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Abstract Observing behaviors of protein pathways and genetic networks under various environ-
ments in living cells is essential for unraveling disease and developing drugs. For that purpose,
the biological experimental technique using transfected cell microarrays (cell arrays) has been de-
veloped. In order to apply cell arrays to identification of the subnetworks that are significantly
activated or inactivated by external signals or environmental changes, it is useful to allocate sev-
eral or several tens of reporter genes. In this paper, we consider the problem of selecting the most
effective set of reporter genes.

We propose two graph theoretic formulations of the reporter gene allocation problem, and
show that both problems are hard to approximate. We propose integer programming-based methods
for solving practical instances of these problems optimally. We apply them to apoptosis pathway
maps, and discuss biological significance of the result. We also apply them to artificial scale-free
networks. The result shows that optimal solutions can be obtained within several seconds even for
networks with 10,000 nodes.

Keywords integer programming; reporter gene; cell array; signaling network; set cover; NP-hard.

1 Introduction

Identification of novel target genes for the treatment of diseases is an impor-

tant topic in drug design and systems biology. Because of its importance, various

_approaches have been proposed. Among these, transfected cell microarrays (cell
arrays for short) are regarded as a potentially powerful approach [1, 2, 3, 4]. Cell

arrays are complementary technique to DNA microarrays. The most important dif-

ference is that each spot in a DNA microarray corresponds to a gene, whereas each

spot in a cell array corresponds to a cluster of several tens or hundreds of living cells.

This property enables us to observe times series data of gene expression in living
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Integer Programming-based Approach to Allocation of Reporter Genes 289

cells. Furthermore, upou the addition of cells and a lipid transfection reagent, slides
printed with cDNA become living microarrays, in which some specific gene is over-
expressed. On the other hands, it is also possible to knock out some specific gene
by using siRNA [1, 3]. Therefore, we may be able to observe effects of gene over-
expression or gene knockdown by using cell arrays. We may also be able to observe
effects of external signals on gene expressions in living cells. In order to observe the
effects using cell arrays, we may need reporter genes, which are designed to measure
the expression level of gene or the corresponding product through the magnitude of
fluorescence. Over the past decade, a battery of powerful tools that encompass for-
ward and reverse genetic approaches have been developed to dissect the molecular
and cellular processes that regulate disease. In particular, the advent of genetically-
encoded fluorescent proteins, together with advances in imaging technology, make
it possible to study these biological processes in many dimensions [5]. Importantly,
these technologies allow direct visual access to complex events as they happen in
their native environment, which provides greater insights into human diseases than
ever before [6, 7]. However, the cost (both in labor and money) of introduction of
reporter genes to a cell is very high. Thus, we cannot use a lot of reporter genes. In-
stead, we should allocate several or several tens of reporter genes which are the most
efficient for identifying the pathways that.are significantly activated or inactivated by
means of external signals or environmental changes.

There exist related studies. Several studies have been done for developing hy-
pothesis generation techniques that use model checking and formal verification in
order to qualitatively reason about signaling networks {8, 9, 10]. These techniques
may be useful for computational analysis of effects of external signals and/or envi-
ronmental changes. However, these techniques require statements about the property
of individual reactions in networks, details of which are often unavailable. Ruths et
al. recently proposed a framework for computational hypothesis testing in which sig-
naling networks are represented as bipartite directed graphs [11]. In their framework,
each network contains two types of nodes: nodes corresponding to molecules and
nodes corresponding to reactions. They considered two problems: the constrained
downstream problem and the minimum knockdown problem. The latter one is closely
related to our problem and is to find a minimal set of nodes removal of which discon-
nects two given sets of compounds. They defined the minimum knockdown problem
as a graph theoretic problem. They proved that the problem is NP-hard and pxoposed
an iterative and randomized heuristic algorithm.

In this paper, we consider graph theoretic formulations of the reporter gene allo-
cation problem. Since there is no consensus mathematical model of genetic networks
or signaling pathways, we do not assume any specific models such as Boolean net-
works and Bayesian networks. Instead, we treat each network as a directed graph,
where each edge can have a weight. Then, we formulate the reporter gene allocation
problem as problems of selecting a set of nodes that covers as many nodes as possible,
or selecting a minimal set of nodes that covers all the nodes in a network, where we
say that node v is covered by node u if there exists a directed path from u to v within a
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specified length. We prove that these problems are NP-hard. Furthermore, we prove
that these problems are hard to approximate. We also show that some connection be-
tween these pro_blems and the set cover problem (along with its variant). In order to
solve realistic instances, we formulate these prbblems as integer programs (IPs) and
apply a famous IP solver (CPLEX) to solving instances of these IPs. This approach
is reasonable because a close relationship between integer programming and the set
cover is known [12]. It should be noted that our approach is significantly different
from that in [11]: (i) problems and network representations are different from each
other, (ii) optimality of the solution is not guaranteed in [11], whereas optimality is
‘guaranteed in our approach.

We perform computational experiments using both artificially generated net-
works and a real biological network. Though our IP formulations are simple, the
results are quite surprising: the proposed method can find optimal solutions within
several seconds even for networks with 10,000 nodes. Furthermore, the set of allo-
cated reporters for a real network is reasonable from a biological viewpoint. These
suggest that the proposed approach is practically useful for finding an optimal set of
reporter genes.

2 Allocation Problems

In this section, we define two optimal allocation problems, P1 and P2. Bio-
logical networks such as gene regulatory networks and signaling pathways can be
considered as a directed graph G = (V,E) with a set of nodes V = {vy,...,v,} and
a set of directed edges from v; to v;, (v;,v;) € E. In gene regulatory networks, a
node means a gene, and in signaling pathways, a node means a protein. It should be
noted that a reporter gene can be used both for measuring gene expression and for
measuring abundance of proteins.

