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that p7 protein forms an ion channel in artificial lipid bilayers,
suggesting it may function as a viroporin [51,52].

3.4. NS2 protein

The NS2 protein is a transmembrane protein of 21-23 kDa,
with 96 highly hydrophobic N-terminal residues, forming either
three or four transmembrane helices that insert into the ER
membrane. The C-terminal part of NS2 presumably resides in
the cytoplasm enabling zinc-stimulated NS2/3 autoprotease
activity together with the N-terminal domain of NS3. Efficient
cleavage at the NS2/3 site requires the 130 C-terminal residues
and first 180 aa of the NS3. Site-directed mutagenesis has
revealed that His-952, Glu-972, and Cys-993 may comprise the
active site for proteolytic activity [53,54). Deletion of NS2 from
the nonstructural polyprotein has not been observed to abolish
HCV RNA replication in cell cultures, indicating that NS2 is not
essential for viral RNA replication [55,56]. However, the NS2
protein is essential for completion of the viral replication cycle
in vitro and in vivo [57,58]. A recent report regarding the crystal
structure of the C-terminus of NS2 suggests that the cytoplasmic
domain of NS2 forms a dimeric cysteine protease with two
composite active sites, in which His-952 and Glu-972 comprise
the active site of one monomer, and Cys-993 contributes to the
active site of the other [59].

3.5. NS3—44 complex

NS3-4A is a complex bifunctional molecule essential for viral
polyprotein processing and RNA replication. NS3 is a fairly
hydrophobic protein of 69 kDa with a serine protease encoded by
its N-terminal one-third region that non-covalently binds the
NS4A cofactor, which is a 54-aa polypeptide [reviewed in 60].
The catalytic triad is formed by residues His-1083, Asp-1107 and
Ser-1165 of NS3. The central portion of NS4A is important for
efficient processing of the nonstructural proteins by NS3. It has
been suggested that the N-terminus of NS4A might form a
transmembrane helix that anchors the NS3-4A complex to the
cellular membrane [61]. Crystal structural analyses of the NS3/4A
complex have demonstrated structural similarities between the
NS3 serine protease and trypsin, with two large domains primarily
composed of six-stranded beta barrels separated by a cleft
containing the active site and substrate binding pocket [62-64].
Of note, NS4A forms an integral part of this structure and interacts
with the extreme N-terminal residues of NS3 to form two ad-
ditional anti-parallel beta-strands. The NS3-4A complex has a
shallow substrate-binding pocket, thus requiring extended
interaction sites with the substrate.

The final 442 aa of the C-terminal of NS3 comprise the
helicase-NTPase domain, which is a member of the superfamilily-
2 DexH/D-box helicase, which unwind RNA-RNA substrates in a
3'-to -5’ direction [reviewed in 65]. This is supported by crystal
structure analysis indicating the presence of NTPase domains and
RNA binding within the protein [66]. During RNA replication,
the NS3 helicase is believed to translocate along the nucleic acid
substrate by changing its protein conformation, utilizing the
energy of NTP hydrolysis [67-69]. Its helicase activity 1s

positively modulated by the NS3 protease domain and NS4A
[70].

3.6. N§4B protein

NS4B is an integral membrane protein of 27 kDa, which is
predicted to contain at least four transmembrane domains and an
N-terminal amphipathic helix that is responsible for membrane
association [71]. NS4B has the ability to induce the formation of
a specialized membrane compartment, a sort of membranous
web where viral RNA replication may take place [72,73].

3.7. N§5A protein

NSS5A is a membrane-anchored phosphoprotein that is ob-
served in basally phosphorylated (56 kDa) and hyperpho-
sphorylated (58 kDa) forms. Based on the results of a
comparative sequence analysis following limited proteolysis of
purified protein, NS5A is predicted to contain three domains:
domain 1 (aa 1-213), domain 2 (aa 250—342) and domain 3 (aa
356-447) [74]. A recent structural study has demonstrated that
domain 1 immediately follows the membrane-anchoring alpha-
helix and forms a dimeric structure with an unconventional zinc-
coordinating motif [75]. Thus, it may interact with viral and
cellular proteins, as well as membranes and RNA.

While its function has not fully been elucidated, NSS5A is
believed to be important in viral replication. A large number of
cell culture-adaptive mutations mapped to the NS5A have been
shown to enhance RNA replication [76-78]. These adaptive
mutations often affect hyperphosphorylation of NSSA, suggest-
ing that the phosphorylation status of NS5A might influence
replication efficiency. NSSA has been reported to interact with
other HCV nonstructural proteins [79-81]. In addition, several
cellular proteins interact with NS5A, resulting in assembly of
the viral replication complex and/or regulation of RNA
replication, as described bellow.

3.8. NS5B protein

NS5B is a 68-kDa protein with a conserved sequence motif
characteristic of viral RNA-dependent RNA polymerase (RdRp),

‘including a hallmark GDD motif that produces catalytic activity.

NSS5B is a tail-anchored protein and its C-terminal 21-aa region
forms an alpha-helical transmembrane domain, which is
dispensable for polymerase activity in vitro but is responsible
for post-translational targeting to the cytoplasmic side of the ER
[82,83]. Analysis of the crystal structure of NS5B has revealed
that the HCV RdRp resembles a right hand and contains fingers,
palm, and thumb subdomains, similar to other template-
dependent polymerases [84-86]. Unlike the more open structures
of other template-dependent DNA polymerases, such as the
Klenow Fragment and the human immunodeficiency virus 1
reverse transcriptase, the HCV RdRp has a fully encircled active
site through extensive interactions between the fingers and thumb
subdomains, resulting in a protein that predominantly exists in a
“closed” conformation. HCV RdRp also has an unusual hairpin
loop that protrudes into the active site and helps position the 3'-
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end of the RNA template for proper initiation of RNA synthesis
and inhibits extension from a primed template [87].

4. HCV life cycle
4.1. Attachment and entry

Attachment of the virus to a cell followed by viral entry is the
first step in the virus life cycle. In order to enter the host cell, the
virus must first bind to a receptor on the cell surface. The specific
interaction between a host cell receptor and viral attachment
proteins on the surface of the virion determines tissue tropism and
host range.

