HCC samples [28].

3. RESULTS AND DISCUSSION
3.1. Clustering

Among the 8516 genes with expression profiles that were
measured in the previous studies [28], 661 genes were se-
lected as those characteristically expressed in the CHC and
HCC stages. As a preprocessing step for the association in-
ference, the genes thus selected were automatically divided
into 18 groups by ASIAN [26, 27]. Furthermore, each cluster
was characterized in terms of the GO terms, which define the
macroscopic features of the cluster in terms of the biological
function.

Figure 1 shows the dendrogram of clusters, together with
their expression patterns. As seen in Figure 1, the genes were
grouped into 18 clusters, in terms of the number of mem-
bers and the expression patterns in the clusters. The average
number of cluster members was 36.7 genes (SD, 14.2), and
the maximum and minimum numbers of members were 69
in cluster 14 and 18 in cluster 9, respectively. As for the ex-
pression pattern, five clusters (10, 12, 14, 15, and 18) and
ten clusters (1-7, 9, 16, and 17) were composed of up- and
downregulated genes, respectively, and three clusters (8, 11,
and 13) showed similar mixtures of up- and downregulated
genes.

Table 1 shows the GO terms for the clusters (clus-
terGOB), which characterized them well (see details at
http://www.cbrc.jp/~horimoto/suppl/HCGO.pdf). Among
the 661 genes analyzed in this study, 525 genes were char-
acterized by the GO terms, and among the 18 clusters, 11
clusters were characterized by GO terms with P < .05. In
addition, 188 genes (28.3% of all characterized genes) cor-
responded to the GO terms listed in Table 1. As seen in the
table, although most clusters are characterized by several GO
terms, reflecting the fact that the genes function generally
in multiple pathways, the clusters are not composed of a
mixture of genes with distinctive functions. For example,
cluster 2 is characterized by 10 terms, and most of the terms
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are related to the energy metabolism. Thus, the GO terms
in the respective clusters share similar features of biological
functions, which cause the hierarchical structure of the GO
term definitions.

. In Table 1, most of the clusters characterized by GO
terms with P < .05 are related to response function and to
metabolism. Clusters 1, 6, 8, 12, and 13 are characterized by
GO terms related to different responses, and clusters 2, 3, 4,
and 7 are characterized by GO terms related to different as-
pects of metabolism. Although the genes in two clusters, 14
and 16, did not adhere to this dichotomy, the genes charac-
teristically expressed in HCC in the above nine clusters were
related to the responses and the metabolic pathways. As for
the remaining clusters with lower significance, three clusters
(9, 10, and 11) were also characterized by response functions,
and four clusters (5, 15, 17, and 18) were related to morpho-
logical events at the cellular level. Note that none of the clus-
ters characterized by cellular level events attained the signifi-
cance level. This may be because the genes related to cellular
level events represent only a small fraction of genes relative
to all genes with known functions, in comparison with the
genes related to molecular level events in the definition of
GO terms.

It is interesting to determine the correspondence between
the up- and downregulated genes and the GO terms in the
clusters. In the five clusters of upregulated genes, clusters 10
and 12 were characterized by different responses, and two
clusters were characterized by morphological events, which
were the categories of “cell proliferation” in cluster 15 and of
“development” in cluster 18. The remaining cluster, 14, was,
characterized by regulation, development, and metabolism.
As for the clusters of downregulated genes, four of the ten
clusters were characterized by GO terms related to various
aspects of metabolism. In the remaining six clusters, three
clusters were characterized by GO terms related to responses,
two clusters were characterized by morphological events, and
one cluster was characterized by mixed categories.

In summary, the present gene selection and the follow-
ing automatic clustering produced a macroscopic view of
gene expression in hepatocellular carcinogenesis. Although
the clusters contain many genes that do not always share the
same functions, the clusters were characterized by their re-
sponses, morphological events, and metabolic aspects from
a macroscopic viewpoint. The clusters of upregulated genes
were characterized by the former two categories, and those
of the downregulated genes represented all three categories.
Thus, the present clustering serves to interpret the network
between the clusters in terms of the biological function and
the gene expression pattern.

3.2. Known gene interactions in the inferred network

The association between the 18 clusters inferred by GGM is
shown in Figure 2. In the intact network by ASIAN, 96 of 153
possible edges between 18 clusters (about 63%) were estab-
lished by GGM. Since the intact network is still messy, the
network was rearranged to interpret its biological meaning
by extracting the relatively strong associations between the
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FIGURE 1: Dendrogram of genes and profiles. The dendrogram was
constructed by hierarchical clustering with the metric of the Euclid-
ian distances between the correlation coefficients and the UPGMA.
The blue line on the dendrogram indicates the cluster boundary es-
timated autornatically by ASIAN. The gene expression patterns of
the respective clusters in the CHC and HCC stages are shown by
the degree of intensity: the red and green colors indicate relatively
higher and lower intensities. The cluster number and the number of
member genes in each cluster (in parentheses) are denoted on the
right side of the figure. i

clusters, according to the procedure in Section 2.2.3. After
the rearrangement, 34 edges remained by the statistical test
of the partial correlation coefficients with 5% significance.
In the rearranged network, all of the clusters were nested,
but each cluster was connected to a few other clusters. In-
deed, the average number of edges per cluster was 2.3, and
the maximum and minimum numbers of edges were seven
in cluster 15 and one in cluster 9, respectively. In particular,
the numbers of edges are not proportional to the numbers
of constituent genes in each cluster. For example, while the
numbers of genes in clusters 15 and 17 are equal to each other
(24 genes), the number of edges from cluster 15 (2 edges) dif-
fers from that from cluster 17 (5 edges). Thus, the number of
edges does not depend on the number of genes belonging to
the cluster, but rather on the gene associations between the
cluster pairs.