We define that a node v is a neighboring upstream node of a node v, if the1e is
a directed path within the length of a constant L from v to v, in G. In this case, we
also say that v is covered by v,. For a set of nodes R, we say hat v is covered by R if
v is covered by some node in R. This definition can be justified as follows: if some
node v covered by v, is affected by external signals and/or environmental changes, it
is highly expected (for small L) that v, is also be affected. That is, we may infer that
a subnetwork around v, is affected by external signal or environmental change if v,
is affected, and we want to cover as many parts of the network as possible.

We assume in this paper that L does not depend on the reporter node and each
edge has unit length. This assumption is reasonable because it is difficult to determine
L for each gene or protein and the length of each edge. However, the proposed
methods can be modified for a general case in which L depends on the reporter node
and each edge has distinct length (or weight). Figure 1 shows an example of covered
nodes by using a reporter when L = 2. :

Problem P1 maximizes the number of covered nodes by using K reporters, and
is defined as follows.
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Figure 1: Example of nodes covered by a reporter node when L = 2 in a directed
graph G = (V,E) with V = {v(,...,v;}. In this case, v,, v3, v4 and vg are covered by
Ve

Figure 2: Left: Transformation of an instance I = (U = {uy, ..., un},S = {51, ..., 51}, k)
of the maximum coverage problem to Problem P1. Right: Transformation of I =
(U,S) of the set cover problem to Problem P2.

Difinition 1[Problem P1] Given a directed graph G = (V, E) and two integers L
and K (< |V|), find a set R C V of cardinality at most K maximizing the. number of
nodes covered by R. '

It should be noted that R corresponds to a set of reporters. For sufficiently large
K, we can cover all nodes of V using the solution of Problem P1. In some cases,
we may want to cover all the nodes by using a minimum number of reporter nodes.
Thus, we also consider the following problem. )

Difinition 2[Problem P2] Given a directed graph G = (V,E) and an integer L,
find a minimum cardinality set R C V such that all nodes of V are covered by R.

3 Theoretical Results

We show that Problem P1 is MAX SNP-hard, which means that no PTAS exists
unless P=NP. It should be noted that MAX SNP-hardness also implies NP-hardness.
For terminology on approximation algorithms, refer to [12].

Theorem 1. Problem Pl is MAX SNP-hard.

Proof. We show an L-reduction from the maximum coverage problem [12, 13],
which is known to be MAX SNP-hard [14], to Problem P1. The maximum coverage
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problem is defined as follows: Given a family of sets S over U, and an integer &,
find C C S of cardinality at most kK which maximizes the number of covered elements
in U. From an instance [ = (U = {uy,...,tn},S = {s1,....,81}, k(< 1) ) of the maxi-
mum coverage problem, we construct an instance I' = (G = (V,E), L,K) of P in the
following way (See Figure 2):

V= {ul, ---;unnsla"wsl}a

E=J U {(us)},

j=lu;€s;

L=1, K=k

It should be noted that |V| =m+1,|E| = X'_|s;|. Thus, I’ can be constructed in
polynomial time. . _

Let OPT(I) and OPT(I') be optimal solutions of [ and I, respectively. Then,
OPT (I') = OPT (I) +k holds. Without loss of generality, we can assume that OPT (I) >
k. Therefore, OPT(I') < 20PT(1).

Given any solution R C V of I’ with cost (i.e., the number of covered nodes)
¢/, we produce a solution C of I in polynomial time by letting C = R— U, where
R—U = {r|lr € Rand r ¢ U}. Then, |C| < |R| < k. Let c be the cost (i.e., the number
of covered elements) of C. Since ¢’ < ¢+ k holds,

OPT(I') — ¢ = OPT(I)+k—c > OPT(I) —c.

Therefore, the above reduction is an L-reduction and thus Problem P1 is MAX SNP-
hard. a

For Problem P2, we can show a much stronger hardness result as follows.

Theorem 2. There is no polynomial time algorithm for Problem P2 with approxima-
tion ratio less than l%&.log.n for --any - constant--0 < & < 1 unless
NP C DTIME (n°"'os(n),

Proof. We prove the theorem by contradiction. Suppose that there is a polyno-
mial time algorithm for Problem P2 with approximation ratio less than l};ﬁ logn for
any constant 0 < § < 1.

The set cover problem is defined as follows: Given a family of sets S over U, find
a minimum cardinality set C C S such that all elements of U are covered by | J; ¢ S:-
From an instance I = (U = {uy, ...,y },S = {51, ...,51}) of the set cover problem, we
construct an instance I' = (G = (V, E), L) of P2 in the following way (See Figure 2):

V= {uh "'7um1sl)"'1sl1s0}7

!
E= L_J ({(Sj,so)}u. U {(u,-,s,-)}) )

UiES;

L=1,
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where s¢ is a node notin S.

Let OPT(I) and OPT(I') be optimal solutions of I and I'; respectively. Then,
OPT(I') = OPT(I) + | holds.

Given any solution R C V of I’ with cost ¢’ (i.e., the number of selected nodes),
we produce a solution C of [ in polynomial time by letting C = (R—U — {so}) U
{s;| for u; € R— S — {so},u; € Is;}. Let ¢ be the cost (i.e., the number of selected
elements) of C. Since ¢ = [C| < |R| = ¢’ holds,

c c < c
OPT(I)  OPT(I")—1 ~— OPT(I')—1’

For any constant 0 < § < 1,

c < L ¢ < 1100n
OPT(I')~1— 1-80OPT(l") 4 °

‘holds for sufficient large n = m+- [ + 1. Therefore,

¢ < L lo
- on.
OPT(I) 4 °°

This contradicts to the fact that there is no polynomial time algorithm for the set cover
problem with approximation ratio less than } logn unless NP C DTIME (nP°¥os()),
Thus, the theorem is proved. O

We can also show positive results on approximation ratios using a well-known
greedy algorithm for the set cover [12]. For that purpose, we let U =V and S =
{sv|s, is the set of nodes covered by v € V'}, and simply apply the greedy algorithm.
Then, the following propositions are directly obtained from the results on the greedy
algorithm [12, 13, 14]. -

Proposition 3. PI can be approximated within a factor of e/(e — 1).

