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where «; and f3; are paramcters. The residual vectors, [8;) and |8;), are expected
to lack the cvolutionary information of the source organisins. Note that f;) is
exchuded from the sununation on the right side of the equation (8). Likewise,
|14} is excluded from the summation on the right side of the equation (9). The
similarity hetween the two residual vectors is considered to indicate the intensity
of co-cvolution between proteins ¢ and j. To evaluate the similarity hetween
the residual vectors, the Pearson’s correlation coefficient between |6;) and |4;)
was calculated. As described above, the inner product between the normalized
residual vectors is equivalent to the Pearson’s correlation coefficient between

them: , ‘
pif FTIAL = (7 |67). (10)

The correlation coeflicient is called the partial correlation coefficient between
|vi) and |v;). In actual practice, the following formula was used to obtain the
partial correlation coefficient, instead of performing multiple regression.

PARTIAL __ —(R71)y (11)

i - VE /R

where R is the correlation coefficient matrix whose (4, j)-th element is p}{ RROR
and the superscript —1 indicates inverse. pPARTIAL without subscripts, 4 and 7,
collectively represents that the type is partial correlation coefficient.

3 Results and Discussions

MIRROR AVE pPCI
?

We calculated five types of correlation coefficients, p , P18, p
and pPARTIAL for all of the possible pairs of 26 proteins, that is, 325 pairs
of proteins. The performance of each correlation coefficient was evaluated with
specificity and sensitivity. Out of the 325 pairs, the interactions of 13 pairs
have been experimentally identified. Only top 20 of the fivé types of correlation
coefficients are shown in Table 1, where the actually interacting pairs are high-
lighted with circles. As shown in the table, the top ranks of p'6S, pAVE ,PCl
and pPARTIAL were occupied by pairs of actually interacting proteins. In contrast,
non-interacting proteins were present within the top ranks of pMIRROR The de-
creasing patterns of the five correlation coefficients are seen in this table. The
decrease of pMIRROR y55 quite slow, whereas pAVE, pPCL and pPARTIAL decreased
rapidly. The rate of the p'55 decrease was rather moderate. The decreasing pat-
terns shown in Table 1 clearly demonstrates the problem of the original mirror
tree method. Even if a high value, e.g. 0.9, is used as a threshold for the cor-
relation coefficient to predict a protein—protein interaction, pMBRROR produces
many pairs with high correlation, including non-interacting pairs, which likely
lead to the generation of many false positives. However, the.occupation of the
top ranks by interacting proteins and the rapid decreases of p%S, pAVE, pPCl
and pPARTIAL gyarantee the specificity of prediction, if the threshold is set at a.
sufficiently high value.
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Inference of Protein-Protein Taternwbions 3249

"The wnit vector i) seens to e aeruciad factor for the prediction of a protein
protein interaction wheu a projection operator is used. Therelore, we exam-
ined the relationships among fwas), [eave) aud [upeg) by caleulating absolute
value of Pearsou’s correlation coctficients |r| among them. fr] between |uygs)
and Juavi) was 0.947, whercas |r| between |uygs) and fupcy) was 0.946. The
highest corrclation, || = 0.998, was observed between |uave) and |upcy). The
high correlation between [wygg) and the other unit vectors suggests that the in-
formation except for the evolutionary relatiouship of source organisms can e
approximately caunccled out by the average operation or principal component
analysis. '

The p'95, pAVE, pPCL and pPARTIAL seen to outperform the p
is, the exclusion of the information about the evolutionary relationships among
the souwrce organisins from the distance matrices is effective to reduce the nun-
ber of the false positives fromn the mirror tree predictions. The specificities and.
the sensitivities of the five types of correlation coefficients under four different
threshold values, 0.9, 0.8, 0.7 and 0.6, are shown in Table 2. When a pair of pro-
teins had a correlation coefficient greater than the threshold the proteins were
predicted to interact with each other. Three types of correlation coefficients,
pAVE, pPCl and pPARTIAL ' showed high specificity under any threshold value,
whereas p165 showed high specificity only when threshold was 0.9 or 0.8. The
high specificities of p'%3, pAVE, pPCl and pPARTIAL meapn the drastic reduction of
false positives, compared with pMIRROR [18 19]. Recently, Pazos et al. [13] have
independently developed a method to exclude the information of evolutionary
relationship among the source organisms by using 16S rRNA. They adjust the
scale of the distance matrix of rRNA to that of the distance matrix of a protein,
and simply subtract the former from the latter. Then, correlation coefficient is
calculated between the sets of residual elements. Improvement in specificity is
also observed by their operation, although the mathematical framework of their
method is different from those of ours.