To test the validity of the inferred network in terms of
biological function, the biological knowledge about the gene
interactions is overlaid onto the inferred network. For this
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purpose, all of the gene pairs belonging to cluster pairs are
surveyed by Pathway Assist, which is a database for bio-
logical knowledge about molecular interactions, compiled
based on the gene ontology [17]. Among the 661 genes an-
alyzed in this study, the interactions between 90 gene pairs
were detected by Pathway Assist, and 50 of these pairs were
found in Figure 2. Notice that the number of gene pairs re-
ported in the literature does not directly reflect the impor-
tance of the gene interactions, and instead is highly depen-
dent on the number of scientists who are studying at the cor-
responding genes. Thus, we counted the numbers of clus-
ter pairs in which at least one gene pair was known, by
projecting the gene pairs with known interactions onto the
network. By this projection, the interactions were found in
35 (g in the equation of Section 2.3) cluster pairs among
153 (N) possible pairs (see details of the gene pair pro-
jection at http://www.cbrc.jp/~horimoto/suppl/GPPN.pdf).
Then, 19 (f) of the 35 cluster pairs were overlapped with
34 (n) cluster pairs in the rearranged network. The chance
probability that a known interaction was found in the con-
nected cluster pairs in the rearranged network was calculated
as P < 107*3. Thus, the rearranged network faithfully cap-
tures the known interactions between the constituent genes.

Furthermore, the genes with known interactions were
corresponded to the genes responsible for the GO terms of
each cluster, as shown in Table 1. The genes responsible for
the GO terms were distributed over all cluster pairs, includ-
ing gene pairs with known interactions, except for only two
pairs, clusters 15 and 17, and 15 and 18. Thus, the network
can be interpreted not only by the known gene interactions
but also by the GO terms characterizing the clusters.

3.3. Genesystems network characterized by GO terms

3.3.1. Coarse associations between the clusters

To elucidate the associations between the clusters, the clus-
ter associations with 1% significance probability were further
discriminated from those with 5% probability. This gener-
ated four groups of clusters, shown in Figure 3(a).

First, we will focus on the groups including the clus-
ters that were characterized by GO terms with a signifi-
cance probability, and that were definitely occupied by up-
or downregulated genes (clusters depicted by triangles with
bold lines in the figure). Groups I and III attained the above
criteria. In group I, the clusters were a mixture of the clusters
of the up- and downregulated genes. Note that three of the
six clusters were composed of upregulated genes, which were
characterized by responses (cluster 12), mixed categories
(cluster 14), and morphological events (cluster 15). In group
111, all three clusters were of downregulated genes. One clus-
ter was characterized by responses, and two were character-
ized by amino-acid-related metabolism. In contrast, groups
II and IV were composed of the clusters that were somewhat
inadequately characterized by GO terms and expression pat-
terns. Thus, groups I and III provide the characteristic fea-
tures about the orchestration of gene expression in hepato-
cellular carcinogenesis.

Secondly, a coarse grinning for group associations pro-
vides another viewpoint, shown in Figure 3(b). When the
groups with at least one edge between the clusters in the re-
spective groups were presented, regardless of the number of
edges, groups I, II, and IV were nested, and  group I was
connected with only group L In the second view, group I,
which includes three of the five clusters of upregulated genes
in all clusters, was associated with all of the other groups.
This suggests that group I represents a positive part of the
gene expression in hepatocellular carcinogenesis, which is
consistent with the interpretation by the first view, from the
significant GO terms and the clear expression patterns. Inter-
estingly, among the clusters characterized by morphological
events (clusters 5, 15, 17, and 18), three of the four clusters
were distributed over groups I, I, and IV, and the distribu-
tion was consistent with the nested groups. This suggests that
the upregulated genes of the clusters in group I are responsi-
ble for the events at the cellular level.

Thirdly, the clusters not belonging to the four groups
were clusters 1, 3, and 5. Clusters 1, 3, and 5 were directly
connected with groups I, 111, and IV, groups I and IIi, and
group IV, respectively. Interestingly, cluster 1, characterized
by only “anti-inflammatory response,” was connected with
five clusters belonging to three groups, in which four clus-
ters were downregulated clusters. Although cluster 5 was not
clearly characterized by the GO terms, cluster 3 was charac-
terized by metabolic terms that were quite similar to those
for cluster 2, a downregulated cluster. Thus, the three clus-
ters may be concerned with downregulation in hepatocellu-
lar carcinogenesis.

3.3.2. Interpretations of the inferred network

in terms of pathogenesis

The coarse associations between the clusters in the preceding
section can be interpreted on the macroscopic level, such as
the pathological level. The interpretation of the network in-
ferred based on the information at the molecular level will be
useful to bridge the gap between the information about the
disease mechanisms at the molecular and more macroscopic
levels.

One of the most remarkable associations is found in
group 1. Cluster 12, with upregulation, was associated at a
1% significance level with cluster 2, with downregulation.
The former cluster is characterized by the GO terms related
to the immune response, and the latter is characterized by
those involved with metabolism. In general, CHC and HCC
result in serious damage to hepatocytes, which are important
cells for nutrient metabolism, and the damage induces dif-
ferent responses. Indeed, HCC is a suitable target for testing
active immunotherapy [29]. Furthermore, cluster 2 was also
associated at a 1% significance level with cluster 14, char-
acterized by prostaglandin-related terms. This may reflect
the fact that one mediator of inflammation, prostaglandin,
shows elevated expression in human and animal HCCs [30].
Thus, the associations in group I are involved in the molecu-
lar pathogenesis of the CHC and HCC stages.
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TasLE 1: Cluster characterization by GO terms¥.

