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- Supplementary Material

Hereby, we show Ya(r), which is not shown in Eq. (11), at the following URL.:
http://www.math.kyushu-u.ac. jp/ "phiroshi/pet/Y2.pdf,

where, for instance, Root[k\#1 + ka#12 + ks#13, 1] denotes the minimum real root of the

equation [k;x + kax? + k3x® = 0 in x and DiracDelta[t] denotes Dirac delta function 6(¢).

Appendix A: Proof of the Existence of Five Real Negative Roots

We shall prove that both F(s) and G(s) have five real ﬁegative roots. From Eq. (9):

F(s) = (s +1)(s + L)(s + B)F(s),

G(s) = (s + m)(s + ma)(s + m3)G(s),
where

F\(s) = aams(s + m)(s + my) + s(~az(my — m3)(s + my) — ay(m, — m3)(s + my)),
G1(s) = bb I3(s + 1))(s + k) + s(=ba(la — L)(s + L) — bi(l — B)(s + b)).

In PET experiments, we can reasonably postulate [} > I, > I3 > 0, and, my >

my > m3 > 0 because the radioactivity eventually approaches an equilibrium (the finite
value). With respect to F';(s), we can see the following relationships:

F1(0) = aa mymams,

Fi(=my) = aym(my — m)(my —m3), Fi(—m3) = —(a; + az + aa)mz(m, —m3)(ms —my).

As seen in Fig. 3, aa > 0 because the radioactivity is never negative even when t — oo.
Furthermore, the largest and the smallest time constants: 1/m3 and 1/m, correspond to
the sampling data near the equilibrium and the initial stage, respectively, leading to the
coefficient relations of the exponentials, exp(—m3t) and exp(—mt): —(a, + az + aa) > 0
and a; < 0, respectively. These facts lead to F(0) > 0, F;(-m3) < 0 and F{(-m,) > 0,
showing that F(s) has two real negative distinct roots, and then F(s) has five real
negative roots. Likewise, G(s) has five real negative roots. ' m]
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Appeundix B: The Third-Order Polynomial in k3

In §2.4, we have derived the third-order polynomial by calculating the elimination ideal
w.r.t. kp3. This calculation needed 35.4 hours CPU time and 220 MBytes memory via
Mathematica 5.2 (Wolfram Research, Inc.) with [ntel(R) Xeon(R) CPU 2.33GHz. The
calculated polynomial is as follows:
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Abstract. We propose a novel algorithm to select a model that is consistent with
the time series of observed data. In the first step, the kinetics for describing a bio-
logical phenomenon is expressed by a system of difterential equations, assuming
that the relationships between the variables are linear. Simultaneously, the time
series of the data are numerically fitted as a series of exponentials. In the next
step, both the system of differential equations with the kinetic parameters and the
series of exponentials fitted to the observed data are transformed into the corre-
sponding system of algebraic equations, by the Laplace transformation. Finally,
the two systems of algebraic equations are compared by an algebraic approach.
The present method estimates the model’s consistency with the observed data and
the determined kinetic parameters. One of the merits of the present method is that
it allows a kinetic model with cyclic relationships between variables.that cannot
be handled by the usual approaches. The plausibility of the present method is il-
lustrated by the actual relationships between specific leaf area, leaf nitrogen and
leaf gas exchange with the corresponding simulated data.

1 Introduction

The knowledge-based approach to constructing a biological network model is recog-
nized as one of the most promising approaches [4]. In this approach, the causal rela-
tions between biological molecules are described as a directed graph, based on the gene
interaction information collected from a large number of previous reports. Since each
relation identified by experimental studies is regarded as strong evidence for the exis-
tence of edges in the network model, biological network models have been constructed
for various biological phenomena by a knowledge-based approach. On the other hand,
it is well-known that the relationships between the molecules in a living cell change
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V.G. Ganzha, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2007, LNCS 4770, pp. 433—447, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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dynamically. depending on the cellular enviconment. Thus, the molecular relationships
in the literature represent the responses to the ditferent conditions in the experimental
studies, and in the network model gencrated (rom the biological knowledge. the consis-
tency of the model with the data observed by experimental studies must be considered
carcfully. Actually, several distinctive models of the relationship between molecules for
a biological phenomenon can be obtained from the large amount of information in the
fiterature [2. 5]. In these cases. a model that is consistent with the data observed under
particular conditions should be selected trom the candidate models.