Low levels of HCV replication in cultured cells hindered study
of the HCV life cycle. In order to overcome this, alternative models
have been developed to study viral attachment and entry using
recombinant HCV envelope proteins, including virus-like particles
produced by baculovirus [88,89], vesicular stomatitis virus and
retrovirus pseudotypes (HCVpp){90-93], as well as infectious
particles derived from a JFH-1 isolate (HCVcc) [94-96].

By using soluble E2 as a probe to identify cell-surface proteins
potentially involved in HCV entry, CD81 was first identified as a
putative HCV receptor [97]. CD81, a widely expressed 25-kDa
cell surface protein, belongs to a family of tetraspanins and is
involved in a number of activities, including cell adhesion, mo-
tility, metastasis, cell activation and signal transduction [98].
CD8! has a small and large extracellular loop, which mediate
binding to recombinant E2 [97,99]. Studies with HCVpp and
HCVcc confirm the involvement of CD81 in HCV entry. HCVpp
shows a restricted tropism for human hepatic cell lines expressing
CD81 [92,93,100-102]. Although necessary, CD81 expression
alone is not sufficient for cell entry of HCVpp. Of note, HepG2,
which does not express CD81 on its cell surface, is resistant to
HCVpp infection, but over-expression of CD81 renders the
HepG2 permissive to HCVpp infection [102-105]. Significant
infection of CD81-negative cell lines with HCVpp has not been
reported. However, as mentioned, not all CD81-positive cell lines
can be infected [93,101,103]. Expression of CD81 in host cells is
also required for infectivity of HCVce. Recombinant CD81 and
antibodies to CD81 have been observed to neutralize infection
[94-96]. Thus, CD81 may function as a post-attachment entry co-
receptor and may play a role after binding of the virion to another
receptor.

The human scavenger receptor class B type | (SR—BI) has
been identified as another putative receptor for HCV [106]. SR—
Bl is an 82-kDa glycoprotein with two C- and N-terminal
cytoplasmic domains separated by a large extracellular domain
involved in cellular lipometabolism. SR~BI is expressed in a
wide variety of mammalian tissues and cell types [100,107,108],
with particularly high levels of expression in the liver and
steroidogenic tissue [107,109,110]. SR-BI recognition by
soluble E2 requires the HVRI of E2 [103,111]. A role of SR—
BI in HCV celi entry has been confirmed using HCVpp in
receptor competition assays using polyclonal anti-SR~BI serum,
which has been observed to specifically inhibit HCVpp entry
efficiently in a dose-dependent manner [103]. Recent reports
have demonstrated that serum factors, especially high-density

lipoprotein (HDL), a ligand to SR—BI, enhance the infectivity of
HCVpp [105,112-115]. These results suggest that SR—BI
modulates HCV entry.

Several human cell lines co-expressing CD81 and SR—-BI are
non-permissive for HCVpp infection [100,102,103], suggesting
that another cell surface molecule(s) may be required for HCV
entry. C-type (calcium-dependent) lectins, such as L-SIGN, DC-
SIGN, and the asialoglycoprotein receptor, have also been
investigated as potential HCV receptors based on their affinity
for recombinant HCV envelope proteins [116-119}. However,
L-SIGN and DC-SIGN are not expressed on hepatocytes and
therefore cannot be receptors for HCV entry. A possible role of
L-SIGN and DC-SIGN involves the capture and transfer of HCV
to hepatocytes [120,121]. The LDL receptor is another candidate
receptor based on the finding that HCV particles associate with
lipoproteins in serum and their infectivity correlates with lipo-
protein association. The LDL receptor has been shown to
mediate HCV internalization by binding to virion-associated
LDL particles [122]. However, a role for the LDL receptor in
virus entry has not been confirmed using HCVpp [93], likely
since the binding is mediated by lipoproteins rather than viral
components.

Recently, a tight junction component claudin-1 has been
identified as a co-receptor of HCV [123]. Claudin-1 appears to
be critical for HCV entry into hepatic cells and is thought to act
during the late stages of viral entry.

4.2. Translation

As opposed to cellular capped mRNA molecules which are
translated via a cap-dependent scanning mechanism, the naturally
uncapped RNA molecules of viruses such as flaviviruses and
picornaviruses are translated via a cap-independent IRES-
mediated process, in which viral protein expression is regulated
by direct recruitment of each ribosome to the start site of
translation [ 18.19]. The first 40 nt of the 5'UTR, which include a
single stem—loop (domain I), are not essential for translation. Of
note, the 5/ border of the IRES was mapped between nt 38 and 46
[17.124,125]. Other domains in the S'UTR are more complex:
domain II consisting of a stem with several internal loops, domain
ITI consisting of a pseudoknot connected to a four-helix junction,
as well as stem-loop IId and domain [V, a small hairpin
containing the AUG start codon at nt 342. It has been suggested
that the first 12 to 40 nt downstream of the start codon are also
important for IRES activity [126-128].

Structural analysis of the HCV IRES indicates that all of the
RNA elements adopt tertiary structures capable of binding to the
translation initiation complex with high affinity [129]. IRES-
mediated translation of HCV RNA is initiated by direct binding
of a vacant 40S ribosomal subunit to the IRES. The 40S subunit
appears to interact with the viral RNA at multiple sites including
stems, loops, pseudoknots, as well as the start codon. This
binary complex then binds to eukaryotic initiation factor (eIF) 3,
as well as the ternary complex eIF-2: Met—tRNA;: GTP to form
a 48S-like complex dependent upon both the basal domain Il
and the start codon. Subsequent formation of the 80S complex,
which is the rate-limiting step, is dependent upon GTP
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hydrolysis and attachment of the 60S subunit, after which the
first peptide bond is formed [130].

In addition to the requirements described above, additional
factors modulate IRES activity. Cellular factors such as the La
autoantigen [131-133], heterogeneous nbonucleoprotein L
[134], poly-C binding protein [135], and pyrimidine tract-binding
protein (PTB)[136], have also been shown to bind to the IRES
element and modulate HCV translation. HCV translation is also
regulated through various interactions with viral proteins and the
IRES.

We have found that HCV core protein expression inhibits
HCV translation, possibly through binding to domain IIId,
particularly a GGG triplet within the hairpin loop structure of the
domain [137-139]. We therefore propose a model in which
competitive binding of the core protein for the IRES and 408
subunit regulates HCV translation. Although there is an in-
creasing body of evidence to suggest involvement of the core
protein in translational regulation, there is conflicting data re-
garding the mechanism by which this occurs. In contrast to studies
describing modulation of initiation of HCV translation by ex-
pression of the core protein [ 137,139—141], another study suggest
that the core protein sequence, and not the core protein itself,
modulates HCV IRES function through a long-range RNA-RNA
interaction {142].