MIRROR That

Table 2. Specificity and Sensitivity of the prediction

Method Specificity Sensitivity
0.9 0.8 0.7 0.6 0.9 08 0.7 0.6
p Y RROR 13.79 6.21 496 4.17 61.54 84.62 100.00 100.00
p% 100.00 75.00 28.57 24.32 7.14 21.43 42.86 64.29
p™VE 100.00 100.00 100.00 85.71 7.14 7.14 14.29 42.86
pFc? 100.00 100.00 100.00 100.00 7.14 7.14 14.29 28.57
pPARTIAL -100.00 100.00 100.00 0.00 7.14 14.29 21.43
il e true positive
Specificity = (true positive + false positive) x 100%,
Sensitivity = true positive — X 100%.

(true positive + false negative)
When threshold was set to 0.9, no interacting pair was predicted with p
specificity was not calculated in the case.

PARTIAL , and
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Inference of Protein-PCrotein nteractions 331
Despite the improvetent described above, the sensitivitios of plts, pAVE e
and pPAFTIAL wopre lower than that of pMITROR This weans that a pair of pro-
teius € and j did not always show high /)}J‘-;S, p{}vm, /),PJ-C‘ and /)5"\”""‘\" even when
proteius. 7 and j, interact with cach other. In other words, the nnmber of false
uegatives incrcased when our methods were wsed, compared with the original
wirror tree method. Here, we calculated the intensity of co-evolution hetween
a pair of proteins as the correlation cocfficient after excluding the information
about the evolutionary relationship among the source organisius from the phy-
logenctic vectors. However, the pairs may also interact with other proteins. If
such proteins exist, it would be difficult to detect the interaction with the pair,
because the co-evolution with the other partners may function as noise for the
prediction of interaction of a pair. To examine this hypothesis, we investigated
the relationship between the multiplicity of the interaction [19] and the correla-
tion coefficient (Fig 1). The multiplicity, or a modified Jaccard coefficient, is a
measure defined between a pair of interacting proteins. Consider an interacting
pair of proteins A and B. Let M and N be the sets of interaction partners of
proteins A and B. The information about the interaction partners were obtained
from the DIP database [17]. Protein B belongs to M, whereas N includes protein
A. The multiplicity between proteins, A and B, is defined as follows:

IMNN|+1

Multiplicity (modified Jaccard coefficient) = W

(12)
When proteins A and B interact each other without other interaction partners,
multiplicity takes a value 1. When proteins A and B have other interaction
partners, the multiplicity decreases. However, when proteins A and B share the
other interaction partners, the multiplicity takes a value close to 1. In contrast,
when proteins A and B have their own interaction partners respectively, the
multiplicity is close to 0. As shown in Fig. 1, the intensities of co-evolution
calculated by any method show positive correlation with the multiplicity. That is,
the intensities of co-evolution were high when proteins A and B formed a complex
without other interaction partners or share the other interaction partners. When
~ proteins A and B had their own interaction partners, that is, the multiplicity was
low, the intensities of co-evolution were low. The observation suggests that the
false negatives are generated by the presence of unshared interaction partners.
Further accumulation of experimental knowledge is required to ascertain this
hypothesis.

