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FIGURE LEGENDS

Figure 1

Inhibition of HCV replication in Huh7/Rep-Feo cells by griseofulvin. (A)
Huh7/Rep-Feo cells were cultured with various concentrations of griseofulvin in the
medium and luciferase assays were performed after 72 hours of culture. Luciferase
assays were performed in triplicate. Error bars indicate means + standard deviation (SD).
(B) Huh7/Rep-Feo cells were treated with various concentration of griseofulvin (2.5 to
40 uM). Luciferase activity was measured at the time points indicated after exposure to
griseofulvin. (C) MTS of Huh7/Rep-Feo cells cultured with the concentration of

griseofulvin indicated.

Figure 2

The suppressive effect of griseofulvin for HCV replicon was confirmed by real-time
RT;PCR and western blot analysis. (A) Incubation of Huh7/Rep-Feo cells with
griseofulvin for 72 hours resulted in dosg: dependent antiviral effects. Real-time RT-PCR
was performed on the extracted RNA. HCV RNA levels are shown as relative

percentages of untreated control. Error bars indicate means = SD. (B) Western blot
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analyses of NS3 and NS5A protein expression were performed on protein extracts from
cells that were treated for 72 hours with varying dose of griseofulvin. f-actin was used

as a loading control.

Figure 3

No inhibition of firefly luciferase activity by griseofulvin. The pEF Fluc IN vector
was stably transfected into Hun7 cells. The cells were cultured without (Control) and
with 20 uM and 40 puM griseofulvin for 72 hours. Firefly luciferase assay was
performed. Luciferase activity was normalized by the protein concentration. Error bars _

indicate means =+ SD.

Figure 4

Griseofulvin did elicit an IFN response. Huh7/Rep-Feo cells were treated without
(lane 1) or with 1, 10, 100 U/ml IFNa-2b (lane 2~4) and 20 (lane 5) or 80 uM
griseofulvin (lane 6) for 72 hours. The messenger RNAs of MxA (upper panel), 2’,
5’-01igoadenylaté synthetase 2, 5’-OAS) (middle panel), and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control (lower

panel) were detected by RT-PCR analysis.
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Figure.5

Effect of a combination of griseofulvin and IFN-a on intracellular HCV RNA
replication. (A) A representative igobologram for analyzing interaction between two
drugs. (B) Isobole plot of 50% inhibition of HCV RNA replication. Huh7/Rep-Feo cells
were treated with griseofulvin in combination with IFN-o and a luciferase assay was
performed after 72 hours of culture to obtain each isobole plot. The dotted line indicates

* an additive effect in the isobologram method used.

Figure 6
Griseofulvin induced G2/M phase arrest in Huh7/Rep-Feo cells. Flow cytometry
analysis of DNA content of untreated Huh7/Rep-Feo cells (Control) and cells treated for

12 hours with 20 uM of griseofulvin.

Figure 7
The growth kinetics of griseofulvin treatment Huh7/Rep-Feo cells. The cells were
cultured with 20uM griseofulvin, and cell viability was monitored by MTS assay at the

times indicated. Error bars indicate means + SD.
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Figure 8

Griseofulvin does not influence HCV IRES-mediated translation. (A) Structure of the
plasmid, pEF-Rluc-HCV IRES Feo. Transcription is initiated under the control of a
composite Elongation factor 1 alpha (EFla) promoter. The upstream cistron encodes
Renilla luciferase (Rluc) and is translated by a cap-dependent mechanism in transfected
cells, while the downstream cistron encodes a fusion (Feo) of the firefly luciferase
(Fluc) and neomycin phosphotransferase (Neo") genes, translated under the control of
the HCV IRES. (B) pEF-Rluc-HCV IRES Feo was stably transfected into Huh7 cells.
The cells were treated without (Control) and with 20 uM of griseofulvin. Dual
luciferase activities were measured at the indicated time points after exposure to

griseofulvin. Values are displayed as ratios of Fluc to Rluc. Error bars indicate means +

SD.

Figure 9
Griseofulvin suppresses JFH-1 replication. Immunofluorescent staining of Huh
7.5.1/JFH-1 cells treated with various concentrations of griseofulvin. HCV NS3 protein

is stained green and nuclei are stained with 7-AAD (red).
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