In addition to thel0 known viral proteins (Fig. 1), the core-
coding region of HCV has also been observed to express low
levels of a 16—17 kDa protein [ 143—145]. This protein, which has
been named the F protein, is thought to be produced by a+1
translational frameshift by ribosomes initiating translation at the
start codon during synthesis of the HCV polyprotein, which shifts
the reading frame between codons 9 and 11 of the polyprotein.

4.3. Polyprotein processing

The main translation product of the HCV genome is a large
precursor polyprotein that is subsequently processed by cellular
and viral proteases into mature structural and nonstructural
proteins (Fig. 1). As deduced from the hydrophobicity profile and
dependence on microsomal membranes, junctions at core/E1, E1/
E2, E2/p7, p7/NS2 are processed by host signal peptidases.
Secondary structure analysis of the core protein has revealed that
all major alpha helices are located in the C-terminal half of the
protein. A predicted alpha helix encoded by aa 174-191 is
extremely hydrophobic and resembles typical signal peptide
sequences. Further post-translational cleavage close to the C
terminus of the core protein takes place, removing the E1 signal
sequence by a signal peptide peptidase [ 146—149]. This peptidase
has been identified as a presenilin-type aspartic protease [ 150] and
shown to exhibit protease activity within cellular membranes,
resulting in cleavage of peptide bonds in the plane of lipid
bilayers.

As described above, HCV nonstructural proteins are processed
by two viral proteases: cleavage between NS2 and NS3 is a rapid
intramolecular reaction mediated by a NS2-3 protease spanning
NS2 and the N-terminal domain of NS3, whereas the remaining
four junctions are processed by a serine protease located within
the 180 N-terminal residues of the NS3 protein. The NS3-NS5B

region is presumably processed by sequential cleavage: NS3/
4A —NSS5A/SB—NS4A/4B —NS4B/5A [151-154]. Proces-
sing at the NS3/4A site is intramolecular, whereas cleavage at
the other sites occurs intermolecularly.

4.4. RNA replication

As with other positive-strand RNA viruses, HCV replication is
assumed to start with synthesis of a complementary negative-
strand RN A using the genome as a template, after which genomic
positive-strand RNA is produced from a negative-strand RNA
template, both steps of which are catalyzed by the NS5B RdRp.
The positive-strand RNA progeny are transcribed at a level 5- to
10-fold that of negative-strand RNA. Recombinant NS5B protein
demonstrates RdRp activity in vitro, however, appears to lack
strict template specificity and fidelity, which are essential for viral
RNA synthesis. Thus, other viral and/or host factors are believed
to be responsible for RNA replication and formation of the
replication complex (RC), together with NS5B, which is required
for catalyzing HCV RNA synthesis during replication. Several
research groups have demonstrated HCV RC-mediated replica-
tion in vitro in crude membrane fractions of cells harboring
subgenomic replicons [155-158]. Studies of cell-free replication
systems, which provide a useful source of viral RCs have revealed
that RNA synthesis can be initiated in the absence of additional
negative-strand template RNA, suggesting that pre-initiated
template RNA co-purifies with viral RCs [156-159].

Co-precipitation and immunostaining studies have revealed
that newly synthesized HCV RNA exists as distinct specks of
material, while all of the viral nonstructural proteins coexist [ 160].
These distinct structures may be equivalent to a membranous
web, as described above. Expression of all structural and non-
structural proteins in the context of the entire HCV polyprotein
has been observed to induce similar membrane changes [72]. It is
of interest that morphologically similar structures, termed sponge-
like inclusions [161], have been identified by electron microscopy
within the hepatocytes of HCV-infected chimpanzees. Thus,
HCV RC may exist in the context of a membranous web in
infected cells. Because all nonstructural proteins of HCV are
associated with the ER membrane in cells harboring subgenomic
replicon RNA molecules [162,163], and since the membrane web
is frequently observed in close proximity with the ER membrane,
it is likely that the membranous web in HCV-infected cells is
derived from the ER membrane.

On the other hand, there is accumulating evidence to support
an association between HCV RNA replication and detergent-
insoluble membrane domains or lipid rafts, which are micro-
domains rich in cholesterol and sphingolipids. Membrane
flotation analysis and replication assays have shown that viral
RNA and proteins exist within detergent-resistant, lipid-raft
membranes, and that RNA replication occurs even after treat-
ment with detergent [155,164]. Inhibitors of de novo sphingo-
lipid synthesis have been shown to inhibit HCV replication,
presumably by disrupting the association of viral nonstructural
proteins with lipid rafts [165,166]. It is now accepted that HCV
nonstructural proteins synthesized at the ER localize to lipid raft
membranes when they are actively engaged in RNA replication.
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Membrane separation analysis has demonstrated that HCV
nonstructural proteins exist both in the ER and the Golgi
apparatus, but that viral RNA replication primarily occurs in the
Golgi fraction [155]. Further studies to elucidate the cellular
processes involved in HCV RC formation and replication of the
HCV genome in infected cells are needed.

Studies of RNA replicons have demonstrated the greatest
viral RNA levels during the growth phase of the cells, after
which a significant drop is observed as the cells reach con-
fluence, suggesting that HCV replication and/or translation is
tightly linked to host cell metabolism [163]. Huh-7 cells, in
which adapted replicons are cured by treatment with IFN, yield
cell populations that are more permissive for the replicon tested.
Thus, it is likely that some interplay between the cellular envi-
ronment and specific adaptive mutations of viral RNA contri-
butes to efficient RNA replication of HCV.