The consistency of a model with the observed data first reminds us of the identifia-
bility problem in the compartmental models for tracer kinetics [, 5, 6]. In the compart-
mental models, the unknown parameters are estimated from tracer data in the accessible
pools. The identifiability problem addresses the issue of whether the unknown param-
eters can be determined uniquely or non-uniquely from the tracer data. This issue has
usually been solved through the transformation of differential equations into algebraic
equations, by the Laplace transformation. Although a systematic algorithm for the iden-
tifiability problem was proposed [3], its application is limited to the unrealistic context
of an error—free model structure and noise—free tracer data. Thus, it still seems to be
difficult to solve the identifiability problem for actually observed data, in spite of the
mathematical studies.

The issue of the consistency of a model with the observed data is also well known in
statistics, as the test for causal hypotheses by using the observed data. The origin of the
test for causal hypotheses is attributed to path analysis [12]. Unfortunately, the impor-
tance of this cornerstone research has been ignored for a long time, but the natural ex-
tension of the path analysis has been established as the well-known structural equation
model (SEM) [8]. Indeed, the SEM has been utilized recently in various fields, in ac-
cordance with increased computer performance. However, the SEM without any latent
variables, which is the natural form for applying the SEM to the biological networks,
frequently faces difficulty in the numerical calculation of the maximum likelihood for
the observed data. To overcome the difficulty of this calculation, the d-sep test [11] has
been developed, based on the concept of d-separation in a directed acyclic graph [10].
Notice that the graph consistency with the data in the d-sep test can consider only the
directed acyclic graph (DAG), without any cyclic relationships.

In this study, we propose a new method for selecting models, by estimating the
consistency of a kinetic model with the time series of observed data. Our method is
described in the following section. First, the kinetics for describing a biological phe-
nomenon is expressed by a system of differential equations, assumed that the rela-
tionships between the variables are linear. Simultaneously, the time series of the data
are numerically fitted as a series of exponentials. Next, the differential equations with
the kinetic parameters and the series of exponentials fitted to the observed data are
both transformed into the corresponding system of algebraic equations, by the Laplace
transformation. Finally, the two systems of algebraic equations are compared by an
algebraic approach. Thus, the present method estimates the model’s consistency with
the observed data and the determined kinetic parameters. In §3, the plausibility of the
present method is illustrated by the actual relationships between specific leaf area, leaf
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d/dt f1(N = =k + k(D

d/dr {5 = ki i) + (ks = k)0
d/dr fa(n) = kyf>()

£ d/dr Jan = I\l/((’) - (,\5 + ko + k) 11N
d/dr fs(1) = ks fi(1)

d/dr fol) = ke fol1)

d/dt 30 = k1./1(0

Fig. 1. Correspondence between a network and a system of differential equations. By assuming a
linear relation between the variables, the kinetics of chemicals fi, fo.... in the left graph can be
dexcribed by the system of difterential equations on the right side.

nitrogen and leaf gas exchange [9]. with the corresponding data generated by the difter-
ential equations for the relationships. Furthermore, the merits and pitfalls of the present
method are discussed. In particular, one of the merits of the present method is that it al-
lows a kinetic model with cyclic relationships between variables that cannot be handled
by the usual approaches.

2 Methods

The aim of this paper is to select the model most consistent with the given sampling
data. In this section, we propose a method to perform this selection, where the model
is described as a network. The network addressed in this paper designates the kinetics
of chemicals, which can be described by a system of differential equations, as seen in
Fig. 1. ‘

First, we will show the overview of our method by a schematic illustration. We will
then provide an explanation for the Laplace transformations of model formulae and
sampling data over the time domain, as preparation for the model selection over the
Laplace domain. Lastly, we describe a procedure to estimate the model consistency
with the definition of consistency measure.