Cluster no. GO no. Category P-value Fraction
1 GO0:0030236 Anti-inflammatory response 0.18% 2 of 22/6 of 26081
2 GO:0006094 Gluconeogenesis 0.06% 3 of 37/19 of 26081
2 GO0:0006066 Alcohol metabolism 0.12% 6 of 37/312 of 26081
2 GO:0006091 Generation of precursor metabolites and energy 0.14% 9 of 37/961 of 26081
2 GO0:0019319 Hexose biosynthesis 0.34% 3 of 37/33 of 26081
2 GO:0046165 Alcohol biosynthesis 0.34% 3 0f 37/33 of 26081
2 GO:0046364 Monosaccharide biosynthesis 0.34% 3 of 37/33 of 26081
2 GO:0006067 Ethanol metabolism 0.48% 2 of 37/5 of 26081
2 GO:0006069 Ethanol oxidation 0.48% 2 of 37/5 of 26081
2 GO:0006629 Lipid metabolism 1.47% 7 of 37/722 of 26081
2 GO:0009618 Response to pathogenic bacteria 4.96% 2 of 37/15 of 26081
3 GO:0006094 Gluconeogenesis 0.61% 2 of 15/19 of 26081
3 GO0:0019319 Hexose biosynthesis 1.87% 2 of 15/33 of 26081
3 GO:0046165 Alcohol biosynthesis 1.87% 2 of 15/33 of 26081
3 GO:0046364 Monosaccharide biosynthesis 1.87% 2 of 15/33 of 26081
3 GO:0009069 Serine family amino acid metabolism 4.49% 2 of 15/51 of 26081
4 GO:0006725 Aromatic compound metabolism 0.07% 4 of 20/140 of 26081
4 GO:0009308 Amine metabolism 0.38% 5 of 20/454 of 26081
4 GO:0006570 Tyrosine metabolism 0.59% 2 0f 20/11 of 26081
4 GO0:0050878 Regulation of body fluids 1.65% 3 of 20/113 of 26081
4 GO:0006950 Response to stress 2.70% 6 of 20/1116 of 26081
4 GO:0006519 Amino acid and derivative metabolism 4.12% 4 of 20/398 of 26081
4 GO0:0007582 Physiological process 4.63% 20 of 20/17195 of 26081
5 GO:0006917 Induction of apoptosis* 16.06% 2 of 13/132 of 26081
5 G0:0012502 Induction of programmed cell death* 16.06% 2 of 13/132 of 26081
6 GO0:0009613 Response to pest, pathogen, or parasite 0.00% 8 of 29/522 of 26081
6 GO0:0043207 Response to external biotic stimulus 0.00% 8 of 29/557 of 26081
6 GO:0006950 Response to stress 0.00% 10 of 29/1116 of 26081
6 GO:0009605 Response to external stimulus 0.05% 10 of 29/1488 of 26081
6 GO:0006953 Acute-phase response 0.05% 3 0f29/25 of 26081
6 G0:0006955 Immune response 0.34% 8 0f 29/1098 of 26081
6 GO0:0006956 Complement activation 0.48% 3 0f 29/52 of 26081
6 GO0:0006952 Defense response 0.68% 8 0f 29/1209 of 26081
6 GO:0050896 Response to stimulus 1.15% 11 of 29/2619 of 26081
6 GO:0009607 Response to biotic stimulus 1.65% 8 of 29/1372 of 26081
6 GO0:0006629 Lipid metabolism 2.20% 6 of 29/722 of 26081
7 GO:0006559 L-phenylalanine catabolism 0.83% 2 of 31/9 of 26081
7 G0:0019752 Carboxylic acid metabolism 1.00% 6 of 31/590 of 26081
7 GO:0006082 Organic acid metabolism 1.02% 6 of 31/592 of 26081
7 GO:0006558 L-phenylalanine metabolism 1.26% 2 0f 31/11 of 26081
7 GO:0009074 Aromatic amino acid family catabolism 1.26% 2 of 31/11 of 26081
7 GO:0006519 Amino acid and derivative metabolism 1.67% 5 of 31/398 of 26081
7 G0:0019439 Aromatic compound catabolism 1.79% 2 of 31/13 of 26081
7 GO:0006629 Lipid metabolism 3.04% 6 of 31/722 of 26081
7 GO:0009308 Amine metabolism 3.09% 5 of 31/454 of 26081
8 GO0:0001570 Vasculogenesis 0.09% 2 of 21/4 of 26081
8 GO:0006950 Response to stress 0.42% 7 0f21/1116 of 26081
8 GO:0050896 Response to stimulus 2.33% 9 0f 21/2619 of 26081
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TasLE 1: Continued.
9 GO:0009611 - Response to wounding* 11.19% 3 of 13/394 of 26081
10 GO:0009607 Response to biotic stimulus* 6.66% 6 of 19/1372 of 26081
11 GO:0050896 Response to stimulus* 72.68% 6 of 17/2619 of 26081
12 GO:0006955 Immune response 0.01% 8 of 18/1098 of 26081
12 GO:0006952 Defense response 0.01% 8 of 18/1209 of 26081
12 GO:0050874 Organismal physiological process 0.02% 10 of 18/2432 of 26081
12 GO:0009607 Response to biotic stimulus 0.03% 8 of 18/1372 of 26081
12 GO:0050896 Response to stimulus 0.39% 9 of 18/2619 of 26081
12 GO:0030333 Antigen processing 0.97% 3 of 18/108 of 26081
12 GO:0019882 Antigen presentation 2.62% 3 0f 18/151 of 26081
12 GO:0019884 Antigen presentation, exogenous antigen 3.97% 2 of 18/32 of 26081
12 G0:0019886 Antigen processing, exogenous antigen via MHC class II 4.22% 2 of 18/33 of 26081
13 GO:0009611 Response to wounding 0.08% 6 of 30/394 of 26081
13 GO:0009613 Response to pest, pathogen, or parasite 0.38% 6 of 30/522 of 26081
13 GO:0043207 Response to external biotic stimulus 0.55% 6 of 30/557 of 26081
13 GO:0006955 Immune response 3.12% 7 of 30/1098 of 26081
13 GO:0006950 Response to stress 3.44% -7 of 30/1116 of 26081
13 GO:0050874 Organismal physiological process 3.98% 10 of 30/2432 of 26081
14 GO:0051244 Regulation of cellular physiological process 0.51% 8 of 45/665 of 26081
14 GO:0007275 Development 0.94% 13 of 45/2060 of 26081
14 GO:0001516 Prostaglandin biosynthesis 3.30% 2 of 45/9 of 26081
14 GO:0046457 Prostanoid biosynthesis 3.30% 2 of 45/9 of 26081
14 GO:0051242 Positive regulation of cellular physiological process 4.35% 5 of 45/289 of 26081
15 GO:0008283 Cell proliferation* 29.37% 4 of 26/488 of 26081
16 GO0:0042221 Response to chemical substance 0.16% 5 of 31/237 of 26081
16 GO:0008152 Metabolism . 1.29% 25 of 31/11891 of 26081
16 GO:0009628 Response to abiotic stimulus 1.89% 5 of 31/400 of 26081
16 GO:0006445 Regulation of translation 2.82% 3 of 31/87 of 26081
17 G0:0050817 Coagulation* 13.92% 2 0f 12/118 of 26081
18 GO:0007275 Development* " 11.67% 6 of 16/2060 of 26081

*The gene ontology terms in each cluster, detected with 5% significance probability by using GO::TermFinder [18], are listed. When the terms with that
significance probability were not found in the cluster, the terms with the smallest probability were listed as indicated by an asterisk. In the last column,
“Fraction,” the numbers of genes belonging to the corresponding category in the cluster, of genes belonging to the cluster, of genes belonging to the
corresponding category in all genes of the GO term data set, and of all genes are listed.