Several cellular proteins capable of interacting with NSSA,
such as vesicle-associated membrane protein-associated protein
(VAP) subtypes A and B (VAP-A and -B)[73,167], FKBP8
[168], FBL2 [169,170], growth factor receptor-bound protein 2
adaptor protein {171], SRCAP [172], and karyopherin b3 [173],
as well as Raf-1 kinase [174], have been identified. VAP-A and
—B and SNARE-like proteins are known to localize within the
ER and Golgi apparatus and are essential for HCV replication
by binding with both NS5A and NS5B. VAP-A interacts with
VAP-B through its transmembrane domain. Thus, VAP-A and
-B are thought to be involved in the formation of functional
HCV RCs. FKBP8, a member of the FK506-binding protein
family, and Hsp90 form a complex with NS5A, further contri-
buting to viral RNA replication. Statins that decrease the
production of mevalonate by inhibiting 3-hydroxy-3-methyl-
glutaryl CoA reductase have been shown to inhibit HCV RNA
replication [170,175], which can be reversed by adding
geranylgeraniol, suggesting that viral replication requires gera-
nylgeranylated proteins. A geranylgeranylated protein, FBL2,
which contains an F-box motif and is therefore likely involved
in protein degradation, has been identified as a NSSA-binding
protein.

Host factors that interact with NSSB and might participate in
HCV replication include cyclophilin B[176], p68 [177], nucleolin
[178,179], and hnRNP A1l [180]. Cyclophilin B, a cellular
peptidyl-prolyl cis-trans isomerase, interacts with the C-terminal
region of NS5B to directly stimulate its RN A binding activity, and
thereby contributes to efficient replication of HCV RNA.
Redistribution of p68, an RNA helicase, from the nucleus to the
cytoplasm occurs through its binding to NS5B, and the p68-NS5B
interaction may further serve to mediate HCV replication. Nuc-
leolin, a representative nulceolar marker, interacts with NS5B
through two independent regions of NS5B and may be essential
for HCV replication. hnRNP Al, a heterogeneous nuclear
ribonucleoprotein, also interacts with septin 6, as well as the 5'-
UTR and 3'-UTR of HCV RNA, and contains the cis-acting
elements required for replication. Thus, hnRNP Al and septin 6
play important roles in HCV replication through RNA -protein and
protein-protein interactions. Other cellular components that bind
to HCV RNA, such as PTB, may also be involved in viral
replication. PTB has been observed to modulate HCV IRES

activity by binding to several sites within the viral genome
[22,181-184]. Recent studies have shown that PTB also forms
part of the HCV RC and participates in viral RNA synthesis [ 185].

4.5. Viral assembly

Little is known about the assembly of HCV or its virion
structure since efficient production of authentic HCV particles
has only recently been achieved. As with related viruses, the
mature HCV virion likely consists of a nucleocapsid and outer
envelope composed of a lipid membrane and envelope proteins.
Various forms of HCV have been reported to circulate in the sera
of infected hosts, including (i) free mature virions, (ii) virions
bound to low-density lipoproteins and very-low-density lipo-
proteins, (iii) virions bound to immunoglobulins, as well as (iv)
non-enveloped nucleocapsids, which exhibit different physico-
chemical and antigenic properties {186—189].

Several expression systems have been used to investigate
HCV capsid assembly using lysate from mammalian cells,
insects, yeast, bacteria, and reticulocytes, as well as purified
recombinant protein [88,89,190-195]. The results suggest that
the immunogenic nucleocapsid-like particles of HCV are variable
in size ranging from 30 to 80 nm in diameter. The N-terminal half
of the core protein is important for nucleocapsid assembly
[190,194,195]. HCV capsid formation occurs in the presence or
absence of ER-derived membrane, which supports cleavage of the
signal peptide at the C-terminus [195].

Nucleocapsid assembly generally involves oligomerization of
the capsid protein and encapsidation of genomic RNA. This
process is thought to occur upon interaction of the core protein
with viral RNA, and the core-RNA interaction may be critical for
switching from RNA replication to packaging. In fact, HCV core
protein can bind to positive-strand HCV RNA through stem—loop
domains I, Il and nt 24-41 [138]. Two-hybrid systems have
identified a potential homotypic interaction domain within the N-
terminal region of the core protein (aa 1-115 or —122), with
particular emphasis on the region encompassing aa 82-102
[196,197]. Using purified HCV core protein, a C-terminaily
truncated core protein (aa 1—-124) and structured RNA have been
implicated in nucleocapsid formation to produce homogenous
spherical HCV particles. When core protein containing the C
terminus up to aa 174 is similarly examined, a heterogenous array
of irregularly shaped particles is observed, suggesting that the C-
terminus of the core protein influences self-assembly. Further-
more, Pro substitution within the C-terminal region has been
observed to abolish core protein self-interaction [198]. Circular
dichroism spectroscopy has further shown that a Trp-rich region
spanning aa 76-113 is largely solvent-exposed and unlikely to
play a role in multimerization. Recently, our group has
demonstrated that self-oligomerization of the core protein is
promoted by aa 72 to 91 of the core protein [49].

Once a HCV nucleocapsid is formed in the cytoplasm, it
acquires an envelope as it buds through an intracellular mem-
brane. Interactions between the core and E1/E2 proteins are
thought to determine viral morphology. Expression of HCV
structural proteins using recombinant virus vectors has succeeded
in generating virus-like particles with similar ultrastructural
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properties to HCV virions. Packaging of these HCV-like particles
into intracellular vesicles as a result of budding from the ER has
been noted [88,199,200]. Mapping studies to determine the nature
of interaction between core and E1 proteins have demonstrated
the importance of C-terminal regions in this interaction [201,202].
Since cormresponding sequences are not well conserved among
various HCV isolates, interactions between core and E1 proteins
might depend more on hydrophobicity than specific sequences. In
contrast, it has been shown that the interaction between self-
oligomerized HCV core protein and the E1 glycoprotein is
mediated through a cytoplasmic loop of the polytopic form of the
E1 protein [49].

It is believed that HCV particles are released from the cell
through the secretory pathway. HCV structural proteins have
been observed both in the ER and Golgi apparatus [203]. In
addition, complex N-linked glycans, which transit through the
Golgi apparatus, have been detected on the surface of HCV
particles isolated from patient sera [204].