. Proposition 4. P2 can be approximated within a fdctor of O(logn).

4 Integer Programming Formulation

In this section, we propose methods to solve Problem P1 and P2 using integer
programming. In the previous section, we showed that both Problem P1 and P2 are
very hard to find optimal or approximate solutions. However, efficient. algorithms
such as branch-and-bound methods have been developed for integer programming,
~ which is also NP-hard. Therefore, we formulate Problem P1 and P2 as integer pro-
grams, and call IP1 and IP2 respectively. In the next section, we show that IP1 and
IP2 are solved in practical time through computational experiments.

Problem P1 is formulated as follows.

(IP1) Maximize Y y;
) i=1
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Subject to
yis Zx,- fori=1,..,n,

jest

Z.L,SK

%= {0,1},
yi=1{0,1},

where SF is the set of nodes covered by v;. Thus, for j € SF, the length of a directed
path from the node v; to v; is less than or equal to L. x; = 1 if v; is selected as a
reporter, otherwise x; = 0. y; = 1 if v; is covered by some reporter, otherwise y; = 0,
IP1 maximizes the number of covered nodes using at most K reporter nodes.

Similarly, Problem P2 is formulated as follows.

(IP2) Minimize zx,-,
=1

Subject to
ij >1 fori=1,.,n,
jest

X = {0, 1}

IP2 minimizes the number of reporters such that all nodes are covered. If the
parameter K of IP1 is greater than or equal to the optimal solution of IP2 the optimal
solution of IP1 is always n.

5 Computational Experiments

We applied the proposed methods to two kinds of data, apoptosis pathway maps
as a real network and artificial scale-free networks for validating the practlcahty of
our methods in large networks.

All of these computational experiments were done on a PC with a Xeon 5160
3GHz CPU and 8GB RAM running under the Linux (version 2.6.19) operating sys-
tem. We used ILOG CPLEX (version 10.1)[15] for solving IP1 and IP2, and mea-
sured execution time of the optimization function CPXmipopt() for mixed integer
programming problems in CPLEX. We must calculate S¥ for all i in order to give in-
teger programming problems to the function. However, the preparation takes at most
O(nz) time.

5.1 Apoptosis Pathway Maps

We used apoptosis pathway maps in a HeLa cell (See Figure 3). The maps
are composed of major signal pathways of apoptosis, which are initiated by TRAIL
(tumour necrosis factor apoptosis inducing ligand) ligation [16]. The maps were
constructed by a commercial software, MetaCore (GeneGo Corp.) [17], in which
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Figure 3. Apoptosis pathway maps in a HeLa cell, which contain 132 proteins and
337 binomial relations.

findings presented in peer-reviewed scientific publications were systematically en-
coded into an ontology by content and modelling experts, and a molecular network
of direct physical, transcriptional and enzymatic interactions was computed from this
knowledge base. The maps thus constructed contain 132 proteins and 337 binomial
relations.

Table 1 shows the results on the optimal solution of IP1 and IP2 for each L(=
1,...,6,132) and K(=1,...,6). The solution of IP2 for each L gives the required
number of nodes to cover all nodes of V. For example, 42 reporters are required for
L =1, and 9 reporters for L = 6.

In the case that L is equal to the number of nodes n = 132, a node v; is always
covered by another v; if there is a directed path from v; to v;. Since 121 proteins
among 132 proteins are covered by protein BAK1 in the case of both L = 6 and
L =132, we can see that the distance between almost all pairs of proteins in this
network is at most 12. Thus, it is considered that the network also has a small-world
property [18]. It should be noted that most nodes (126 nodes) are covered by 6 re-
porters in the case of L = 6. It is also observed that 104 nodes are covered by 6
reporters even in the case of L = 2. For L = 1,...,3, TP53, BCL2 and BAX were
selected as the most significant reporters respectively. These proteins are considered
as hubs of the network because they have large indegrees and outdegrees. On the
other hand, BAK1 is not considered as a hub, but is as an accumulation node of the
network, and is selected as a reporter. Moreover, it seems that some of the selected
proteins have significant biological meanings as follows. p53, a tumour suppres-
sor gene that responds to DNA-damage, is influential on TRAIL-induced apoptosis
by up-regulating TRAIL receptor [19]. Bcl-2 superfamily regulates cell death that is -
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Table 1: The optimal solution of IP1 and IP2 for each L and K in apoptosis pathway
maps, where the numbers of covered nodes and the numbers of the selected reporters
are shown for IP1 and IP2, respectively.

L IP1 for each K IP2 | Reporterin K =1
| 2 3 4 5 6 (indegree/outdegree)

1{ 20| 36| 47| 56| 62| 68| 42 TP53 (19/5)

21 60y 76| 8 | 92| 98| 104 | 22 BCL2 (17/4)

3 8 | 103 | 110 | 116 | 118 | 120 | 15 BAX (16/6)

4109 | 116 | 120 | 122 | 124 | 126 | 12 BAX (16/6)

S| 118|121 | 123 | 125 | 127 | 128 | 10 BAKI1 (6/1)

6 (121 | 123 | 125 | 127 | 128 | 129 9 BAKI1 (6/1)
132 1 121 | 123 | 125 | 127 | 128 | 129 9 BAK1 (6/1)

~amplified via the mitochondrial pathway [20]. BAX may be related with possible am-
plification of apoptosis via the intrinsic pathway in response to JNK. The caspase-9
may be essential for border-cell migration in the Drosophila ovary [21], and the reg-
ulation of cell migration may also point to a roll in the cleavage of several adhesion-
and cell motility- related proteins during mammalian apoptosis [22].