The associated clusters 4 and 7 in group III, which were
characterized by GO terms related to amino acid and lipid
metabolism, also show downregulation. Indeed, the products
of dysregulated (aberrant regulation) metabolism are widely
used to examine liver function in common clinical tests {8].
In addition, the connection between the clusters in groups
III and I implies that the downregulation of the clusters in
group III may be related to abnormal hepatocyte function.

In addition, cluster 15 in group I, which is characterized
by the GO term “proliferation,” was associated with differ-
ent clusters in groups I, I1, and IV. It is known that abnormal
proliferation is one of the obvious features of cancer [31].
This broad association may be responsible for the cellular
level events in hepatocellular carcinogenesis.

In summary, the inferred network reveals a coarse snap-
shot of the gene systems related to the molecular pathogene-

sis and clinical characteristics of hepatocellular carcinogene-
sis. Although the resolution of the network is still low, due to
the cluster network, the present network may provide some
clues for further investigations of the pathogenic relation-
ships involved in hepatocellular carcinoma.

3.3.3. Interpretations of the inferred network in terms of

gene-gene interactions

In addition to the macroscopic interpretations above, the
gene functionality from the gene-gene interactions listed in
Figure 2 is also discussed in the context of hepatocellular car-
cinoma. Although the consideration of gene-gene interac-
tions is beyond the aim of the present study, some examples
may provide possible clues about the disease mechanisms.
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FIGURE 2: Network between clusters, together with a projection of biological knowledge about the gene interactions. The clusters are indicated by
triangles and circles, in which the cluster numbers correspond to those in Figure 1, and the edges between the clusters are associations with
5% significance probability. The red triangles, the green upside-down triangles, and the circles indicate the clusters of up- and downregulated
genes, and the mixture of them, respectively, and the dotted triangles indicate the clusters that were not characterized by GO terms with less
than 5% significance probability. The known gene interactions in Pathway Assist are indicated between the clusters, in which the genes
highlighted by bold letters are characterized by the GO terms in Table 1.

First, we surveyed the frequencies of GO terms (gene-  protein 2, 30kd) in cluster 14 induces the expression of a
~GOB listed in the supplemental data at http://www.cbrc ~ number of genes, including NME2 (nonmetastatic cells 2,
.jp/~horimoto/supp/HCGO.pdf) in the selected genes  protein) in cluster 15 as well as the apoptosis-related genes
in the present analysis, to investigate the features of  Bad and Siva [32]. MAGEDI (melanoma antigen, family
gene-gene interactions in the inferred network. A few D, 1) in cluster 13, and its binding partner BIRC4 (bac-
general terms appeared frequently, such as “response”  uloviral IAP repeat-containing 4) in cluster 14 are known

(122 times in the geneGOB column of the supplemen-  to play some roles in apoptosis [33]. In addition, the ex-
tal data at http://www.cbrc.jp/~horimoto/suppl/HCGO.pdf)  pression of COL1A2 (collagen, type I, alpha 2) in clus-
and “metabolism” (183), as expected from the coarse asso- ter 12, which is related to cell adhesion and skeletal devel-

ciations between the clusters in the preceding section. As opment, is regulated by RFX5 (regulatory factor X, 5) in
for more specific terms about the gene function, “lipid”  cluster 14 [29, 34]. In group IV, the expression of CSF2
(46), “apoptosis” (31), and “cell growth” (27) are remark- (colony-stimulating factor 2) in cluster 8 is dependent on
ably found in the list. The “lipid” is expected from the rela-  the cooperation between NFAT (nuclear factor of activated
tionship between groups I and 111, and the “apoptosis” and T cells) and JUN (Jun oncogene) in cluster 10 [35]. Be-
the “cell growth” are also expected from the frequent appear- tween groups I and II, ASCL1 (achaete-scute complex-like
ance of GO terms (clusterGOB listed in Table 1) related to 1) in cluster 13 and BMP4 (bone morphogenetic protein
the morphological events. Since the frequent appearance of  4) in cluster 18 share the function of cell differentiation

“lipid” may be a sensitive reflection of the protein-protein in- [36].

teractions in lipid metabolic pathways to the expression pro- As a result, the gene-gene interactions listed above are re-
files, here, we focus on the gene-gene interactions character-  lated to the mechanisms of cell growth or death at the molec-
ized by the “apoptosis” and the “cell growth.” ular level. On the other hand, the cluster associations reveal

Among the gene-gene interactions listed in Figure 2, the  the relationship between the cancer-induced events and var-
gene-gene interactions characterized by the cell growth or  ious aspects of metabolisms at the pathogenesis and clinical
death are found in the coarse associations between the clus-  characteristics. Thus, the metabolic pathways might directly
ters. Group I contains the gene-gene interactions related to  influence the mechanisms of cancer-induced cell growth or
apoptosis. The expression of HTAIP2 (HIV-1 Tat interactive  death at the molecular level in unknown ways.
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Group IV
(a)

(1) :‘0

{b)

FIGURE 3: Orchestration of gene systems. (a) The association with
1% significance probability is indicated by a bold line, and the clus-
ters with 1% significance association are naturally divided into four
groups, which are enclosed by broken lines. (b) The connections
between the groups are drawn schematically, as a coarse grinning of
the cluster association.

3.4. Merits and pitfalls of the present approach

The present analysis reveals a framework of gene system as-
sociations in hepatocellular carcinogenesis. The inferred net-
work provides a bridge between the events at the molecu-
lar level and those at macroscopic levels: the associations be-
tween clusters characterized by cancer-related responses and
those characterized by metabolic and morphological events
can be interpreted from pathological and clinical views. In
addition, the viewpoint of the gene-gene interactions in the
inferred network indicates the relationship between cancer
and cell growth/death. Thus, the gene systems network may
also be useful as a bridge between the gene-gene interactions
and the observations at macroscopic levels, such as clinical
tests.