5. Perspectives

Since the discovery of HCV, which is a major cause of liver
disease worldwide, significant progress has been made
regarding the molecular biology of this virus. However, details
regarding early and late stages of the HCV life cycle, including
cell entry, genome packaging, assembly and release, remain
unclear. In addition, the role of some viral proteins and their
importance to replication remains unclear, as well as the role of
certain host factors in regulation of the HCV life cycle.
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Infection with hepatitis C virus (HCV), which is dis-
tributed worldwide, often becomes persistent, causing
chronic hepatitis, cirrhosis, and hepatocellular carcino-
ma. For many years, the characterization of the HCV
genome and its products has been done by heterologous
expression systems because of the lack of a productive
cell culture system. The development of the HCV rep-
licon system is a highlight of HCV research and has al-
lowed examination of the viral RNA replication in cell
culture. Recently, a robust system for production of re-
combinant infectious HCV has been established, and
classical virological techniques are now able to be ap-
plied to HCV. This development of reverse genetics-
based experimental tools in HCV research can bring a
greater understanding of the viral life cycle and patho-
genesis of HCV-induced diseases. This review summa-
rizes the current knowledge of cell culture systems for
HCYV research and recent advances in the investigation
of the molecular virology of HCV.

Key words: hepatitis C virus, translation, polyprotein
processing, RNA replication, viral assembly, ubiquitin

Introduction

Hepatitis C virus (HCV), discovered in 1989, is a major
etiologic agent of posttransfusion- and sporadic non-A,
non-B hepatitis' and at present infects approximately
200 million people worldwide. > Persistent infection
with HCYV is associated with the development of chronic
hepatitis, hepatic steatosis, cirrhosis, and hepatocellular
carcinoma.**® HCV is a small, enveloped RNA virus
that belongs to the Hepacivirus genus of the Flaviviridae
family.”’® Its genome consists of a single-strand of
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positive-sense RNA of approximately 9.6kb, which
contains an open reading frame (ORF) coding for a
polyprotein precursor of approximately 3000 residues.™
The precursor is cleaved into at least ten different pro-
teins: the structural proteins core, E1, E2, and p7, and
the nonstructural proteins NS2, NS3, NS4A, NS4B,
NS5A, and NS5B (Fig. 1).

To date, six major genotypes of HCV have been iden-
tified that differ by 31%-34% in their nucleotide se-
quence and by about 30% in their amino acid sequence.
It has been shown that HCV, like many other RNA vi-
ruses, circulates in infected individuals as a population
of diverse but closely related variants referred to as
quasispecies.”? This quasispecies model of mixed virus
populations may confer a significant survival advantage,
because the simultaneous presence of multiple variant
genomes and the high rate of generation of new variants
allows rapid selection of mutants better suited to new
environmental conditions.”

Specific anti-HCV drugs that efficiently block virus
production are not yet available. The current standard
care is combination therapy with interferon (IFN)-a
and the nucleoside analog ribavirin, which cures about
40% of hepatitis C patients infected by HCV genotype
1, the most prevalent genotype in industrialized coun-
tries, and about 80% of those infected by genotype 2 or
3.5 Since many patients still do not benefit from the
treatment and IFN therapy is associated with unde-
sirable side effects such as headache, fever, severe
depression, myalgia, arthralgia, and hemolytic anemia,
development of innovative treatment alternatives for
hepatitis C patients is immediately needed. Studies of
HCV life cycle in cell cultures have been greatly facili-
tated by the development of genetically engineered vi-
ral genomes that are capable of self-amplifying to high
levels (replicon system), and by recent establishment of
a production system for recombinant infectious HCV.
Such progress will aid in the development of signifi-
cantly improved HCV antiviral agents.
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Cell culture systems for HCV research

Although substantial information on HCV protein
structure and function has been obtained from the use
of a variety of cell culture and in vitro expression sys-
tems, for many years, HCV research has been ham-
pered by the restricted host range and the inefficiency
of cell culture models for viral infection and propaga-
tion. The development of the HCV replicon system,
therefore, is a milestone in HCV research and has al-
lowed examination of viral RNA replication in cell cul-
ture.' Expression systems of heterologous virus genes
based on RNA replicons have been established in a
variety of positive-strand RNA viruses such as polio
virus,”® the alphavirus Semliki Forest virus,” Sindbis
virus,2 Kunjin virus,”® human rhinovirus 14,7 and bo-
vine viral diarrhea virus.® In general, advantages of
replicon systems are (1) a high level of gene expression
and RNA replication, (2) easy construction of recombi-
nants, and (3) a wide permissible host range.

The HCV replicons are typically composed of select-
able, bicistronic RNA, with the first cistron containing
the HCV 5’ nontranslated region (NTR), which directs
translation of the gene encoding the neomycin phos-
photransferase, and the second cistron containing the
internal ribosome entry site (IRES) of the encephalo-
myocarditis virus, which directs translation of HCV NS3
through NS5B region, and the 3' NTR. The prototype
subgenomic replicon utilized a particular HCV geno-
type 1b clone termed Conl. Following transfection of
RNA generated by in vitro transcription of the cloned
replicon sequences into a human hepatoma cell line
Huh-7, antibiotic G418-resistant cells could be obtained
in which the subgenomic RNA replicated autonomous-
ly. RNA replication was first detected at relatively low
frequency, followed by the identification of replicons
harboring cell culture-adaptive mutations, which in-

RNA rephcaN i

translated region

creased the efficiency of replication initiation by several
orders of magnitude. ™™

Adaptive mutations were found primarily at the N-
terminus of the NS3 helicase, in NS4B, and in the center
of NSSA, which is upstream of the region putatively
involved in IFN sensitivity. Most of the mutations in
NS5A are located at highly conserved serine residues
and lead to change in the phosphorylation state of
NSSA > A combination of adaptive mutation in NS3
and NS5A resulted in the highest level of replication of

‘a particular HCV genotype 1b isolate.”® Later work,
however, has indicated that adaptive mutations can
arise in most of the viral nonstructural proteins.*** The
mechanisms by which adaptive mutations increase RNA
replication efficiency are not well understood.