2.1 Overview

The overview of our method is schematically illustrated in Fig. 2. The point is that we
perform the model selection over the Laplace domain. Therefore, both the model formu-
lae and sampling data must be transformed into functions over the Laplace domain. Sup-
pose that the model formulae are {d/dz A(r) = —k\h(2), d/dt f(£) = k\h(t) — ka2 f ()} and
the sampling data are fitted to h,(r) = By exp(—aot), fo(t) = Bi exp(—a,t) + B2 exp(—aat).
The Laplace-transformed formulae of the model formula: L[ £(#)](s) and the fitted func-
tion: L[ fo(t)]1(s) are rational functions in s, as seen in the middle row of Fig. 2. Let comp
denote the set of polynomials obtained by matching the coefficients in s of L[ f(¢)](s)
and L[ fo(#)](s) over the Laplace domain, in which every element is equal to zero when
LIf(1)](s) is exactly identical to L[fo(#)](s) in s. Then we have adopted the smallest
sum-square value of the elements in comp as a consistency measure between the model
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AModel Forumia . Sanplingg Data Fitling
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Laplace Transform Laplace Transform
Laplace Transtirmed Laplace ‘Pransformed
Model Formula uateh Saunpling Data I itling
h o)
j(())s + ki (f(0) 4- h(0)) ( ) + s 2)s 4 (g -F aaidy)
» 1) (s L oN)(5) = 5}
[[f( M) = 2 (kg 4+ ko )s 4 kyhy (aAD]() 82 4 (evg A ova)s 4 evpera

Model Consistency Estimation
comp = {h(0) = dy. by ~ xg. f(O) = ( + 32), ki (F(O) + 1(0)) = (v o+ cvasdy),
(k4 Ra) — (ovy 4+ v2) By kg — v}

Fig. 2. Overview of our method. The top row designates the model formulae and the sampling
data over the time domain, and the middle row designates their Laplace transformations. comp de-
notes the set of polynomials derived by matching the coeflicients in s of L[f(r)I(s)and L[ fo(r)](s)
over the Laplace domain, which is zero when the model and sampling data are completely con-
sistent with each other.

and the sampling data, because this value is zero in the case of L[ f(r)1(s) = L[ fd(f)](s).
We shall mention the formal procedure and definitions concretely in the following sub-
sections. ' :

2.2 Preparations: Transformation into Laplace Domain

Model Formula. Suppose that the model formulae are described over the time domain
as the following system of differential equations:

dfi(n _

“dr ,(f ) 2.1)

where f = (fi.for.... ful and k = {ky,ka,...,kn}. Fi(f, k) can be determined in

accordance with the network representing the model, and k denotes the kinetic con-
stants between the chemicals. We transform this system of differential equations into
the system of algebraic equations over the Laplace domain, and solve the equations in
LIfi(D)(s) (i = 1,2, ...,n). Notice that in this paper, we deal only with an autonomous
system of differential equations, but in the framework of the Laplace transformation, we
can deal with differential equations containing external forces or ‘convolutions’ of com-
plex functions, as long as the Laplace-transformed algebraic equations can explicitly be
solvedin L[f;(N1(s) (i = 1,2,...,n).
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Sampling Data Fitting. In this paper, we need (he Laplace transtormation of the sam-
pling data, because we perform the model selection over the Laplace domain. Let fo;(n
denaote the sampling data corresponding to fi(1) derived theoretically. By using non-
lincar regression (via Maple 10 Global Optimization toolbox. ©MapleSolt). foi(r) is
expressed in terms of a sevies of exponentials, according to [6], as {oltows:

k
Toit) = Po + Z Bi exp(—aif). (2.2)

i=1

where k£ is the number of distinct exponeatials determined by f;(£), and Sy is zero in the
case of the non-existence of a constant term within f;(1). fo (1) thus fitted is changed
into the Laplace-transformed data as follows:

LI fo:(OI(s) = [’" —"’—— (2.3)

= S+

where L denotes the Laplace transformation.