The present method assumes linearity in the cluster asso-
ciations by using a partial correlation coefficient to identify
the independence between clusters. It is well known that the
interactions among genes and other molecular components
are often nonlinear, and the assumption of linearity misses
many important relationships among genes. In the present
study, our aim was not the inference of detailed gene-gene
interactions, but of coarse gene system interactions. Indeed,
the use of a partial correlation coefficient is employed as a

feasible approach for gene association inference as a first ap-
proximation in some studies (37, 38]. Thus, the assumption
of the linearity is not suitable for a fine analysis of dynamic
gene behaviors, but may be useful for the approximate anal-
ysis of static gene associations.
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Abstract

The development of a multicellular organism is a dynamic process. Starting with one or a few cells, the organism develops
into different types of cells with distinct functions. We have constructed a simple model by considering the cell number increase
and the cell-type order conservation, and have assessed conditions for cell-type diversity. This model is based on a stochastic
Lindenmayer system with cell-to-cell interactions for three types of cells. In the present model, we have successfully derived
complex but rigorous algebraic relations between the proliferation and transition rates for cell-type diversity by using a symbolic
method: quantifier elimination (QE). Surprisingly, three modes for the proliferation and transition rates have emerged for large
ratios of the initial cells to the developed cells. The three modes have revealed that the equality between the development rates for
the highest cell-type diversity is reduced during the development process of multicellular organisms. Furthermore, we have found
that the highest cell-type diversity originates from order conservation.
© 2006 Elsevier Ireland Ltd. All rights reserved.

Keywords: Cell-type diversity; Lindenmayer system; Quantifier elimination; Algebraic computation

1. Introduction

In a multicellular organism, a single cell —an egg — or a group of cells develops into a certain pattern with a variety of
cell types (Gilbert, 2003). These different cell types are created through cell differentiation, which starts with an initial
type, and then cells change into several intermediate types before differentiating into the final type. The process of cell
differentiation can be shown as a cell lineage. One representative of a real cell lineage is the development of blood
cells, wherein a stem cell is capable of extensive proliferation, creating more stem cells as well as more differentiated
cellular progeny.

The theoretical study of cell differentiation and morphogenesis was pioneered by Turing (1952), who showed that
a reaction—diffusion system can produce an inhomogeneous, stable pattern. The concentrations of chemicals form a
stripe or wave pattern, independently of the initial conditions, and this pattern formation process is robust against
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Tel.: +81 92 642 7396; fax: +81 92 642 7396.
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perturbations. Turing’s theory provides the basis for a dynamic system for the morphogenesis and potentiality of
cell differentiation. Embryogenesis with an increase of cell numbers was, however, not studied, and the intracellular
dynamics were not sufficiently complex. In fact, resource chemicals are transported into the cell, and acomplex catalytic
reaction network within the cell changes the cell’s state over time. Genes are expressed and repressed in response to
these intracellular dynamics. Kauffman (1993) proposed that each cell-type should be regarded as an attractor of
such intracellular dynamics, where each cell-type is represented as an attracting state of a genetic network. Again,
morphogenetic processes with cell differentiation were not studied. By considering Turing’s study and intracellular
dynamics, together with the cell division process to increase the cell numbers, Kaneko and Yomo (1997, 1999) proposed
isologous diversification. This allows spontaneous cell differentiation through cell division processes and cell-to-cell
interactions. These studies have provided a basis for the cell-type diversity of a multiceltular organism. However, the
explicit relevance of the proliferation rates and the transition rates between cell types to cell-type diversity has not been
studied.

Apart from the approach above, Lindenmayer system (abbreviated as L-system) is a parallel rewriting system that
was introduced originally to model the development of multicellular organisms (Lindenmayer, 1968a,b). Indeed, an L-
system is used to model the development process of various organisms (Yoshida et al., 2005¢c). Furthermore, stochastic
aspects can be introduced into an L-system, termed a stochastic L-system (Eichhorst and Savitch, 1980; Eichhorst and
Ruskey, 1981). The stochastic L-system can account for the influences of proliferation and transition rates, depending
on the cell types.

The aim of this work is the derivation of rigorous algebraic relations between the proliferation and transition rates
for high cell-type diversity with the conservation rule. For this purpose, we have constructed a model based on a
stochastic L-system with interactions and have analysed it by using quantifier elimination (abbreviated as QE). The
derivation allows us to understand the explicit algebraic relations between the cell-type order conservation rule and
the high cell-type diversity of multicellular organisms.

The present paper is organized as follows. First, in Section 2, we provide a brief overview of our previous model
and results (Yoshida et al., 2005b), wherein the cell-type order conservation rule appeared spontaneously. In Section
3, we introduce a model of a multicellular organism consisting of one-dimensional cells. This model postulates the
cell-type order conservation rule as interaction terms. We briefly explain the QE method in Section 4. The results of the
algebraic computation by using QE are given in Section 5, which describes the rigorous algebraic relations between
the proliferation and transition rates. The growth matrix of the model analysed in this study is described in Section 5.1,
and some features of the growth matrix are discussed in Section 5.2. In Section 5.3, the rigorous relations analysed
by QE are presented, and based on the relations, the conditions for the highest cell-type diversity are scrutinized in
Sections 5.4 and 5.5. Lastly, we summarize this work.

2. Background

In this section, we briefly review of our previous work (Yoshida et al., 2005b), which is the basis for the construction
and analysis of the model in this work. ‘

In a multicellular organism, a single cell — an egg — develops correctly into a prospectively determined pattern.
This morphogenesis is robust against environmental perturbations, and the same pattern is always generated from
an egg. In other words, recursive production is repeated. At the same time, the developmental process in a mul-
ticellular organism produces a variety of cell types. The compatibility of these two points is surprising, because
‘recursive production’ is the reproduction of the same pattern of an individual cell, while ‘cell-type diversity’ is the
existence of various patterns, namely various cell types, within an individual. The question we addressed in our pre-
vious work was the selection of initial cell(s), to allow for compatibility between recursive production and cell-type
diversity.

We present our previously developed model of a multicellular organism in Fig. 1. Within each cell, catalytic and
autocatalytic chemical reactions maintain the cell itself and synthesize some chemicals for the cell membrane.