In the last 7 years, a variety of different replicons
have been generated, including replicons with reporters
or markers such as luciferase and green fluorescent pro-
tein, replicons from genotype 1a and 2a, and genome-
lengthdicistronicHCV RN As(genomic HCV replicons).
HCYV replicons with reporter genes allow us to execute
fast and reproducible screening of large series of com-
pounds for antivirals.*** Huh-7 cells are the most per-
missive for HCV replicons. However, variability in the
permissiveness for replicons has been observed for a
given Huh-7 cell pool, and the cells that are able to
support efficient replication of the viral genome are
enriched during selection such as G418 treatment. A
so-called “cured” cell clone, which can be prepared by
removing the replicons by treatment with IFN, supports
viral replication to a much higher level in many cases
and is useful for introducing genome-length HCV
RNAs»¥

An HCV genotype 2a replicon with the JFH-1 strain,
which was first isolated from the serum of a Japanese
patient with fulminant hepatitis C by our group,* repli-
cates efficiently in not only Huh-7 cells but also other
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hepatocyte-derived cell lines, HepG2 and IMY-N9, and
nonhepatocyte-derived cell lines, HeLa and 293.%* In-
terestingly, the JFH-1 replicon does not require adap-
tive mutations for replicating in these cell lines, and
enormously efficient RNA replication is detected by
transient replication assay as well as by colony forma-
tion assay with G418 selection,” suggesting that the
JFH-1 genome can replicate autonomously without the
help of drug selection or the requirement of adaptive
mutations. This observation laid the basis for a break-
through in HCV research.

Transfection of the full-length JFH-1 genome into
Huh-7 cells leads to the production of HCV particles
that are infectious both for naive cells and for animal
models.*® As a first attempt, an in vitro transcribed full-
length JFH-1 RNA was introduced into naive Huh-7
cells, which is the original cell line used for subgenomic
replicon studies. Efficient RNA replication in the trans-
fected cells was detectable by Northern blot analysis,
and the viral-enveloped particles, which are spherical
structures with an outer diameter of approximately
55nm, were secreted to the culture medium.* Secreted
virus was found to be infectious, although at low effi-
ciency, for naive Huh-7 cells, and its infectivity can be
neutralized by anti-CD81 antibody and hepatitis C pa-
tients’ sera.® Subsequently, to increase the infection
efficiency, “cured” Huh-7 cell lines such as Huh7.5,
Huh7.5.1, and Huh7-Lunet were used. Infectivity of
these cured cell lines with JFH-1 became more intense

10 2
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compared with standard Huh-7 cells, and the virus titers
released from cells freshly transfected with the JFH-1
genome were markedly increased by continuous pas-
sage of the cells carrying persistent replicating viral
RNA.* Further, chimeric constructs with the core to
NS2 region of another genotype 2a clone, J6, improved
the infectivity.”” Thus, this recombinant infectious HCV
cell culture system opens avenues of biochemical and
genetic studies of the HCV life cycle.

Besides isolating functional molecular clones of HCV
that replicate to high levels, to generate a cell culture
model that mimics natural host cell environments may
be advantageous for improving HCV production sys-
tems suitable for studying the virus-host interaction. It
is likely that HCV morphogenesis occurs in a complex
cellular environment in which host factors may either
enhance or reduce the assembly and budding process.
Generally, the interaction of viruses with polarized epi-
thelia in the host is one of the key steps in the viral life
cycle. A variety of enveloped viruses mature and bud
from distinct membrane domains of the host cells.*™!
We found that a dicistronic HCV genome of genotype
1b supports the production and secretion of infectious
HCYV particles in two independent three-dimensional
(3D) culture systems, the radial-flow bioreactor (RFB)
and the thermoreversible gelation polymer (TGP), but
not in monolayer cultures, although its productivity is
much lower than that observed in the JFH-1 system*
(Fig. 2). The RFB system was initially aimed at the

HCV-RNA (10%copies / fraction)
HCV-core ( fmol / fraction)

04 0 4

112 117 123 107 112

Density (g/ml)

102 107 1.27 1.02

117 123 127
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Fig. 2A-E. Production of HCV particles in the three-dimensional, thermoreversible gelatin polymer (TGP) culture of the Huh-7
cell line (RCYM1) carrying genome-length dicistronic HCV RNA of genotype 1b. A, B Sucrose density gradient analysis of
culture supernatants of RCYMI cells. The culture supernatants were fractionated and then HCV RNA (A) and core protein
(B) in each fraction were determined by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase
chain reaction, respectively. Closed circles, TGP culture; open circles, monolayer culture. C, D Electron microscopy of HCV
particles in the supernatants of TGP-cultured RCYMI cells. C Negative staining. D Immunogold labeling with an anti-E2 anti-
body. Gold particles, 5nm; bars, 50 nm. E Silver-intensified immunogold staining with anti-E1 antibody. The arrowhead indicates

virus-like particles reacting with anti-E1 antibody
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development of artificial liver tissue, and the bioreactor
column consists of a vertically extended cylindrical ma-
trix through which liquid medium flows continuously
from the periphery toward the center of the reactor.”
In RFB culture, human hepatocyte-derived cells
can grow spherically or cubically, and they retain liver
functions such as albumin synthesis®* and drug-
metabolizing activity mediated by cytochrome P450
3A4.* TGP is a chemically synthesized biocompatible
polymer which has a sol-gel transition temperature,
thus enabling us to culture cells three-dimensionally in
the gel phase at 37°C and to harvest them in the sol
phase at 4°C, without enzyme digestion.” In contrast to
other matrix gels made from conventional natural poly-
mers, TGP has several advantages that allow us to in-
vestigate the functional characteristics of epithelial cells,
their tissue-like morphology, and their potential clinical
applications. For example, the use of 3D culture materi-
als other than TGP requires treatment with appropriate
digestive enzymes or heating to collect cells grown as
spheroids from the culture media, and the matrices may
damage the cultured cells to some extent. A 3D culture
system based on RFB and TGP, in which human hepa-
toma cells can assemble into spheroids with potentially
polarized morphology, is a valuable tool in studies of
HCV morphogenesis.