2.3 Estimation of Model Consistency

Consistency Measure. To evaluate the consistency of the model with the sampling
data, here we define two consistency measures. If the model is completely consistent
with the sampling data and the data lack noise and inaccuracies, then L[f;()](s) =
L foi()](s) (i = 1,2,...,n) holds. This fact has led us to the following definitions of
consistency measure:

Let comp denote the set of polynomials obtained by matching the coefficients of
LIf(O1(s) and L[ fo()](s) over the Laplace domain, in which every element is zero in
the case of L{f:()1(s) = L[fo;()]1(s) (i = 1,2, ..., n); thatis, when Formula L[ f;(r)](s) =
L{fo;(1)](s) is an identityin s.

The first consistency measure (in short, CM ) of the model is defined as the smallest
sum-square value of the elements in comp under the following constraint:

ky >0,ky>0,....ky>0. 2.4)

In order to obtain the smallest value, we have utilized the least squares method using
the following equations:

. F]
o g(k) 6, g(k) - g(k)— (2.5)

(4l

where g(k) is the sum-square value of the elements in comp. It should be noted that
in this paper we deal only with the case that the ideal associated with the set of poly-
nomials in (2.5) is zero-dimensional. Then, we survey all of the possible candidates
of the minimum by calculating all of the real positive roots of the system of algebraic
equations (2.5). Several methods and tools exist to calculate all real roots of algebraic
equations adjoined by a zero-dimensional ideal. Here we employed ‘NSolve’ in Math-
ematica 5.2 (Wolfram Research Inc.), which computes the desired roots efficiently.
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Remark 1. 1f comp is a positive dimensional. then we can always perturb the set of
polynomials in comp in order to obtain a zero-dimensional variety. Although here we
cannot discuss the stability and convergency issues related to such perturbations, it is
an important research issue on its own light (see [7] for an example).

In this paper. we have calculated the other consistency measure (in short, CM2) as the

smallest g(-I:) under the following constraint:
ky 20,k 2 0,...,k, >0. : (2.6)

The difference between Constraints: (2.4) and (2.6) is that one takes account of the zero

value of the kinetic constants k, corresponding to the non-existence of edges in the
network. This account yields a finer model selection where all of the subnetworks of
the presupposed network are also considered. We can calculate the smallest value of

g(k) under Constraint (2.6), using the following recursive definition:
Let MinimumValue(q(l)) denote the minimuwm value of function g with variables:

7 = {l,la,...,1,} by the following procedure:

1. If the cardinality of I, namely m, is zero, then the minimum value is infinity.
2. Otherwise, let vy denote the minimum value of g under Constraint (2.4) via
‘NSolve.” Furthermore, let v; (i = 1,2,...,m) denote the value calculated by

MinimumValue(q(l;)), where [; is the vector: {1, 03,...,0i-1,0,lixt, ..., I}
3. The minimum value is the smallest value among vg, vy, ..., V.

Model Selection. Using the consistency measure defined in §2.3, we performed a
‘model selection. We, first, calculated the consistency measures among all of the com-
binations of the presupposed models with the sampling data. Next, we arranged the
combinations of the models with the data in ascending order by the consistency mea-
sure. Last, we estimated the most consistent model having the first element (the smallest
value).

3 Results and Discussion

3.1 Preparations: Transformation into Laplace Domain

Model Formula. We analyzed the models for a relationship between specific leaf area,
leaf nitrogen, and leaf gas exchange in botany [9]. In the original paper, six models for
the kinetics of four biomolecules are listed, and the consistency of the models with the
observed data, which are composed of various properties of the molecules, rather than
time series data, are tested by the d-sep test. In this paper, four of the six original models
(models A, B, C, and D) and one model (model E) modified from the original one are
considered, to show how cyclic relationships can be handled. The models considered
in this paper are shown in Fig. 3. Each model expressed the relationship between four
biomolecules, S LA, N, A, and G. According to the definition in §2.2, each relationship
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Model A: Model B:

o Ay

Fig. 3. Models analyzed in the present study. In the above models, the causal relationships be-
tween molecules are denoted by arrows. The molecules corresponding to the variables, denoted
within the circles, are S LA, N, A, and G, and the kinetic parameters, denoted over the arrows, are
ksns knas kag ksa, kng. and kss.