Table 2 shows the selected proteins as reporters for each L and K. The protein
selected as a reporter for smaller K was not always selected for larger K. For example,
for L = 2, BCL2 was selected as a reporter in the case of K = 1, but was not in the
cases of K =2, ...,4. If we use a simple greedy algorithm for solving P1, we may not
be able to find CASP9 and BAX for K = 2, or CASP9, BAX and IKBKG for K =3
since the greedy algorithm often tends to add a new node to the solution for K — 1.
On the other hand, our integer programming-based methods can always find optimal
solutions if any. For each case, the elapsed time of optimizing IP1 or IP2 was at most
0.023 seconds. These results suggest that our methods are practical.

5.1.1 Effects of Specific Nodes

It is also important to observe the effects of signals on specific proteins or genes
using cell arrays. In this section, we used CASP8, which is a protease located at
the upstream of the caspase cascade that is a main pathway of the apoptosis initiated
by TRAIL [23], as a specific protein among the apoptosis pathway maps. Then, we
extracted the downstream proteins within the distance 2 from CASP8 (See Figure
4). We excluded CASPS8 from this downstream subnetwork not to select it as a re-
porter. Thus, we obtained the subnetwork with 23 proteins and 58 binomial relations
excluding CASPS.

Table 3 shows selected proteins as reporters for each L and K as Table 2. In
both the whole network and the subnetwork, the same proteins such as BCL2, BAK1
and CASP9 were selected as reporters. It is reasonable because they have similar
connections in both networks. For L = 4, ...,n(= 23), five proteins without outward
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Table 2: Selected proteins as reporters for each L and K in apoptosis pathway maps.

h

IP1

Reporters

20

36
47
56
62
68
73

TP53

TP53, BCL2

TP53, BCL2, BAX

TP53, BCL2, BAX, CASP9

TP53, BCL2, BAX, CASP9, FADD

TP53, BCL2, BAX, CASP9, FADD, MAP3K1

TP53, BCL2, BAX, CASP9, FADD, MAP3K |, BIRC4

60
76
85

92

98
104

BCL2

CASP9, BAX

CASP9, BAX, IKBKG

CASP9, BAX, IKBKG, MAP2K7

CASP9, IKBKG, MAP2K7, BCL2, VDAC2
CASP9, IKBKG, MAP2K7, BCL2, VDAC2, TP53

38

103
110
116
118

BAX

BAX, IKBKG

IKBKG, BCL2, VDAC2

IKBKG, BCL2, BAK1, MAP2K7
IKBKG, BAK1, MAP2K7, CASP9, TP53

109
116
120
122

BAX

BCL2, BAK1 ,

BAX, VDAC2, IKBKG

BAX, VDAC2, IKBKG, FASLG

118
121
123
125

BAKI1

BAK1, BCL2

BCL2, VDAC2, TNFRSF1A

BCL2, VDAC2, TNFRSF1A, DFFB

A b b B PR BRTWWWWWENNDNNDNDN A~ = ————

121
123
125

BAK1
BAK1, FASLG
BAK1, FASLG, TNFRSF1A

132
132
132

W ~WN~RWNSRRLWNRNRAEVLN=OVMLEWLUN =IOV AWND—X

121
123
125

BAK1
BAKI1, TNFRSF1A
BAK1, TNFRSF1A, FASLG
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Figure 4: Downstream proteins of CASPS8 within the distance 2 in apoptosis pathway
maps. CASP8 is highlighted with the double circles. We excluded CASP8 from this
subnetwork not to select it as a reporter.

edges were selected as the optimal reporter nodes in IP2.

5.2 Artificial Scale-free Networks

It is known that many real biological networks have the scale-free property [24].
In particular, it is observed that gene regulatory networks have the power-law out-
degree distribution and the Poisson indegree’ distribution [25]. Thus, we generated
scale-free networks with a power-law outdegree distribution (e< k~2°) and Poisson
indegree distribution as follows. We first choose the outdegree for each node from a
power-law distribution. That is, the outdegree d; of node v; is drawn from a power-
law distribution. Then, we choose d; output nodes randomly with uniform probability
from n nodes. Thus, the indegree distribution should follow a Poisson distribution.

Table 4 shows the average CPU time over 100 networks for each case. For large
n(= 1000, 5000, 10000), the elapsed time was sufficiently short (even in the case of
L =3 and K =5). This result suggests that the proposed methods are scalable to
realistic size instances. The elapsed time of IP2 was shorter than that of IP1 for
almost all cases. It is reasonable because IP1 has twice as many integer variables as
IP2, and the number of constraints in IP1 is larger than that in IP2.

6 Concluding Remarks

We defined two problems P1 and P2 to allocate reporter genes that are effective
for observing behaviors of various biological networks. We showed hardness results
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Table 3: Selected proteins as reporters for each L and K in the downstream proteins

of CASPS.
L K IPI | Reporters
1 [ 6 | BCL2
1 2 10 | BID, CASP7
1 3 13 | BCL2, BID, BIRC4
1 | 10(IP2) | 23 | CASP9, RAD9B, BCL2, BAK I, DIABLO,
CASP3, DFFA, NUMAL1, PAK2, PARPI -
2 1 13 | BCL2
2 2 18 | BCL2, BIRC4
2 3 19 | BCL2, DIABLO, NUMA
2 | 7ap2) | 23 | BCL2, BAK!, DIABLO, DFFA, NUMAI,
PAK2, PARP1
3 1 16 | BAD
.3 | 6(P2) | 23 | CASP9, BAKI, DFFA, NUMAL, PAK2, PARPI
4 | 5@P2) | 23 | BAK1, DFFA, NUMAL, PAK2, PARPI
23 1 19 | BAK1
23 | 5(IP2) | 23 | BAKI, DFFA, NUMAI, PAK2, PARPI

on ap;iroximation of these problems. On the other hand, by means of reduction to the
set cover problem, we showed that P1 and P2 can be approximated within a factor of
e/(e — 1) and O(logn), respectively.