Translation

The approximately 341-nucleotide (nt)-long 5" NTR is
one of the most conserved regions of the HCV genome,
and the secondary structural model, which is also
largely conserved, reveals four distinct RNA domains
in the region, reflecting its importance in both viral
translation and replication.’®*® The 5' NTR forms four
highly structured domains (domains I-IV), which may
be conserved among HCV and related flaviviruses and
pestiviruses,”® and it is functionally characterized as an
IRES to direct cap-independent translation of the ge-
nome.®>® To determine the minimal sequence required
for HCV IRES-dependent translation, as in the earlier
studies of picornaviruses, the bicistronic RNAs in which
two reporter protein-coding sequences are separated by
an IRES sequence were analyzed. Translation of the
upstream reading frame occurs in a 5’ end-dependent
fashion, while translation of the downstream reading
frame is driven by the IRES element. The IRES com-
prises nearly the entire 5" UTR of the genome. There is
evidence to suggest that the first 12 to 30 nt of the coding
sequence are also important for IRES activity.*** The
first 40nt of the 5" NTR, which includes a single stem—
loop (domain I), is not essential for the translation; the
5’ border of the IRES was mapped between nt 38 and
4651 Domains I1 and 111 are relatively more complex

T. Suzuki et al.: Molecular biology of HCV

and contain multiple stems and loops.*® Domain IV
consists of a small stem—loop containing the polyprotein
start codon at nt 342 and forms a pseudoknot via base-
pairing with a loop in domain IIIL

Recruitment of the 43S ribosomal complex, contain-
ing a small 40S ribosomal subunit, eukaryotic initiation
factor (eIF) 3, and a tRNA—IF2-GTP ternary com-
plex, to mRNA molecules is critical for initiation of
eukaryotic protein synthesis. The 40S subunit and eIF3
can bind independently to the HCV IRES.*"*"? How-
ever, it appears that interaction between IRES RNA
and the 40S subunit drives formation of an IRES-40S
subunit-eIF3 complex, since HCV IRES RNA demon-
strates similar affinity to both the 40S subunit and the
40S-eIF complex.”” Other cellular factors such as La
autoantigen,™” heterogeneous ribonucleoprotein L,"
poly-C binding protein,””® and pyrimidine tract-binding
protein,”™ also bind to the IRES element and modulate
translation.

Regulation of IRES-dependent translation of HCV is
also likely to involve viral factors. We found that the
core protein specifically inhibits HCV translation, pos-
sibly by binding to a stem-loop IIId domain, particu-
larly a GGG triplet within the hairpin loop structure of
the domain, within the IRES (Fig. 3).® Although a
conflicting report has suggested that inhibition of HCV
translation is due to an RNA-RNA interaction, rather
than to an interaction between RNA and the core pro-
tein,® later studies support the role of a core protein
sequence spanning amino acids (aa) 34-44 in inhibition
of viral translation through its interaction with the
IRES.® Furthermore, the N-terminal 20 residues of the
core protein have been shown to selectively inhibit
translation mediated by HCV IRES in a cell type-
specific manner.* We propose a model in which com-
petitive binding of the core protein to the IRES and 408
ribosomal subunit regulates HCV translation.

By analogy with other RNA viruses with IRES-
mediated expression, the HCV 5 NTR has been ex-
pected to contain not only determinants for translation
but also cis-acting elements for RNA replication. Re-
cent studies demonstrated that (1) the sequence up-
stream of the IRES is essential for viral RNA replication,
(2) sequences within the IRES are required for high-
level HCV replication, and (3) the stem-loop domain
11 of the IRES is crucial for the replication.*

Polyprotein processing

IRES-mediated translation of the HCV OREF yields a
polyprotein precursor that is subsequently processed by
cellular and viral proteases into mature structural and
nonstructural proteins (Fig. 1). As deduced from the
hydrophobicity profile and the dependence on micro-
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somal membranes, junctions at core/El, EI/E2, E2/p7,
and p7/NS2 are processed by host signal peptidases. For
instance, secondary structure analysis of the core pro-
tein reveals that all major alpha helices are located in
the C-terminal half of the protein. A predicted alpha
helix encoded by aa 174-191 is extremely hydrophobic
and resembles typical signal peptide sequences. Further
posttranslational cleavage close to the C terminus of the
core protein takes place, removing the El signal se-
quence by the signal peptide peptidase.** This pepti-
dase has recently been identified™ and exhibits protease
activity within cellular membranes, resulting in cleavage
of peptide bonds in the plane of lipid bilayers.

The viral nonstructural proteins are processed by two
viral proteases: processing between NS2 and NS3 is
a rapid intramolecular reaction that is accomplished
by the NS2-3 protease, which spans NS2 and the N-
terminal domain of NS3, whereas the remaining four
junctions are cleaved by the serine protease located at
the N-terminal 180 residues of NS3 protein. Efficient
cleavage at the NS2/3 site requires the 130 C-terminal
residues and the first 180aa of NS3. Recombinant pro-
teins lacking the N-terminal membrane domain of NS2
were found to be enzymatically active, allowing further
characterization of this activity.”*” Deletion of NS2
from the nonstructural polyprotein did not abolish the
replication of HCV RNA in cell cultures, indicating that
NS2 is not essential for vial RNA replication.'s”

The NS3-NSSB region is processed presumably with
the following preferred order of cleavage: NS3/4A—
NS5A/5B—NS4A/4B—NS4B/SA ™ Processing at the
NS3/4A site is an intramolecular reaction, whereas
cleavage at the other sites can be mediated intermolecu-
larly. NS3 is a multifunctional molecule. Besides its N-
terminal protease activity, the helicase and nucleotide
triphosphatase (NTPase) activities reside in the C-
terminal 500 residues of the NS3 protein.”"*' NS4A
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Translation

Fig. 3. The role and fate of HCV
core protein in the postulated HCV
life cycle. See text for further expla-
nation and details

functions as a cofactor of the NS3 serine protease and
is required for efficient polyprotein processing. There
are significant differences in the stability and activity of
the NS3 protease in the presence or absence of NS4A.
NS3 protein is relatively unstable when expressed in
cells in the absence of NS4A.'? Structural studies by
nuclear magnetic resonance and X-ray methods show
that the NS3-4A complex has a more highly ordered
N-terminal domain and NS4A binding leads the NS3
protease to a rearrangement of the active site triad to a
canonical conformation.® It has been predicted that
the N-terminus of NS4A forms a transmembrane helix,
which presumably anchors the NS3-4A complex to the
cellular membrane.'®