4 Conclusion

The mirror tree method is a simple approach for the prediction of protein—
protein interactions. Here, we reviewed our methods to improve the performance
of the original mirror tree method. In the experiment, we confirmed that our
methods could drastically reduce the number of false positives in the prediction.
Our method, however, generated more false negatives than the original mirror
tree method. Owr analysis suggested that the presence of unshared interaction
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partuers may be the canse of the false negatives. However. if we select protein
paivs with a high correlation cocficient, c.g. > 0.8, hy any one of our methods.
we can predict interacting protein pairs with high veliability.
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Abstract. The mechanism of Parkinson’s disease can be investigated at the
molecular level by using radio-tracers. The concentration of dopamine in the

_ brain can be observed by using a radio-tracer, 6-['*F)fluorodopa (FDOPA), with
positron emission tomography (PET), and the dopamine kinetics can be described
as compartmental models for tissues of the brain. The models for FDOPA kinetics
are solved explicitly, but the solution shows a complicated form including several
convolutions over time domain. Owing to the complicated form of the solution,
graphical analyses such as Logan or Patlak analysis have been utilized as conven-
tional methods over past decades. Because some kinetic constants for Parkinson’s
disease are estimated in the graphical analyses with the slope or intercept of the
line obtained under various assumptions, only a limited set of parameters have
approximately been estimated. We have analysed the compartmental models by
using the Laplace transformation of differential equations and by algebraic com-
putation with the aid of Grébner base constructions. We have obtained a rigorous
solution with respect to the kinetic constants over the Laplace domain. Here,
we first derive a rigorous solution for the parameters, together with a discussion
about the merits of the derivation. Next, we describe a procedure to determine the
kinetic constants with the observed time-radioactivity curves. Last, we discuss
the feasibility of our method, especially as a criterion for diagnosing Parkinson’s
disease.

1 Introduction

Radio-tracers are often used to analyse metabolic systems in biomedical research. Usu-
ally the kinetics of metabolism are described as compartmental models, and kinetic
constants are numerically estimated using the measurement of radio-tracers to diagnose
the disease. In particular, the positron emission tomography (PET) has been developed
to measure the details of metabolic events hitherto unavailable, and is especially useful
to determine the kinetic constants to assist the diagnosis of various diseases.

H. Anai, K. Horimoto, and T. Kutsia (Eds.): AB 2007, LNCS 4545, pp. 110-124, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Parkinson’s discase. which is due to abnormal levels of dopamine in the brain, is
one of the diseases that can be diagnosed by radio-tracer measurement with PET. and
by determination of kinetic constants in compartmental models for plasma and brain
tissue [12]. There are two approaches to measuring the activity of radio-tracers. One
is a combination of the measurement of a radio-tracer, L-3.4-dihydroxy-6-["*F]fluoro-
phenylalanine (FDOPA) in the brain, and sampling the blood to measure the total ac-
tivity of FDOPA (approach with blood sampling), and the other is the measurement of
the FDOPA activity in two brain tissues (approach without blood sampling). In both ap-
proaches, the kinetics can be described as sets of compartmental models. Fortunately, a
system of differential equations in the two sets of models can be solved explicitly , but
unfortunately the solutions for estimating the kinetic constants are highly complicated.
Indeed, the solutions are expressed by a few convolutions of complicated equations.

To overcome analytical difficulties in determining kinetic constants, there are two

conventional methods of kinetic constant estimation in the compartmental models, Pat-
lak Analysis [18, 19] and Logan Analysis [15]. In both methods, the combination
of some parameters with various approximations is assumed to form a straight line’
as metabolism approaches an equilibrium. By plotting the observed data around the
metabolic equilibrium (graphical analysis), the combined parameters can be estimated
using the slope or intercept in the plotted line {14, 18].
By using graphical analysis, Parkinson’s disease has been extensively studied in the
two approaches with and without the blood sampling. In the approach using blood
sampling, the kinetic constants with respect to plasma are calculated from the blood-
sampling data, and then, using these constants, measurements for Parkinson’s disease
such as the constants describing FDOPA kinetics in brain tissue are calculated [10,
11, 12, 20]. In addition, Martin et al. [16] considered L-3,4-dihydroxy-6-['*F]fluoro-3-
O-methylphenylalanine (3-OMFD) in compartmental models for FDOPA metabolism,
because FDOPA is converted to 3-OMFD [1, 17], which has an influence on the to-
tal radioactivity observed in plasma and in the brain tissue by crossing the blood-brain
barrier (BBB). In an approach without blood sampling, using the time-radioactivity
curves of two distinct brain tissues, the constants for Parkinson’s disease diagnosis are
calculated [9, 14].