We proposed integer programming-based methods IP1 and IP2 for solving prac-
tical instances of P1 and P2, respectively. We applied them to apoptosis pathway
maps, and found that such proteins as TP53, BCL2 and BAX selected by our meth-
ods often correspond to hubs in the network. These proteins are also considered to
play important biological roles. Furthermore, we applied our methods to artificial
scale-free networks with up to 10,000 nodes, and we showed that our methods can
compute optimal solutions for these networks in practical time.

Table 4: Elapsed time (sec.) of solving IP1 and IP2 for each n, L and K.

n LK IP1 P2
1000 | 1 | 1 | 0.0147972 | 0.00932519
1000 | 3 | 5 | 0.904964 | 0.0526494
5000 | 1} 1]0.102972 | 0.0485728
5000 | 31 5 ] 2.90922 0.841976

10000 [ 1 [ 1 | 0.276991 | 0.101553
10000 | 3 | 5 | 5.62986 4.01971
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Though we considered directed and unweighted networks in this paper, [Pl and
[P2 can be modified for undirected and/or weighted networks. Furthermore, we can
add ‘various kinds of constraints to IPL and [P2 because these are based on integer
programming. Such a flexibility would be useful for modifying the proposed methods
according to requirements from experimental biologists.
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Abstract

Proteome analysis of human hepatocellular carcinoma (HCC) was done using two-dimensional difference gel electrophoresis. To gain
an understanding of the molecular events accompanying HCC development, we compared the protein expression profiles of HCC and
non-HCC tissue from 14 patients to the mRNA expression profiles of the same samples made from a cDNA microarray. A total of 125
proteins were identified, and the expression profiles of 93 proteins (149 spots) were compared to the mRNA expression profiles. The over-
all protein expression ratios correlated well with the mRNA ratios between HCC and non-HCC (Pearson’s correlation coefficient:
. r=0.73). Particularly, the HCC/non-HCC expression ratios of proteins involved in metabolic processes showed significant correlation
to those of mMRNA (r = 0.9). A considerable number of proteins were expressed as multiple spots. Among them, several proteins showed
spot-to-spot differences in expression level and their expression ratios between HCC and non-HCC poorly correlated to mRNA ratios.

Such multi-spotted proteins might arise as a consequence of post-translational modifications.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Hepatocellular carcinoma; Proteome; Two-dimensional difference gel electrophoresis; Transcriptome; cDNA microarray

Hepatocellular carcinoma (HCC) is one of the most
common cancers worldwide, and a leading cause of death
in Africa and Asia [1]. Although several major risks related
to HCC, such as hepatitis B and/or hepatitis C virus infec-
tion, aflatoxin B1 exposure, and alcohol consumption, and
genetic defects, have been revealed [2], the molecular mech-
anisms leading to the initiation and progression of HCC
are not well known. To find the molecular basis of hepato-
carcinogenesis, comprehensive gene expression analyses
have been done using many systems such as hepatoma cell
lines and tissue samples [3,4]. Previously, we have carried

* Corresponding authors. Fax: +81 76 234 4250 (M. Honda), +81 29
856 6136 (Y.Tabuse).
E-mail addresses: mhonda@medf.m.kanazawa-u.acjp (M. Honda),
y-tabuse@cd.jp.nec.com (Y. Tabuse). .

0006-291X/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.bbrc.2007.11.101

out a comprehensive mRNA expression analysis using
the serial analysis of gene expression (SAGE) [5] and
c¢DNA microarray-based comparative genomic hybridiza-
tion [6] to acquire the outline of. gene expression profile
of HCC. Although these genomic approaches have yielded
global gene expression profiles in HCC and identified a
number of candidate genes as biomarkers useful for cancer
staging, prediction of prognosis, and treatment selection
[7], the molecular events accompanying HCC development
are not yet understood. In general, proteins rather than
transcripts are the major effectors of cellular and tissue
function [8] and it is accepted that protein expression do
not always correlate with mRNA expression [9,10]. Thus,
protein expression analysis, which could complement the
available mRNA data, is also important to understand
the molecular mechanisms of HCC.
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The technique of two-dimensional difference gel electro-
phoresis (2D-DIGE), developed by Unlu et al. [11]is one of
major advances in quantitative proteomics. Several groups
have recently utilized 2D-DIGE to examine protein expres-
sion changes in HCC samples [12,13], whereas reports on
the analysis combining both transcriptomic and proteomic
approach are rare.

In the present study, we compared quantitatively protein
expression profiles of HCC to non-HCC (non-cancerous
liver) samples derived from 14 patients by 2D-DIGE. We
also compared the protein expression profiles of the same
HCC and non-HCC samples to the mRNA profiles which
have been obtained using a cDNA microarray. The expres-
sion ratios of 93 proteins showed significant correlations
with the mRNA ratios between HCC and non-HCC. Pro-
teins involved in metabolic processes showed more promi-
nent correlation. Our study describes an outline of gene
and protein expression profiles in HCC, thus providing
us a basis for better understanding of the disease.

Materials and meth9ds

Patients. A total of 14 HCC patients who had surgical resection done
in the Kanazawa University Hospital were enrolled. The clinicopatho-
logical characteristics of them are shown in Table 1. The HCC samples
and adjacent non-tumor liver samples were snap frozen in liquid nitrogen,
and used for cDNA microarray and 2D-DIGE analysis. All HCC and
non-tumor samples were histologically diagnosed and quantitative detec-
tion of hepatitis C virus RNA by Amplicore analysis (Roche Diagnostic
Systems) showed positive. The grading and staging of chronic hepatitis
associated with non-tumor lesion were histologically assessed according to
the method described by Desmet et al. {14] and histological typing of HCC
was assessed according to Ishak et al. [15]. All strategies used for gene
expression and protein expression analysis were approved by the Ethical
Committee of Kanazawa University Hospital.