between the variables is assumed to be linear, and then the differential equations for the
five models can be formulated as follows:

Model A:
d/dt S LA(t) = —ksy S LA(2),
d/dt N(t) = ksy S LA(t) - kna N(1), 3.1)
d/dt A(t) = kna N(t) — kag A(D), )
_ d/dt G() = kag AQ).
Model B:
(d/dt S LA(t) = ~(ksy + ksa) S LA(Y),
d/de N(t) = ksy SLA() — kya N(2), 3.2)
d/de A) = ksa SLA) + kya N(t) — kag A1), :
| d/dt G(t) = kag AQ).
Model C: '
(d/dt S LA(t) = —(ksy + ksa) S LA(Y),
d/dt N(t) = ksn S LA(f) — (kna + kng) N(1), 3.3)
d/dt A(®) = ksa SLA@) + kna N(t) — kag A(D), N
\ d/dt G(t) = ko A(t) + kng N(2).
Model D: )
rd/dt S LA(f) = _(kSN + kSA) SLA(t),
d/dt N(t) = ksy SLA(Y), 3.4)
d/dt A(r) = ksa SLA(t) — kag AQ), :
| d/dt G(1) = kag A(R).
Model E:
d/dt S LA(t) = (kss — ksw) S LA(1),
d/de N(r) = ksy S LA(t) — kna N(1), 3.5)
d/dr A(r) = kna N(2) — kag A(2), ’
d/de G(t) = kug A(D).
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[n the above equations, Ky . kva. ki kya. kv, and &gy are the Kinetic parameters be-
tween the molecules. Notice that the relationships between the molecules ia the actual
Kinetics cannot be expressed by the above cquations. ln the actual case, some rela-
tionships are non-lincar, such as the well-known Michaclis—Menten Kinetics in enzyme
reactions. In the present study. we have adopted the relationships between wolecules as
typical ones, but do not consider the details of the Kinetics between molecules.
According to the definitions in §2.2, we transform the above systems of ditferential
equations of (3.1)—(3.5) into the system of algebraic equations over the Laplace domain,
and solve the equations for the five models. For instance. the solution to the system of
differential equations for Model A is cxpressed over the Laplace domain, as follows:
LISLAO) = o,
LIN®I(s) = N ((3) § + N(0) ks + ksy SLA(0)
§° + (ksn + kya) s + kg ks
LIAMI(s) = (AQ0) s + (kna N(0) + A(0) ksy + A(0) kna) 5 + kna N(O) ksy
+ kna ksy SLA(O) + A(0) kna ksn)/ (87 + (kag + ksw + kna) 8° + (kag ksw
+kaG kna + kna ksn) s + kag kna ksw),
LIG(N1(s) = (G(0) s* + (G(0) kag + G(0) kna + kag A(0) + G(0) ksw) s>
+(G(0) kag kna + kag kna N(0) + G(0) kag ksiv + kag A(0) ki
+ kag A(0) ksy + G(0) kna ksn)s + kag kna N(0) ksw + kag kna ksy SLA(0)
+G(0) ka kna ksy + kag A(0) kna ksn)/(s* + (kag + ksw + ka) 87 -
+(kag ksn + kaG kna + kna ksw) 5% + 5 kag kna ksn)-

(3.6)

In the above equations, the initial values for each molecule are denoted by S LA(0),
N(0), A(0), and G(0).

Sampling Data Fitting. To estimate the consistency of the above equations derived
from the models with the data, we should presuppose the equations for the sampling
data. For this purpose, first, a series of exponentials with parameters are set. For in-
stance, the equations for fitting to the data in Model A are expressed as follows:

SLAo(t) = Bsia exp(~asiat),
No(t) = Bn.i exp(—an, 1) + B2 exp(—anal), G7)
Ao(t) = Ba. exp(~aa1t) + Baz exp(—aat) + Bas exp(—aa3t), ’
Go(t) = Ba.1 exp(—aq.11) + Bc 2 exp(—acat) + Bos exp(—agat) + Bg.a.