Our numerical results indicated that by starting with an initial object consisting of both the chaotic cell-type
with diverse chemicals and the regular-dynamics cell-type with less chemical diversity, the recursive production of
a multicellular organism with cell-type diversity has been realized. In addition to recursive production, a remarkable
regeneration pattern, which is analogous to the intercalary regeneration in cockroach legs (see Fig. 2), and planarian and
salamander limb blastema (Gilbert, 2003), was observed in our previous work (Yoshida et al., 2005b). There, starting

- 346 -



488 H. Yoshida et al. / BioSystems 90 (2007) 486495

LY
chemicals
(=)

]

divide L AR :
repeatedly, the bath of source material

:\\ EDout (,)Din

viU Lo
II~I_! L
celibridge : Dpd

Fig. 1. Schematic representation of our previous model. The cells are surrounded by a bath of source material with a constant concentration. After
a division, the cells are connected to one another by forming a cell bridge. The cells are thus connected to one another as a one-dimensional chain.
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Fig. 2. Intercalary regeneration in cockroach legs (Alberts et al., 2002). When mismatched portions of the growing legs are grafted together, new
tissue is intercalated to fill in the gap so that the noncontiguous positional values disappear.
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Fig. 3. Regeneration of cell-type sequence, as observed in (Yoshida et al., 2005b). The cell differentiates from 7} to /s sequentially. Starting with

Iy Is, patterns without noncontiguous numbers, such as I/, /21313141515, are eventually produced. Thus, noncontiguity will disappear during the
development process.

with the two cells corresponding to I; and I, the regeneration pattern corresponding to 111> ... I, was eventually
produced, as illustrated in Fig. 3.

3. Model

Now, we present a simple model of a multicellular organism in which the cell lineage can be represented as
a line, that is, only sequential differentiation occurs. Our model is schematically illustrated in Fig. 4. We assume
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Fig. 4. Schematic representation of our model. Cell differentiation proceeds as follows: I} — Iz — ... = I,.
that cell differentiation starts with an initial type, Ij, and then the cell differentiates into several intermediate types

I — I3 — ... — I,_ before differentiating into the final type, /,,. The regeneration phenomena mentioned in the
previous section can be described as the following rewriting rule, named the cell-type order conservation rule:

Lil; — Ll ---1j1 15, Lili » Lil (- Lip1 L;, j>i+1 (1)
" The proliferation and transition rates of cell-type i (1 < i < n) are defined as follows:
| LL pi
ili Ppii ' Inln Pun
Iy > ¢ Liz1 piiti , 1=<i<n, I, — (2
Iy 1—=ppn
Ii 1= pii— piit

with 0<p;; <1 (1<i<n),0<piis1 <1l <i<n), pii+ piiv1 < 1 (1 <i < n). In addition to the above
rewriting rules, we further adopt rewriting rules that appear as interaction terms and describe the cell-type order
conservation rule: (1): 1;1; — Iiliyy---1;_11j, Ijl; = IjIj_y--- Ii411; (j > i + 1), which guarantees the contiguity
of cell types.

4. Analytical method

The key point in this work is the usage of QE, which is one of the main subjects in computer algebra (Caviness and
Johnson, 1998). In general, QE deals with first-order formulae, which consist of polynomial equations, inequalities,
quantifiers (3, ¥) and Boolean operators. QE computes an equivalent quantifier-free formula for a given first-order
formula over the real closed field. For example, for the input ¥ x(x? + bx + ¢ > 0), QE outputs the equivalent quantifier-
free formula b? — 4¢ < 0. It follows from this that we can obtain a condition for unquantified variables that makes the
input formula true by QE. '

We can also obtain the maximum value of an objective polynomial under certain constraints by adding one extra
variable, €, which is assigned to the objective polynomial. For instance, we can transform a problem: max y s.t.
x? 4+ y? < 1and y < x? into the following form:

Wy +y<iay<Pay>e.

For this formula, QE outputs € < (+/5 — 1)/2, which shows that the maximum value of y is (+/5 — 1)/2. Recently, by
using this ability, we performed a symbolic—numeric optimization for the biochemical kinetic model (Orii et al., 2005;
Anai and Horimoto, 2006) and an algebraic computation for the multicell development model (Yoshida et al., 2005a,
2006).

5. Results and discussion
5.1. Growth matrix in a stochastic L-system

We calculate the growth matrix M of the two contiguous cell types I; I;, I; 11, Ii+11; (1 <i < n — 1), whichenables
us to estimate the composition of Iyl (k = £ — 1, £, £ + 1) at step m. It should be noted that the other two contiguous
cell types (e.g., I; Ii+3) never appear at any step, by virtue of the cell-type order conservation rule. Although we could use
a growth matrix of more than two, for simplicity we have calculated the simple growth matrix with the two contiguous
cell types. If one starts with I} I1, then the composition at step m can be calculated generally by the following formula:

(1,0,0,...)M™. ' (3)
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Here, we have studied the case of n = 3, showing the existence of three cell types. For the sake of simplicity, let A,
B and C denote I, I, and I3, respectively, in what follows. In this case (n = 3), the growth matrix M is:

( 2p11+ 0= p1r2y (1= pra)pra (1 - pro)pra P, 0 0 0 \
P 1-pi2 0 Pr2+ p22— pr2p23 P23 0 0
Pri 0 l—pr2 pr2+pr2—praprs 0 P23 0
0 0 0 222+ (1= p23? (- p23)p23 (1= p23)pas Pl
(] 0 0 P22 1~ p23 0 P23+ p33
0 0 0 P22 0 l—p23  pai+pss
0 0 0 0 0 0 142p33
with its eigenvalues:
2
1—pra, 1+2p11— pr2, 1= p12)%, 1 — p23, 1 +2p22~ pa3, (1 — p3)?and 14 2p3 3. C))

Note that three of the seven eigenvalues, 1 +2py11 — p1.2, 1 +2p22 ~ p23 and 1 + 2p3 3, can be greater than 1.

5.2. Features of the growth matrix analysed in this study

Let S denote the diagonal matrix: Diag(1 — p1.2, | +2p1.1 — p12, (1 — p12)%, 1 — p23, 1 +2paa— p23, (1 —
p2.3)%, 1 + 2p3.3). The features of the growth matrix M are as follows.