The diagnosis of Parkinson’s disease with PET depends on graphical analysis, a
simple presentation of the relationships between the kinetic constants of the FDOPA
kinetics. However, the present analyses require further improvement for precise diag-
noses. For example, graphical analysis using blood sampling is cumbersome, partly
because the sampling requires a load to the patients, and partly because the sepa-
rate measurement of radio-tracer from the blood provides an obstacle for the precise
estimation of parameters such as the time delay and contamination of the samples

‘in the tubing. Graphical analysis without blood sampling produces a highly compli-
cated model and therefore requires various assumptions and approximations to estimate
kinetic constants. Thus, the choice between the two approaches involves a trade-off
between cumbersome blood sampling and difficult efficient parameter determination.
Indeed, by considering the pitfalls described above, some methods have also designed
by using different radio-tracers. For instance, Ichise et al. [8] proposed a method with-
out blood sampling by using ['2*I}iodobenzofuran, and Lammertsma et al. [13] and
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Logan et al. [14] proposed a method without blood sampling by using [“Clruclopridc.
in which the cerebeltum or cerebral cortex was used as a reference tissue and analysed
as a single-tissue compartiment. Although the pitfalls have partially been overcome, a
rigorous solution has not yet been analysed. '

In this paper. we propose radical deliverance trom the aforementioned difliculty. We
present an efficient method for determining kinetic constants for FDOPA kinetics with
PET using an algebraic approach. The compartmental models are rigorously solved .
by the Laplace transformation of differential equations into algebraic equations, and
by the following symbolic computation with the aid of Grobner bases. Such usage of
symbolic computation has overcome the analytical difficulties in the previous study [6].
where general theory of compartmental models was derived over the Laplace domain
for PET, but the analysis or determination of kinetic constants still required the system’s
equilibrium or steady state. In our method, by contrast, the derivation of a relationship
between the observed concentrations without blood sampling by PET does not need any
approximations and assumptions for the kinetic constants. Here, we first derive rigorous
relationships between the parameters, and we discuss the merits of the derivation, in
- comparison with graphical analyses. Second, we describe an efficient procedure for
determining the kinetic constants with observed time-radioactivity curves. Last, we
discuss the feasibility of our method, especially as a criterion for diagnosing Parkinson’s
disease.

2 Model and Method

In this section, we introduce three compartmental models to describe the metabolism
of the radio-tracer FDOPA and its metabolites with respect to two brain tissues and
plasma. Differential equations corresponding to the kinetic model are derived, and the
equations are transformed into a system of algebraic equations. Surprisingly, the rig-
orous solution is of a simple form over the. Laplace domain. Finally, we describe a
procedure to determine the kinetic constants of the models, which is performed over
the Laplace domain.

2.1 Compartmental Model

Compartmental models (A) and (B) are introduced for the radio-tracer FDOPA and its
metabolite 3-OMFD as shown in Figs. 1 (a) and (b). For simplicity, let A- and B-tissues
denote tissues in which the radio-tracer kinetics can be described as shown in Figs. 1
(a) and (b), respectively. In the actual brain, A- and B-tissues correspond to the striatum
(putamen/caudate) and the cerebellum/cerebral cortex in the brain [4, 7]. Furthermore, it
is assumed that the relationships between plasma FDOPA, 3-OMFD, and extra-vascular
3-OMFD can be described as the compartmental model (C) as shown in Fig. 1 (c).

2.2 Kinetic Equations

According to the kinetic model in Fig. 1, the following system of differential equations
has been obtained:
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Fig. 1. Compartmental models for describing the radio-tracer kinetics in this paper, which were
originally introduced by Huang et al. [7]. The shaded boxes represent the kinetics in plasma.
(a) Model for A-tissue. Three separate compartments for tissue FDOPA, tissue FDA (and its
metabolites), and tissue 3-OMFD. (b) Model for B-tissue which is the same as (a), except that
there is no compartment for FDA. (c) Model for plasma FDOPA to 3-OMFD in the periphery of
one compartment for plasma 3-OMFD and one for the extra-vascular pool.