Then, the corresponding algebraic equations are obtained by the Laplace transforma-
tion. The corresponding algebraic equations in Model A are as follows:

LISLAo()](s) = %’

B Bn.
Bal . Baz + Ba3 .

L[Ao(D)(s) = ,
S+ a4, S+ Q2 S+ Qa3

LIGo(0)1(s) = Ba. N B N Bca N ,36.4_
S+ ag,y § + g2 S+ag3 S
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Notice that the parameters in the above equations are estimated by namerically litting
them to the data.

3.2 BEstimation of Model Consistency

Data Geuneration for Simulation. [n the present study, we have no actual data for the
molecules in the models, and thus we need to generate the time series of data for the
constituent molecules for the simulation study, before the model consistency estima-
tion. Notice that, if the data for the constituent molecules in the models are actually
observed, then this process is not necessary. First, the system of differential equations
of (3.1)-(3.5) is solved over the time domain. For instance, the solution of the Model A
is expressed as follows:

SLA() = S LAO) exp(~ksw 1),
SLAO SLAO) ks
M) = ) - SO, ety 4 SADEN e gy,
Ay < Fa (ks SEA)™ kua M) + NO) 2 SN
(kna = ksn) (kna — kac) '

kna k.
NA Ks N exp( ksn 1)

(kag — ksp) (k
: o (A(Q) . Fua Chs FIA0) + kao NO) - NOV k)

(ks — o) (pya — )
Gy = Ko Chsw SLAQ) + ks N Wiy ks xp (ke )
kna — kna — k g
k4r(( NﬂNA + Zf)aé)%ALA(g)N NA
exp (—ksw 1)

kna — k k
" "?Z(C"sg A5 N N0) ki) vn

A —_
+-AO)+ (kna = kag) (kac — ksn) ) exp (~kag 1)
+ S LA(O) + N(O) + A(0) + G(0).

) exp (—kac 1),

(3.9)
In the above equations, we have no information about the actual values of the kinetic
parameters and their initial values. Thus, we set them as follows: ksy = 1, kya =
0.1, kag = 0.5, kyg = 0.2, kso = 0.4, and kss = 0.7 for the kinetic parameters, and
SLA(0) = 10, N(O) = 7, A(0) = 3, and G(0) = 1 for the initial values. By using the
above values, the differential equations of (3.9) are simulated from ¢ = 0 to 100 with
intervals of 1. Then, we obtain the time series of data for each molecule at 101 sample
points. We then numerically estimate the parameters by fitting the equations of (3.7)
over the time domain to the above-generated data by the Maple 10 Global Optimization
tool (©MapleSoft). In Fig. 4, the sampling data at 101 points and the corresponding
equations (fitted curve) are plotted in Model A, together with the given and estimated
parameters. Notice that, besides the estimation, all of the parameters in (3.7) can be
exactly obtained from the given values for the kinetic parameters and the initial values
in (3.9). In the present case, it is natural that the estimated values of the parameters are
quite consistent with the given values of the parameters for generating the data.

Consistency Measure. As the first step for the model consistency estimation, we con-
struct a set of polynomials, comp, from the algebraic equations of (3.6) for the
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madels and those of (3.8) for the sampliog data. The following equations are comp toc
Madel A:
comp = { ksy — a1
Ky ksw — ey, ary.a.
kv + kya — ey 2 —any.
N ksy + kv SLAO) = By an> — By.aan .
Ko + ksn + kna — ey —arq 3 — ra o,
Kac ksn + kag kna + kna ksy — ara j org 3 — a2 — @p 20030
kna N(OY+ A ksy + AOYkna = Bat aa = Bar a2 = Baaaz — Bar@a
=Bazaa2—Bazaay. .
kna N(O) ksy + knn ks S LAQO) + A kna ksv = Bat g r a3 —Baaa aaa
—Br.3 a1 aqn.
kag + ksn + kya — @2 — @Gy — ag.3.
Kac kna ksy = @a s 2@p 3, kag kna ksy — a1 @g.2 @3,
kaG ksn + kag kna + kna ksy — aG.y ag.2 — aG.2 ag.3 — a1 @G.3,
kac kna N(O) ksy + kag kna ksn S LA(0) + G(0) kag kiva ksn + kag A(0) kna ksy
~B6.4 @G.1 €@G.2 @G 3.
G(0) kag kiva + kag kna N(O) + G(0) kag ksn + kag A(0) kna + kag A(0) ksy
+G(0) kna ksv — BG.3 a1 @G.2 — Be.1 6.2 @6.3 — BG.2 GG €G3
—Bc.4 06,1063 — B6.406.206.3 — B4 @G| @G.2,
G(0) kag + G(0) kna + kag A0) + G(0) ksy — Bg.2 @G, 1 — Bc.2 6.3 ~ BG,3 @G|
—B6.3 6.2 —B6.1 @63 — Bc.a a1 —P6.4@6.2 —Bc.426,3 — Po.1 aG.a)