If the eigenvalues differ from one another, then M can be divided into PSP~!, where P is a regular matrix. In this
case, (1,0,0,0,0,0,0)P is

0,2, 3,0, e5, €6, €7),
where e3, es, €6 and e7 are nonzero values. These facts lead to the composition (3): (1,0, 0,0, 0, 0, 0) PS™ Pl
0,201 +2p1.1 = p1.2)", e3(1 = p12)*", 0, es(1 +2p2.2 — p2.3)", e6(1 — p2.3)™™, e7(1 +2p3,3Y") P~
As m approaches infinity, the composition above can be described as follows:
(0,2(1 +2p1.1 — p1.2)", 0,0, e5(1 +2p22 — p23)", 0, (1 +2p3 3P

The second, fifth and seventhrows of P~ are (f1, f2, f2. f3, fa» fa, f5),(0,0,0, g1,82,82,83)and(0,0,0,0,0,0, 1),
respectively, where f; (1 <i < 5)and g; (i = 1, 2, 3) are nonzero values. Finally, as m approaches infinity, the com-
position approaches

(AA, AB, BA, BB, BC, CB, cC) = (1,0,0, 0, 0,0,0)Ps™ P!

21 +2p1a = p1.2)" (A, f2, f2, 3 fas fa, f5)
+es(1+2p22— p23)"(0,0,0, g1, 2, 82, &3)
+e7(1+2p3,3)"(0,0,0,0,0,0, 1).

Therefore, only the second eigenvalue, 1 + 2p; | — p1.2, can give rise to AA, AB, BA ceil types as m approaches
infinity. This indicates one of the necessary conditions, that AA, AB, BA, BB, BC, CB and CC are mingled as m
approaches infinity:

L+ 2p1i—pr2>1A142p 0 —p12>1+2p22—pa3Al+2p11— pr2>1+2p33. &)

Under the condition (5), let m approach infinity. In other words, as the chain of cells becomes sufficiently long, the
composition (3) of n = 3 becomes the following:

v(p12 — p23)d — pr2 — p23)
v(p12 — p2.3) + P23

N(AB) = N(BA) = . N(BC)= N(CB) = yN(AB),

N(BB) = N(CC) =,
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_ P12(1 = p1a)(p2.3 + ¥(pr2 = p23))
2y(p12 — p23)X1 — p12— p23)
Pr2p23(—(1 = p1.2)pl, + p23 — P12P53) + (P} (3 = 5p23) = 2 — pa3)(1 — P2.3)P%,3
= P21 = 2p2.3) + p12p3 3(=1+2Q2 = p23)(1 — p2.3)p2.3) + P} 2P2.3(5 — 9p2.3 + 6p33)
— P12+ P23 = Tp3 5+ 4P3 )y + (P12 — p23)A1 — p23)p232 — pia — pr3)y>

p22= ,
Apr2 = p23)=1+ pra+ p2a3)y((=1 + p12)p12 — P} 3 + (P12 — P23N=2+ p12 + p23)Y)
p23((1 = pr.2)p12p23 = (P12 = P2.3)P} 5, + (1 — p23)p} 3 — pra(l + pas + P33y

- —(P1.2 = P23)*(2 = pra — p23)(1 = 2p12 + p2.3)Y?).

2(pr2— p23)(—=1+ pra+ p23)v((=2+ p1.2)p12y — p2.3(1 — (2 — p23)y))
(6)

where N(XY) denotes the number of sequence: XY as m approaches infinity and y denotes that the ratio of the initial
cells to the developed cells is 1/y. In the equations above (6), furthermore, N(AA) is normalized, i.e., N(AA) = 1,
and the following constraints are assumed:

YN(AA) = N(BB) = N(CC) A yN(AB) = N(BC). @)

In summary, N(XY), (X, Y € {A, B,C}), p1.1, p2.2 and p3 3 can explicitly be represented as functions of p; ; and
p2.3. Notice that N(AB) = N(BA) and N(BC) = N(C B) always hold true, because of the construction of the rewriting
rules (2), and that the cell-type diversity becomes highest as N(AB)(=N(BA)) approaches 1.

5.3. Relations between proliferation and transition rates in the highest diversity of cell types by QF analysis

We now investigate the relations between the proliferation and transition rates in the highest cell-type diversity. For
this purpose, we have calculated the relations that maximize N(AB) (or N(BC)) under the constraints of G- 1t
may be worth noting that it seems difficult to estimate rigorous relationships between the rates under such complicated
constraints by the existing numerical methods. Actually, in our previous analysis by the numerical method, we estimated
a set of rates that realize high cell-type diversity by searching a huge number of points over the five-dimensional rate
space, but obtained no relations between the rates. Although the rate values provide a snapshot for the system behaviour,
the relation between the rates will provide more profound insights into the mechanism of the system to analyse. Here,
we have utilized the QE approach to obtain rigorous rate relations.

First, we determined the maximum values of N(A B), which designate the hxghest diversity of cell types. In the end,
the determination is reduced by solving the following QE problem:

312723 W(P1.2, P23, ¥) A N(AB) > e), C®)

where ¥(p1.2, p2.3, ¥) is a formula derived by combining all equations and inequalities appearing in (5)~(7), conjunc-
tively. For a fixed value of y, the QE procedure (8) outputs the following inequalities:

/881 — /89801 — 99

when the y values are 10 and 100, respectively. As seen in Section 4, from these inequalities, we can determine the
maximum values of N(AB) as follows: :

(AA, AB, BA, BB, BC,CB, CC) = (1, f(¥), f), v, vf("), ¥/ (), ¥) - ®

with £(10) = (v/881 — 9)/40 and f(100) = (~/89801 — 99)/400. Thus, by the QE method, we have obtained the
exact maximum value by effectively pruning a huge number of candidates for the maximum.

By using the conditions for the maximum values obtained above, the QE method has enabled us to obtam rigorous
algebraic relations between the proliferation and transition rates: P, as follows:

Pe(Y(P, ) A N(AB) > ¢).
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Interestingly, three modes for the highest diversity of cell types emerge. For instance, the relation between pj 2 and
p2.3 can be obtained as follows:

3e(¥(p12, P23, ¥Y) AN(AB) > €).