Time (A-Tissue)

dcC
—= = KiCplt =1)6G 1) =~ (ko + ks)C,
dC,
2 _ _ 1
7 k3Cy —ksCo, (1)
dC
== Ks5Comga(t — T)0(t — 7) — k6 C3,
\ dt
Time (B-Tissue)
dcl)]
el Kp 1 Cra(t —1)0(t — 7) — kj2Cpt,
(2)
de'Z )
dr = KpSCamfd(t -7)6(t—71) - kp6C/72,
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Time (C-Blood (Plasma))

‘,Cn o
/ = khIZCﬁI — k2 amfd + kp3Cl,
dt
(&)
dC,
—_ = k)’ o "_k; C
dt 2% o fd (X3S

In the compartmental model (A), (B), and (C). every one of the initial values is
assumed to be zero because of non-existence of the radio-tracers and their metabolites
at starting time ¢t = 0. However, there exists the time delay 7 of the observed blood
curve (C) relative to tissue measurements (A) and (B). That is, 7 designates a difference
between the starting times of (A), (B), and (C). This effect leads to the terms Cy(r -
1)0(t — 1) and Cop a (1 — 7)8(f — 7), where 6(r) is the unit step function defined as follows:

6 = {0 (r < 0),
I (r>0).

The differential equations describing the A- and B-tissues and the C-blood kinetics
models can be changed into the following equations over the Laplace domain:
Laplace (A)

sLIC\] = K\e™"L[Cpq] — (ka + k3)L[C1],
SL{Ca) = kL[Cy] - kaL[CA], )

SLIC3] =  Kse ™ L[Comsa] — ks L[C3],

Laplace (B)
SL[Cpl] = Kple—"TL[Cfd] - k[)ZL[Cpl]v (5)
SL[Cp'l] = K/)Se_”L[Comfd] - kp6L[Cp2]1
Laplace (C)
SL{Compal = k12 L[Cgal = kpa L[Compal + kp3L[Cx], ©)
sLIC,] = koaLIComgal — kp3 L[Cx],

where L{f] denotes the Laplace transformation of f. Thus, a system of differential
equations is transformed into a system of corresponding algebraic equations.

2.3 Rigorous Solution

In the approach without blood sampling, the data observed using PET scanning are
limited to the total radioactivities: Cs(f) = C () + Ca(#) + C3(1) and Cc(t) = Cpy () +
Cpa(0). Let Cs(s) and Cc(s) denote the Laplace transformations of Cs(f) and Ce(r),
respectively. Then, the solution to the system of algebraic equations of Laplace (A),
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(B). and (C) has been obtained. leading to a rigorous and simple relationship between
Cs(s) and Ce(s) as follows:

Cas(s)

Ce(s)

(5 + k(s + kpo) 7
(s 4 ko + k3)(s + k)5 + ko)
Kskpia(s + ka + k3)(s + ky)(s + Kp3) + 5K (s + ky + ka)(s + ko )(s + ki +l\m)
K,,s/\/,p(? + kp3)(s + /\,p) + SKI,|(S + ko + kp3)(s + k,,(,)

Thus, Cs(s)/Cc(s) is a rational function in s to which symbolic methods such as
Grobner base computations can be applied, resulting in exact and efficient parameter
determination.

2.4 Procedure to Determine the Kinetic Constants

Procedure overview. Fig. 2 shows an overview of the present procedure for determin-
ing the kinetic constants from radio-tracer activity data. The procedure is composed of
two parts. First, we fit the observed radioactivity curves by a series of exponentials, and
then the fitted series of exponentials are transformed into the corresponding algebraic
equations by the Laplace transformation. Second, the kinetic constants in the rigorous
equation (7) are determined using an algebraic approach. The details of the above pro-
cedure are described below.