[n the comp, the parameters and the initial values can be expressed as numerical values
by the sample data fitting. Thus, only the set of kinetic parameters in the model remains
as the unknown parameters in the comp. In the following section, we will estimate the
kinetic parameters under the constraints in equations (2.4) and (2.6), and will select the

model by considering the smallest value of g(k), the sum-square value of the elements
in comp.

Model Selection. The model selections by estimating the consistency of the models
with the simulated data under the two constraints of equations (2.4) and (2.6) are shown
in Table 1. In the first column, the query models, from which the simulated data are
generated, are listed, and the models with consistencies that are estimated for the query
model are listed in the second column. In the following column, the smallest values of
" the consistency measure are sorted in ascending order, and the corresponding kinetic
measures are listed. As easily seen in this table, the present method has successfully
identified the query models. Indeed, all of the models and four of the five models under
the two constraints of (2.4) and (2.6) are correctly selected in Table 1, respectively. In
addition to the successful selection, the characteristic features for the model selection
are observed in the selections by the two constraints. The details of the features are as
follows.

As for the selection under the constraint of (2.4), all of the models are clearly se-
lected. By each query model, the corresponding models show the smallest consistency
measure (CM 1) in the constraint of (2.4). For example, when the query model is Model
A, the corresponding value for the model consistency for Model A is 1.34x107"'!, which
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(X}

(© (d)

Fig. 4. Sample data for numerical fitting (circles), together with fitted curves (solid lines). The
data were generated by numerical calculation from the differential equations (3.9), and the curves
were fitted by commercial software (see details in the text). The given and estimated parameters
are as follows: asga,1, I (given) and 1.00 (estimated); 85,4, 10 and 10.0; an,, 1/10 and 0.100;
awn2, 1 and 1.00; By, 163/9 and 18.1; Bya. 100/9 and 11.1; a4, 1/10 and 0.100; @42, /2 and
0.500; @43, I and 1.00; B4, 163/36 and 4.53; 845, —15/4 and -3.75; B3, 20/9 and 2.22; ag,,
1/10 and 0.100; a¢2, 1/2 and 0.500; aga, | and 1.00; Bs., —815/36 and —22.6; Bga, 15/4 and
3.75; Bga, —10/9 and —1.11; Bg4, 21 and 21.0. Each figure corresponds to the four variables
(molecules) in the model: (a) S LA, (b) N, (c) A, (d) G.