Preparation of cDN A microarray slides. In addition to in-house cDNA
microarray slides consisting of 1080 cDNA clones as previously described
[6,16-18], we made new cDNA microarray slides for detailed analysis of
the signaling pathway of metabolism and enzyme function in liver disease
[19). Besides cDNA microarray analysis, a total of 256,550 tags were

Table 1

Characteristics of patients involved in this study

Patient  Age Sex®. Histology of non- Tumor Viral

No. tumor lesion® histology status
1 64 ™M F4A1l Moderate HCV
2 65 M F4Al Well HCV
3 48 M F3A1 Moderate HCV
4 69 F F4A2 Moderate HCV
5 66 F F4A2 Well HCV
6 45 M  F4Al Well HCV
7 75 F F4A1 Well HCV
8 46 M F4A2 Moderate HCV
9 66 M  F2A2 Well HCV

10 75 M F3Al Moderate HCV

11 67 F F4A2 Well HCV

12 64 M. F4Al Moderate HCV

13 68 M F4A0 Well HCV

14 74 M  FlA0 Moderate HCV

2 M, male; F, female.
b F, fibrosis; A, activity.

obtained from hepatic SAGE libraries (derived from normal liver, CH-C,
CH-C related HCC, CH-B, and CH-B related HCC), including 52,149
unique tags. Among these, 16,916 tags expressing more than two hits were
selected to avoid the effect of sequencing errors in the libraries. From these
candidate genes, 9614 non-redundant clones were obtained from Incyte
Genomics (Incyte Corporation), Clontech (Nippon Becton Dickinson),
and Invitrogen (Invitrogen). Each clone was sequence validated and PCR
amplified by Dragon Genomics (Takara Bio), and the cDNA microarray
slides (Liver chip 10k) were constructed using SPBIO 2000 (Hitachi
Software) as described previously [6,16-18).

RNA isolation and antisense RNA amplification. Total RNA was iso-
lated from liver biopsy samples using an RNA extraction kit (Stratagene).
Aliquots of total RNA (5 ug) were subjected to amplification with anti-
sense RNA (aRNA) using a Message AmpTM aRNA kit (Ambion) as
recommended by the manufacturer. About 25 pg of aRNA was amplified
from 5 pg total RNA, assuming that 500-fold amplification of mRNA was
obtained. The quality and degradation of the isolated RNA were esti-
mated after electrophoresis using an Agilent 2001 bioanalyzer. In addition,
10 ug of aRNA was used for further labeling procedures.

Hybridization on ¢cDNA microarray slides and image analysis. As a
reference for each microarray analysis, aRNA samples prepared from the
normal liver tissue from one of the patients were used. Test RNA samples
fluorescently labeled with cyanine (Cy) 5 and reference RNA labeled with
Cy3 were used for microarray hybridization as described previously [6,16—
18]. Quantitative assessment of the signals on the slides was done by
scanning on a ScanArray 5000 (General Scanning) followed by image
analysis using GenePix Pro 4.1 (Axon Instruments) as described previ-
ously [6,16-18].

Protein expression analysis using 2D-DIGE. Protein samples were
homogenized with lysis buffer (7 M urea, 2 M thiourea, 4% w/v CHAPS,
0.8 uyM aprotinin, 15 uM pepstatin, 0.1 mM PMSF, 0.5mM EDTA,
30 mM Tris—HC], pH 8.5) and centrifuged at 13,000 rpm for 20 min at
4 °C. The supernatants were used as protein samples. The protein con-
centrations were determined with a protein assay reagent (Bio-Rad). The
non-HCC and HCC samples (50 pg each) labeled with either Cy3 or Cy5
according to the manufacture’s manual were combined and separated on
2-DE gels together with the Cy2-labeled internal standard (IS), which was
prepared by mixing equal amounts of all samples. Analytical 2-DE was
performed as described previously {20] using Immobiline DryStrip (pH 3~
10, 24 cm, GE Healthcare) in the first dimension and 12.5% SDS-poly-
acrylamide gels (24 x 20 cm) in the second dimension. Samples were run in
triplicate to obtain statistically reasonable results. After scanning with a
Typhoon 9410 scanner (GE Healthcare), gels were silver stained for pro-
tein identification. For protein identification, 400 ug of the IS sample was
also separately run on a 2-DE gel and stained with SYPRO Ruby
(Invitrogen). All analytical and preparative gel images were processed
using ImageQuant (GE Healthcare) and the protein level analysis was
done with the DeCyder software (GE Healthcare). To detect phospho-
proteins, 400 pg of HCC and non-HCC samples were separately run on 2-
DE gels and stained with ProQ Diamond (Invitrogen). After acquiring
images, gels were counterstained with SYPRO Ruby to visualize total
proteins as described above.

Protein identification. The excised protein spots were in-gel digested
with porcine trypsin (Promega). For LC-ESI-IT MS/MS analysis using
LCQ Deca XP (Thermo Electron), the digested and dried peptides were
dissolved in 10 pl of 0.1% formic acid in 2% acetonitrile (ACN). The
dissolved samples were loaded onto Cl18 silica gel capillary columns
(Magic Cl18, 50 x 0.2 mm), and the elution from the column was directly
connected through a sprayer to an ESI-IT MS. Mobile phase A was 2%
ACN containing 0.1% formic acid, and mobile phase B was 90% ACN
containing 0.1% formic acid. A linear gradient from 5% to 65% of con-
centration B was applied to elute peptides. The ESI-IT MS was operated
in positive ion mode over the range of 350-2000 (m/z) and the database
search was carried out against the IPI Human using MASCOT (Matrix-
science). The following search parameters were used: the cutting enzyme,
trypsin; one missed cleavage allowed, mass tolerance window, +1 Da, the
MS/MS tolerance window, +0.8 Da; carbamidomethyl cystein and oxi-
dized methionine as fixed and variable modifications, respectively.
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Detection of phosphorylated peptide. Possible phosphorylation sites
were investigated by MALDI-TOF-MS using monoammonium phos-
phate (MAP) added matrix mainly according to Nabetani et al. [21]. An
additive of MAP was mixed with o-CHCA matrix solution (5 mg/mL,
0.1% TFA, 50% ACN aqueous) to 40 mM in final concentration. Tryptsin
digests of the spots positively stained with ProQ were dissolved into 4 pL
of 0.1% TFA, 50% ACN aqueous solution and 1pL of the peptides
solution was spotted on the MALDI target plate. After drying up, 1 pL of
the MAP matrix was dropped on the dried peptide mixture. Voyager DE-
STR (ABI) was used to obtain mass spectra both in negative and positive
ion mode. MS peaks that had relatively stronger intensities in negative ion
mode than in positive ion mode were selected as candidates for acidically
modified peptides.