Laplace transformation of the observed data. We need a Laplace transformation of
the observed data because we perform parameter determination over the Laplace do-
main. Let Cso(t) and Cco(r) denote the observed data in A- and B-tissues, respectively.
By using non-linear regression, Cso(t) and Cco(t) are expressed in terms of a series of
exponentials according to [3] as follows:

)

Cso(t) = a;exp(—mt) + az exp(—myt) — (a, + a3 + aa) exp(—m3t) + aa,
Cco(t) = by exp(—i11) + by exp(—lat) — (b| + by + bb) exp(=Ist) + bb,

where the initial values are assumed to be zero, namely Cso(0) = 0 and Cco(0) = 0
because of non-existence of radio-tracer at ¢ = 0 as mentioned in §2.2. However, this
assumption has an inference on regression of the parameters: a;, b;, aa,bb,m; and [;
owing to inaccuracy or noise in the observed data that leads to Cso(0) # 0 or Cco(0) #
0. To avoid this inference, we have adopted an additional value: 7. We have firstly fitted
the observed data with Cso(t — 7) and Cco(t — 1), and then have substituted n with 0,
that is, 77 has been ignored. Cso(?) and Cco(t) thus fitted are changed into the Laplace-
transformed data as follows: '

aj a a+a+aa aa
L[Cso(H] = + - + =2
S+ my S+ ny §+mj s

%
b by b|+b2+bb+b_b

+ —
s+l s+1h s+ s

L[Cco(8)] =

where L denotes the Laplace transformation.
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Setting up a series of
exponentials to fit the curves

-----------------------------------------

-----------------------------------------

| Algebraic equations

Assume relationship of observed
L{Cso(9)J/L[Cco(t)] = relationship of rigorous Cs(s)/Cc(s)

l i Algebraic procedure |

Determination of kinetic constants

Fig. 2. Overview of the procedure for determining kinetic constants

Algebraic procedure. Without any error, the transformed function of A-tissue data,
L{Cso(2)](s), and that of B-tissue data, L[Cco(#)], would be identical with Cs(s) and
Cec(s), respectively. This fact has led us to the following procedure to determine the
parameters over the Laplace domain.

1. L[Cso()]/L[Cco(t)] can be transformed into the form: F(s)/G(s), where F(s) and
G(s) are both fifth-order polynomials in s. It follows from Eq. (7) that —(k; +
k3), —k4, and —ks are three of the real roots of G(s). Likewise, —kpy and —k,¢ are
two of the real roots of F(s). It can be proved that both F(s) and G(s) have five real -
negative roots in PET experiments as mentioned in Appendix A.

2. Let —r; (1 £ i < 5)and —¢; (1 < i < 5) denote the real roots of F(s) and G(s),
respectively. From (1), ks + k3, k4, and kg are three of ;, e.g., 1], t2, and f3. Likewise,
k2 and k¢ are, e.g., r; and r,. The number of assignments of the parameters k; +
k3, k4, ke, kp2, and ks to r; and ¢; is 1200. We apply these 1200 assignments to the
two procedures below.

3. The remammg parameters, K]/K,,l ,K;.kbp/Kpl, p5kb17/K,,[,k7 k3, k[,z, and kb3,
are calculated by solving the following system of algebraic equations:

H(—=r3) = H(-r4) = H(=rs5) = I(~t4) = [(~15) = 0, ko + k3 = 1y,
K\ /K, = HC(F(s))/HC(G(s)),

where H(s) = Kskpia(s+ka +k3)(S+k4)(S+kb3)+SK1 (s+k3 +k4)(S+k6)(S+kb'; +kp3),
1(s) = Kpskpia(s + kp3)(s + kya) + sKp1 (s + kpa + ki3 )(s + kps), and HC denotes the
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head coeflicient. To solve the system of algebraic equations above, we have derived
the (eiangular form with the aid of Grobner base computations. The third-order
polynomial as the elimination ideal with respect to k3 is shown in Appendix B.