is the smallest among the values of the five models. The magnitude is slightly smaller
than 1.36x10~!! for Model E. Interestingly, the parameter value for kss in Model E
is estimated to be nearly zero, 1.40x 107, and when kss is zero, Model E is identical
to Model A. In the remaining models, the parameters cannot be estimated under the
constraint of (2.4). In the other query models, the model corresponding to the query
model shows the smallest values for the model consistency, and the remaining models
show relatively large values or no values, due to the constraint of (2.4). In particular,
Model E, in which a cyclic relationship is included, is successfully selected from the
other models, especially Model A, which differs from Model E, only in the cyclic part.
Furthermore, in all cases, the values of the kinetic parameters are estimated to be equal
to the values that are set for the data generation. Thus, the model selection by using the
constraint of (2.4) has completely succeeded in all of the models.
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Four of the five models are successfully selected under the constraint of (2.0). In
the model selection for Model A, Model C is sclected. However, Models C. AL E. and
B show small values for the consistency measure (CM?2). Furthermore, three models.
Models C. D, and B, become the same form as Model A, by considering the values
of the kinetic parameters. Indeed. kyg and kg, in Model C and kg4 in Model B are
estimated to be exactly zero values, and kg5 in Model E is estimated to be a very small
value, [.40x107%. A similar situation is also found when the query model is Model B.
[n this case, while the model showing the smallest value is Model B, a similar value
is also found in Model C. However. the value of kyg is estimated to be exactly zero,
and this indicates that Model C, with the estimated values for kinetic parameters, is
the same form as Model B. Thus, the constraint of (2.6) effectively excludes the false
relationship between the molecules by estimating the values of the kinetic parameters.
As for the model selection for Model E, the small value appears only in the query model,
and the relatively large values appear in the other models. In the models with the large
values, the CM2 values in Models A, B, and C are relatively smaller than the CM2
value in Model D. Interestingly, the former models share common chain relationships
between S LA, N, A, and G with Model E, as seen in Fig 3, while the latter model is a
distinctive form from Model E. Even in the inconsistent models, CM2 may reflect the
similarity of the model form between the query and the estimated models. At any rate,
the model selection under the constraint of (2.6) also has succeeded in all of the models.

In summary, the present model selection algorithm shows high performance under
the constraints of both (2.4) and (2.6). The constraint of (2.4) focuses on only the se-
lection of a model consistent with the data by a simple algorithm, and the constraint of
(2.6) focuses on finer model selection, with the exclusion of false relationships, by a
slightly and complicated algorithm. Thus, the algorithm with the constraint of (2.4) is
useful to select a model consistent with the data among many candidate models, and that
with the constraint of (2.6) is effective to select a model among the candidate models
including similar forms. '

3.3 Discussion

We have proposed a method for selecting a model that is the most consistent with the
data in the present study. In small but distinctive networks, our algorithm has success-
fully selected the query model, from which the sampling data are generated. The present
study partly exploits the previous studies of Cobelli et al. [5, 6] about the relationship
between observational parameters and model parameters over the Laplace domain. In
these studies, they dealt with the case of differential equations adjoined by a higher di-
mensiona] ideal to survey whether the model parameters themselves can be determined
uniquely or non-uniquely. In our work, the combination of the transformation of equa-
tions over the Laplace domain with the numerical fitting to the observed data enables
us to estimate the model’s consistency with the data as well as with the values of the
kinetic parameters. Although the robustness for data including noise should be further
tested, our algorithm is expected to be feasible for actual biological issues regarding the
selection of a kinetics model. .

The scalability of the present algorithm also remains to be tested. Actually, the
present model selection algorithm required several hours for one model. In addition,
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the fimit ol the nodes and edges in the fested network approximately ranged within 10
edges between 10 nodes. However, the present algorithm over the Laplace domain may
overcome (he issuce of scalability. In a focal network within a large-scale network, the
relationships of the molecules in the local network with those outside of it are regarded
as inputs from the outside, and the variables corresponding (o the inputs may easily be
eliminated. if the relationships are treated over the Laplace domain. Indeed. we have
successlully climinated the rnnecessary variables to estimate the parameter values in
complex compartmental models for Parkinson’s disease by PET measurements |13].
If the tnnecessary variables in the local network can be eliminated, then the present
algorithm can be applied to estimate the model’s consistency. Thus, the iteration of
the climination and the consistency estimation may be applicable for the consistency
estimation. even in a large-scale network model. Further examinations of the present
algorithm for a large-scale network and for noisy data will appear in the near futuce.

4 Conclusion

In the present model selection, an algebraic manipulation of the differential equations
over the Laplace domain, formulated based on the assumption of linear relationships
between the variables, is combined with the numerical fitting of the sampling data. The
performance of our approach is illustrated with simulated data, in the distinctive forms
of models, one of which includes a cyclic relationship hitherto unavailable in previ-
ous methods. Although some further examinations of the present method are necessary,
especially of the analyzed data and its robustness with noise, the extension of our ap-
proach to a large-scale network is promising.
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