Results and discussion

We identified 195 spots representing 125 proteins (Sup-
pl. Table 1) and obtained the corresponding mRNA
expression data for a total of 93 proteins (149 spots) (Sup-
pl. Table 2). These 93 proteins were classified according to
their biological processes and subcellular localizations into
categories described by the Gene Ontology Consortium
(http://www.geneontology.org/index.shtml) and about a
half of them were related to metabolic processes
(Fig. 1A). It is a general agreement that proteins with extre-
mely high or low pI as well as hydrophobic proteins are dif-
ficult to be detected by 2-DE. Being consistent with this
notion, our analysis detected many cytoplasmic proteins
(Fig. 1B). Therefore, the protein expression data presented
here were biased in favor of cytoplasmic and soluble pro-
teins. The protein expression abundance between non-
HCC and HCC was calculated using the normalized spot
volume, which was the ratio of spot volume relative to IS
(Cy3:Cy2 or Cy5:Cy2) and we used the Student’s paired
t-test (p <0.05) to select the protein spots which were
expressed differentially between non-HCC and HCC, using
2-DE gel images run in triplicate. The spot volume of a
multi-spotted protein was indicated as a total volume by
integrating the intensities of multiple spots as was done
by Gygi et al. [10]. Comparison of protein expression pro-
files revealed that several proteins were expressed differen-
tially between HCC and non-HCC. Proteins whose
abundances increased >2-fold or decreased <1/2 in HCC
are listed in Table 2. While glutamine synthetase, vimentin,

A Unknown
4%

Metabolic

y

Signal 47%
Transduction K
6%
Cell Motility
6%
Protein
folding Transport
8% - 9%
B Nucleus Others Unkr:own

Cyto:(:eton b

Mitochondrion
28%

Fig. 1. Classification of identified proteins according to their cellular
function (A) and subcellular localization (B).

annexin A2 and aldo-keto reductase were up-regulated,
carbonic anhydrase 2, argininosuccinate synthetase 1, car-
bonic anhydrase 1, fructose-1,6-bisphosphatase 1, and
betaine-homocysteine methyltransferase were down-regu-
lated in HCC. Up- or down-regulation of most of these
proteins in HCC has been reported previously [22-27].
Up-regulation of vimentin and annexin A2, and reduced
expression of carbonic anhydrase 1 and 2 was suspected
to be associated with cellular motility and metastasis
[23,24,26]. :

The mRNA expression abundance was calculated
from cDNA microarray data. Hierarchical clustering of

Table 2

Proteins expressed differentially between HCC and non-HCC

Spot ID Protein name Refseq ID Theoretical Fold change (HCC/non-HCC) References
! MW (kDa) Protein® mRNA

1353, 1354 Glutamine synthase NP_002056.2 643 427 2.06 3.08 [22]

1039, 1046 Vimentin NP_003371 509 536 2.30 1.51 [23]

1716 Annexin A2 NP_001002857.1 7.57 38.8 2.57 1.82 [24)

1685, 1699 Aldo-keto reductase 1B10 NP_064695 7.12 362 4.29 473 [25)

1977 Carbonic anhydrase 2 NP_000058 687 293 0.39 0.62 [26]

1307, 1312, 1331  Argininosuccinate synthetase 1 NP_000041.2 8.08 46.8 0.41 0.30 27

1941 Carbonic anhydrase 1 NP_001729 6.59 289 0.47 1.25 [26] -

1582 Fructose-1,6-bisphosphatase 1 NP_000498 6.54 372 0.48 0.36

1256 Betaine-homocysteine methyltransferase ~ NP_001704 641 454 0.48 0.40

# Integrated spot volume was used to calculate the fold change of multi-spotted proteins.
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Fig. 2. Comparative analysis of protein and mRNA expression profiles between HCC and non-HCC. (A) The HCC/non-HCC ratios of averaged protein
expression levels for 93 proteins were plotted against those of mRNA. Proteins related to metabolic pathways were indicated in closed circles and were
shown again in (B). Proteins related to the other biochemical pathways were indicated in open circles and shown in (C). Proteins listed in Table 3 were

indicated in (B) and (C). All graphs were depicted in log, scale.

Table 3 :

Proteins whose expression changes between HCC and non-HCC show poor correlation to mRNA expression changes

Spot Protein name Refseq ID  Theoretical Spot® Av. Spot p Protein Micro array Av. Micro array p
D : pl—P w Ratio value rat.io ratio value
(kDa)
564 Transferrin NP_001054 6.8 79.3 2.23 0.035 1.61 045 3.3E-06
565 1.87 0.079
566 . 2.28 0.13
605 0.73 0.098
1489 Albumin NP_000468 59 71.3 — 0.63 1.25 047 2.3E-03
1941 Carbonic anhydrase 1 NP_001729 6.6 28.9 — 3.5E-03 0.47 1.25 0.39
2290 Peptidylprolyl NP_066953 7.7 18.1 — 5.0E-01 1.07 229 1.1E-01
isomerase A
# Since transferrin was detected in multiple spots, averaged ratio and spot p value of each spot is shown.
Table 4
Multi-spotted proteins showing spot-to-spot differences in expression level between non-HCC and HCC
Spot ID Spot Av. ratio Spot p value Protein name Refseq ID Theoretical Protein® ratio
p! MW (kDa)
436 1.92 5.3E—-04 Tumor rejection antigen (gp96) NP_003290 48 92.7 1.2
537 0.79 0.16
564 - 223 0.035 Transferrin NP_001054 6.8 79.3 1.61
565 1.87 0.079
566 2.28 0.13
605 0.73 0.098
1257 1.02 0.92 Fumarate hydratase NP_000134 8.8 54.8 0.8
1261 0.6 1.3E-03