4. Because the numerator and denominator of Cs(£)/Ce(s) (Eq. (7)) are both sixth-
order polynomials in s while F(s) and G(s) are both fitth-order, the similarity be-
tween Cs(s)/Ce(s) and F(8)/G(s) can be calculated by the ditference between the
roots of the numerator and denominator of Cs(s)/Cc(s) that do not appear as the
roots of F(s) or G(s). These two roots are calculated by coefficient comparison as
follows:

ky+ky+ko+kpa+kpy+Kskpia /Ky = (ra+ry+rs), kpy+kpa+kpo + Kpskma/ Ky —(ta+15).

We record the difference between the above two roots as diff. Notice that the roots of
F(s) and G(s) correspond to the reciprocals of time constants of PET experiments
.and that they are distinct from one another.

5. The parameter sets determined above are arranged in ascending order by diff. Fur-
thermore, we remove parameter sets that violate an empirical or physiological law.
In this paper, we have adopted the following law:

k,,'_)_ < k,,f, and k3 < 1. (IO)

The first inequality, k2 < ks, designates a different permeability of FDOPA and
3-OMFD, which cross the BBB (blood-brain barrier) {5, 7]. The second inequality,
k3 < 1, is the empirical law.

6. The result of the procedure above is the first parameter set among the sets in as-
cending order by diff.

Using the procedure described above, we can immediately and effectively determine
the parameters such that all of them are consistent with PET experiments.

3 Results

We have extracted the observed data of A- and B-tissues from Cumming and Gjedde
[4, p.52, Fig. 4], where A- and B-tissues correspond to the caudate and the cerebral
(occipital) cortex, respectively. First, we have fitted the '®F radioactivity data in A-
and B- tissues of the normal control subject and the patient with Parkinson’s disease
(PD) as a series of exponentials according to Cso(t — 174) and Cco(t — 1) in Eq. (8).
The parameters obtained, a;, b;, aa, bb, m;, l;, are represented in Table 1. Figure 3 shows
the fitting of the observed data. As seen in Fig. 3, the estimated curves are fitted from
control and PD patient samples. '

By using the parameters in Table 1, we have obtained kinetic constants according to
the algebraic procedure in §2.4. This calculation needed 15 seconds CPU time and 5.5
MBytes memory via Mathematica 5.2 (Wolfram Research, Inc.) with Intel(R) Xeon(R)
CPU 2.33GHz. Table 2 shows almost all kinetic constants of the control and PD patient,
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Fig. 3. Time-radioactivity curves in the occipital cortex and caudate of a patient with Parkinson’s
disease and a normal control subject during 90 min after administration of ['3F]flucrodopa. The
circles are the observed data that have been extracted from (4, p.52, Fig. 4], and the solid curves
are fits by a series of exponentials. (a) Radioactivity in caudate of a normal control subject. (b)
Caudate of a patient with Parkinson’s disease. (c) Occipital cortex of the control. (d) Occipital
cortex of the patient.

in comparison with those in the previous estimation [4]. First, we have determined al-
most all values of kinetic constants, while the previous work only partially estimated
the constants, using graphical analysis. Second, the orders of the kinetic constants ob-
tained by our method are similar to those found by the graphical analysis, for both the
control and PD patient. Interestingly, one constant, k4, which is one of the measures
for Parkinson’s disease, was slightly different but consistent in our analysis compared
with that in the previous study. The difference/consistency of the constants in the two
studies will be judged from future work where many samples are analysed. At any rate,
we have successfully determined almost all constants without blood-sampling data via
our method.

4 Discussion
We have derived the equation Eq. (7), which enables us to determine rigorously al-

most all of the kinetic constants in the FDOPA model. In contrast, graphical analysis
can only approximately determine the kinetic constants around the equilibrium of the
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Table 1. The obtained parmmeters by non-linear regression

A-tissue (Csa(f = . ) I da: dd ny nn ny 1
Control -0.0660074 —=4.66107 0.153617. 2.31191 0.0399169 0.038911 0.893464

PD patient —0.10455 =3.02326 0.0588441 0.275661 0.0183807 0.0166495 —1.49546
B-tissue (Ccol(f — ng)) b, ba bh I > I . i
Control -0.0826722  ~0.11201 0.058033 1.31972  0.16269 0.021298 0.298255
PD patient —-0.0928103 —0.107709 0.0252521 2.05784 0.113904 0.0105398 -0.267787

Table 2. Kinetic constants of control and PD patient in FDOPA model by the procedure in §2.4
without blood—sampling data. The figures in the square bracket denote ky by Patlak analysis with
blood-sampling data [4].