The three modes when y is 10 are expressed rigorously as follows.

e Model:
p2.3 = the minimum real root of the equation in x,
190p? , —490p3 , +200p% , + (—391p1.2 + 681p3 , — 100p3 ,)x + (200 + 120p; 2 — 310p? ))x?
+ (=310 + 100p; 2)x> + 110x* = 0(0 < p1.2 < po),

where py is exactly the minimum real root of the equation in x,
399 — 3274x + 9188x? — 10232x> + 3920x* = 0,

and is approximately 0.293122.
e Mode II:

1+ 18p12 — /1436p12 — 76p3
20

2
P23 = ,» Po=<p12< 3

o Mode III:

20— 9p1s — \/400 ~1960p; 2 +2481p3 ,
40

P23 =
p23

0.3 | P

0.2

0.1

0.0 pi2
0.1 02 0.3 0.4
(a)

1+2p22 -p23
3

1+2p11 -p12
3

(b)

Fig. 5. Rigorous relations when the maximum values are satisfied. The solid and broken lines denote the relations when the y values are 10 and
100, respectively, with the cell-type order conservation rule. (a) Relations between pj 3 and p; 3. Modes I-I1I correspond to the two curves (lines)
into which the points where the curve is not smooth separate the whole region. Mode 1 includes the origin. (b) Relations between 1 +2py,1 — p1,2
and 1 +2p22 — 3.
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Notice that Modes I-III, described by the rigorous algebraic functions of pj .2, have been derived using the QE
method. '

5.4. Characteristic conditions for the proliferation and transition rates

Fig. 5 shows the relations obtained when the y values are set to 10 and 100. These values were chosen because in
our previous simulation (Yoshida et al., 2005b), the constraint (7) over N(XY), (X, Y € {A, B, C }) was observed, and
partly because there are few initial-type cells (4 in this work) corresponding to stem cells in real biological systems
(Gilbert, 2003). Remember that 1/y was defined as the ratio of the initial cells to the developed cells in Section 5.2.

As Fig. 5 (a) shows, the three modes are contracted to approach the line of p; » = p» 3, from a comparison between
the modes with y values of 10 and 100. Although the three modes do not disappear even with a large y value, the
relation between p; 7 and p; 3 can be approximated as:

P12 = p23, (10)

when y is sufficiently large.

Another explicit relation between (1 +2p;.1 — p12)and (1 +2p32 — p2.3) is further obtained when the values of
y are set to 10 and 100, as shown in Fig. 5 (b). The (1 +2p; 1 — p1.2, | + 2p2.2 — p2.3)curve when y = 100 is closer
totheline 1 +2p; ;1 — p1.2 = 1 +2p3 3 — pa2.3 than that when y = 10. Thus, the following relation is observed:

14+2p11—pr2a~1+42p22— p23. (an

By considering the relation in Eq. (10): p; 2 = p 3, the Eq. (11) indicates that p, | approaches p2.2 when y becomes
~ sufficiently large.

We will translate the above relations between the rates into biological terms. First, the rate relation in Eq. (10)
indicates that the initial and final transition rates are almost equal at the highest cell-type diversity, on the assumption

p23
0.3
T 4
)
0.2 A
0.1
0.0 pt2
(@) 0.1 0.2 0.3 0.4
p23

0.4 /""‘\w
, N
0.3 / /

- -
02 X
S
0.1 //
0.0 p12

0t 02 03 04 05 06
(b)

Fig. 6. Relations between the points that are lowered from the highest cell-type diversity curve by 0.001. The grey lines designate these relations.
The black lines designate the original curves in which the cell-type diversity is the highest. (a) With the cell-type order conservation rule. (b) Without
the conservation rule.
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that the developed tissue is composed of a few initial cell types. In other words, the equality of the transition rates implies
that the cell-type diversity is realized by the similar rates for transition between distinctive cell types. In addition, the
assumption may be naturally accepted by the fact that the number of stem cells is very small. Secondly, the proximity
of (14+2p1.1 — p12) and (1 4+ 2p3.2 — p2.3) indicates that the proliferation rates of the initial cell-type and of the
next-developed type are also almost equal, p).; = p2.2. This indicates that the distinctive cells increase with similar
rates. The similar degree of cell increase in distinctive types may be responsible for the cell-type diversity.

5.5. Relation between cell-type diversity and the conservation rule

To evaluate the relation between cell-type diversity and the cell-type order conservation rule, we have calculated
the difference between the rate relations of the highest diversity and lower diversity in the cases described above, with
and without the conservation rule. In the evaluation, y is set to 10.

Fig. 6 shows the rate relation differences with and without the conservation rule. In Fig. 6 (a), the rate relation
with the conservation rule at the highest diversity is similar to that for the lower diversity. Indeed, although the forms
of the three modes in the two cases are slightly different from each other, the calculated values of p;  and p 3 are
in similar ranges. In contrast, the forms and the values of p; ;> and p, 3 are quite different from each other without
the conservation rule in Fig. 6 (b). In other words, the rates show distinctive relations without the conservation rule,
depending on the degree of diversity. Furthermore, the form and the range of the highest diversity in Fig. 6 (a and b) are
also quite different, with and without the conservation rule. In particular, the rate relation without the conservation rule
is far from the relation of p 3 and ps 3 that is observed with the conservation rule: in Fig. 6 (b), p; 7 is larger than p5 3,
which indicates that the initial transition rate is faster than the final transition rate. Intuitively, it is natural to conclude
that the bias of the transition rates may not be responsible for the cell-type diversity. At any rate, the conservation rule
is prerequisite to the realization of cell-type diversity in this model.

6. Conclusion

In the present work, the relation between the proliferation and transition rates in the highest cell-type diversity
has been investigated, based on the L-system with interactions. Remarkably, the rigorous algebraic relations have
been derived with the aid of quantifier elimination. Indeed, the two rates for proliferation and transition are almost
equal to each other in the highest cell-type diversity, on the assumption that the number of initial cells is very small,
which implies that the similar transition rates between distinctive cell types are prerequisite for high cell-type diversity.
Furthermore, cell-type order conservation is a prerequisite to realizing high cell-type diversity. Although three cell
types were assumed in the analysed model, the present approach of discrete model and algebraic computation will
shed some light on the mechanism of cell-type diversity within actual multicellular organisms.
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