® HCC/non-HCC protein ratios were calculated using integrated spot abundances.

gene expression was done with BRB-ArrayTools (http://
linus.nci.nih.gov/BRB-ArrayTools.htm). The filtered data
were log-transferred, normalized, centered, and applied
to the average linkage clustering with centered correla-
tion. BRB-ArrayTools contains a class comparison tool
based on univariate F tests to find genes differentially
expressed between predefined clinical groups. The permu-
tation distribution of the F statistic, based on 2000 ran-
dom permutations, was also used to confirm statistical

significance. A p value of less than 0.05 for differences
in HCC/non-HCC gene expression ratio was considered
significant. '

The average HCC/non-HCC expression ratios of the 93
proteins were plotted against the mRNA ratios in Fig. 2,
where a positive value indicates increased expression in
HCC and a negative ratio indicates reduced expression.
The overall expression ratio of HCC/non-HCC indicated
noticeable correlation between protein and mRNA
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(Fig. 2A), and the Pearson’s correlation coefficient for this
data set (93 proteins/genes) was 0.73. Next, we divided 93
proteins into those related to metabolism and others bio-
logical processes. The HCC/non-HCC ratios of protein
expression for metabolism-related proteins showed sub-
stantial correlation with those of mRNA (Fig. 2B,
r = 0.9), whereas those of other proteins were poorly corre-
lated (Fig. 2C, r = 0.36). Extreme care must be taken in a
direct comparison of proteomic data with transcriptome

C .5 D

St #436 - #537
2o [ ] 2 3 8
ND .t 8 3
B8 ¢ 8 ]
©c T [ ]
SE..f § 1} .
g g 0.5:— ] ]
a 5] 3 B g ]

0™ on 0—on HeC

Hce HcC HCC

G 100 2261.98
80 [512-530]
z FQSSHHPTDITSLDQYVER
g (2259.056)
£
R

2050 2200 2350 2500 2650 2800

H 100
80 2260.53
60 2340.10

% intensity

2050 2200 2350 2500 2650 2800
Mass (m/z)

because of multiple layers of discrepancies caused by the
distinct sensitivities of cDNA array hybridization and 2-
DE, the inability of a cDNA array to distinguish mRNA
isoforms and post-translational modifications of proteins.
Nevertheless, our results suggest that the expression of con-
siderable portion of proteins with metabolic function listed
here is regulated at transcriptional level. On the other
hand, post-transcriptional and/or post-translational pro-
cesses seem to be involved in the regulation of expression
level for proteins with other cellular functions as a whole.
Four proteins (albumin, transferrin, peptidylproryl isomer-
ase A, and carbonic anhydrase 1) showed apparent poor
correlation in protein and mRNA expression profiles
(Table 3 and Fig. 2). Transcriptional control might have lit-
tle effect on the expression changes of these proteins
between HCC and non-HCC.

A number of proteins were expressed as multiple spots
on 2-DE gels and most multi-spotted proteins showed little
spot-to-spot variations in the averaged HCC/non-HCC
ratio. Although we do not know how these multiple spots
were generated, many of them might be due to the confor-
mational equilibrium of proteins under electrophoresis
rather than to any post-translational modifications [28].
On the other hand, the HCC/non-HCC expression ratios
of several multi-spotted proteins varied from spot to spot,
and three proteins (transferrin, fumarate hydratase, and
tumor rejection antigen gp96) were categorized as these

-multi-spotted proteins (Table 4).

For example, gp96 was detected in two spots (spot #436
and 537) with distinct molecular mass and pJ and they
showed different HCC/non-HCC expression ratio
(Fig. 3A and B and Table 4). The expression of these two
isoforms was observed to change in the opposite direction
between non-HCC and HCC: #436 was up-regulated in
HCC (HCC/non-HCC ratio: 1.96) while #537 was down-
regulated (HCC/non-HCC ratio: 0.79) (Table 4 and
Fig. 3C and D). Gp96 is a glycoprotein present in endo-
plasmic reticulum and is supposed to function as a molec-

<

Fig. 3. Comparison of expression profiles of two gp96 spots between HCC
and non-HCC. The expression profile and phosphorylation of tumor
rejection antigen gp96 in HCC and non-HCC was investigated. Magnified
gel images and 3D views of two gp96 spots in non-HCC (A) and HCC (B)
were shown. Differences in expression level of two gp96 spots, #436 (C)
and #537 (D), between non-HCC and HCC were shown. The open circle
indicates the standardized abundance of the individual spot in each
sample. The closed square represents the averaged abundance of each
gp96 spot. Magnified gel images of non-HCC (E) and HCC (F) stained
with ProQ. The #436 spot was positively stained with ProQ, while
unambiguous staining of the #537 spot was not observed. Tryptic peptides
prepared from the spot #436 were analyzed by MALDI-TOF mass-
spectrometry in the positive ion mode (G) and the negative ion mode (H).
A peak of 2261.98 detected in positive ion mode corresponds to the amino
acid sequence from 512 to 530. In addition to the original peak (m/z:
2260.53), a peak mass shifted by +-80 Da was detected in the negative ion
mode. A predicted phosphorylation consensus motif for protein kinase
CK2 is indicated in italics (G).
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