Kinetic constants ky ky ky kq kp ke km kpa

Control 0.0968 0.220 0.00674 [0.011 £ 0.003] 0.0389 0.0213 .32 0.0525 0.00122

PD Patient  0.000818 0.0176 0.0166 [0.016 +0.004] 0.276 0.00231 0.0646 0.0276 0.112
(Continue) K/ K, Kskpia/Kp Kpskna/ K
Control 1.29 0.0466 0.979
PD Patient 0.165 0.291 0.120

system under various assumptions and ignorance [6]. For instance, even the striatum
(corresponding to A-tissue in this paper) was modelled as a single-tissue compartment
[9]. Moreover, replacement with averaged values and ignorance of error terms as a
small value are required for the solution to the equation over time domain because of its
complicated form. Thus, the present method by the algebraic approach has successfully
overcome the difficulties of graphical analysis.

Apart from graphical analyses, Cobelli et al. [2, 3] have studied the relationship
between the observational parameters and the unknown model parameters over the
Laplace domain. The aim of these works was determination of a model in which, on
the assumption that any noise does not exist, it is determined whether the parameters
can be determined uniquely or non-uniquely. In contrast, in this paper, we have de-
termined parameters from the observed data with noise via the algebraic procedure as
mentioned in §2.4. One of the other procedures to determine parameters from noisy
data is the least squares method. We have attempted the least squares method using the
following equation:

S .
(Cs(s)LICco(H)](s) — Cc(s)LICso(t)](s)) ds.
Is )
Although the selection of interval between Is and us is somewhat ambiguous and it
takes about 2.7 hours for each simulation with AMD Opteron(tm) Processor 2.412GHz,
this method usually brings us the same results as the algebraic procedure and might be
suitable for the equation where blood vessels in tissues are taken into account.
The solution over the Laplace domain is an algebraic equation to which Grobner base
computations can be applied, resulting in a much simpler form and efficient parameter
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determination (about 15 sceconds with Intel(R) Xeon(R) CPU 2.33GHz). In fact, the
equivalent equation to Eq. (7) can be described over time domain as {ollows:

Cs()=Cc(N QY (NS Y1),

(k> + k3 — l\',,:)(/\'g + k3 - /\'/,(,)
(Ka + ky —ky)(ka + ky — ko)
(kg — kpl)("-l - kp(‘) —kyt (ko — I\'p‘l)(k() - kp(v) ket

Tkt k- ki —ke) ket ks —keko —k)

Y2(r) = Extremely complicated formula over time domain

with Y| (I) = (,—(/\‘_H-k,n)l (| )

(shown in Supplementary material),

where ® denotes the mathematical operation of convolution. The point is that we have
solved the system of differential equations over the Laplace domain. In general, the so-
lution including any external force over time domain (in this paper. Cyy in the
C-Blood model is the external force) leads to the mathematical operation of ‘con-
volution.’ Instead, convolution over time domain corresponds to a simpler form of
multiplication over the Laplace domain. ‘ '

Lastly, we note that the present approach can be applied to more complex compart-
mental models. In compartmental models, the Laplace transformation of differential
equations into algebraic equations and the following symbolic computation will reveal
arigorous relationship between kinetic constants. Furthermore, the algebraic procedure
seems useful for determining constants from data.

5 Conclusion

We have derived a rigorous relationship for the kinetic constants of compartmental mod-
els for FDOPA metabolism, by symbolic computations with the aid of Grébner bases.
The algebraic procedure has successfully determined almost all constants from the ob-
served radioactivity curves. In particular, the rigorous and simple form of a solution for
the constants relationship brings us efficient parameter determination without blood-
sampling data and only from PET scanning data that are dozens of minutes short of the
equilibrium leading to the considerable reduction of PET scanning periods required for
diagnosis.
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