RNA replication

HCV is assumed to replicate its genome through the
synthesis of a full-length negative-strand RNA. Posi-
tive-strand RNA is then produced from the negative-
strand template; it is several-fold more abundant than
the negative-stranded RNA and is utilized for transla-
tion, replication, and packaging into progeny viruses.
RNA replication of most RNA viruses involves certain
intracellular membrane structures, including the endo-
plasmic reticulum (ER),'™'” Golgi,'® endosomes, and
lysosomes.'” HCV RNA replication is also believed to
occur in the cytoplasm of the virus-infected cells.
Although NS5B protein has RNA-dependent RNA
polymerase (RdRp) activity in vitro, its recombinant
product alone is presumably short of strict template
specificity and fidelity, which are essential for viral RNA
synthesis. It is highly likely that other viral or host fac-
tors are important for conferring proper RNA replica-
tion and that the replication complexes (RCs), which
are composed of NS5B and additional components re-
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quired for modulating polymerase activity, are involved
in catalyzing HCV RNA synthesis during the replica-
tion process. NS3 is directly involved in RNA synthesis,
possibly through its helicase/NTPase activities. The he-
licase activity is presumed to be involved in unwinding
a putative double-stranded replication intermediate or
to remove regions of secondary structure so that MS5B
RdRp can copy both strands of the viral RNA. It is
likely that the NTPase activity is coupled with the heli-
case function, supplying the energy required for disrupt-
ing RNA duplexes. Although little is known about the
function of NS4B in the HCV life cycle to date, NS4B
protein can induce a membranous web, consisting of
small vesicles embedded in a membranous matrix,"”
and it has been reported that the newly synthesized
HCV RNA and most of the viral nonstructural proteins
occur in these membrane webs or speckle-like struc-
tures."'"'® NS4B may play an important role in the
formation of the HCV RNA replication complex.'
Evidence indicating an involvement of NS5A in viral
RNA replication is now accumulating. As described
above, a hot spot of the cell culture-adaptive mutations
that increase replication efficiency of HCV RNA is lo-
cated in the central region of NS5A.”~*' The membrane
association of NSSA through its amino-terminal trans-
membrane domain'” and the interaction between NS5A
and 5B are essential for RNA replication. Several
cellular proteins interacting with NS5A have been iden-
tified, and human vesicle-associated membrane protein-
associated proteins (hWAP-A and -B) are likely to play
a key role in RNA replication through the interaction
with NS5A.1"" The 3’ NTR also contains a significant
predicted RNA structure with three distinct domains: a
variable region of about 40nt, a variable length poly(U/
UC) tract, and a highly conserved, 98-nt 3’ terminal
segment (3'X) that putatively forms three stem-loop
structures.”®1? Viral RNA replication was not detected
when any of the three putative stem-loop structures
within the 3'X region or the entire poly(U/UC) was
deleted.” The variable region segment also contributes
to efficient RNA replication.'”

Several groups have succeeded in demonstrating the
in vitro replication activities of HCV RCs in crude
membrane fractions of cells harboring the subgenomic
replicons.'”™"* These cell-free systems provide a valu-
able complement to the in vitro RdRp assays for bio-
chemical dissection of HCV RNA replication and are a
useful source for isolation of viral RCs. From the in vi-
tro replication studies, it appears that RNA synthesis
can be initiated in the absence of added negative-strand
template RNA, suggesting that preinitiated template
RNA copurifies with the RC.”* Although the
newly synthesized single-strand RNA can be used as a
template for a further round of double-strand RNA
synthesis, no exogenous RNA serves as a template for
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HCV RC preparation.'” Added RNA templates might
not access the active site of the HCV RCs owing to se-
questration by membranes. The HCV RCs contain both
positive- and negative-strand RNAs. % 1t has also
been reported that cell-free replication activity in-
creases at temperatures ranging from 25° to 40°C, and
divalent cations (Mn* and Mg™) can be used in the
reaction.”>"

Membrane flotation analysis and a replication assay
have shown that viral RNA and proteins are present in
detergent-resistant membrane structures, most likely a
lipid-raft structure, and RNA replication activity was
detected even after treatment with detergent.'™' Lipid
rafts are cholesterol- and sphingolipid-rich microdo-
mains characterized by detergent insolubility.”™
These structures are known to play a critical role in a
number of biological processes, such as as regulators
and organizing centers of signal transduction and mem-
brane traffic pathways, including virus entry and
assembly of, for example, influenza virus,”™ human
immunodeficiency virus type-1,”"** Ebola virus, Mar-
burg virus,” enterovirus,** avian sarcoma and leukosis
virus,” Coxsackie B virus, adenovirus,' measles vi-
rus,’® and respiratory syncytial virus.'"! However, HCV
may be the first example of the association of a lipid raft
with viral RNA replication.

On the other hand, it has been widely believed that
most of the HCV life cycle, including protein processing
and genome replication, takes place in the ER, where
cholesterol-sphingolipid rafts are not assembled."**'%
Several studies using the replicon system have indicated
that the nonstructural proteins are associated with the
ER.!¥!% Nevertheless, it is still possible that HCV non-
structural proteins synthesized at the ER relocalize to
lipid-raft membranes when they are actively engaged in
RNA replication. It has been shown by membrane sepa-
ration analysis that HCV nonstructural proteins are
present both in the ER and the Golgi, but the activity
of viral RNA replication was detected mainly in the
Golgi fraction.”?'* Further studies to elucidate where
and how the HCV genome replicates in infected cells
are needed.

Viral assembly

The assembly of HCV and the virion structure remains
largely unknown. By analogy with related viruses, the
mature HCV virion presumably possesses a nucleocap-
sid and outer envelope composed of a lipid membrane
and envelope proteins. HCV virions are thought to have
a diameter of 40-70nm.""'* These observations were
recently confirmed by immunoelectron microscopy of
infectious HCV particles produced in cell cultures.® It
has been reported that HCV circulates in various forms
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in the sera of infected hosts, for example, as (1) free
mature virions, (2) virions bound to low-density lipo-
proteins and very low density lipoproteins, (3) virions
bound to immunoglobulins, and (4) nonenveloped
nucleocapsids, which exhibit physicochemical and anti-
genic properties.’ %

The HCV structural proteins (core, E1, and E2) are
located in the N-terminal one-third of the precursor
polyprotein (Fig. 1). A crucial function of the core pro-
tein, which is derived from the N-terminus of the viral
polyprotein, is assembly of the viral nucleocapsid. The
aa sequence of this protein is well conserved among
different HCV strains, compared with other HCV pro-
teins. The N-terminal domain of the core protein is
highly basic, while its C-terminus is hydrophobic. When
expressed in mammalian cells and transgenic mice, the
core protein is found on membranes of the ER, on
the surface of lipid droplets, on the mitochondrial outer
membrane, and, to some extent, in the nucleus.”®
The core protein is likely multifunctional and is not only
involved in formation of the HCV virion but also has a
number of regulatory functions, including modulation
of lipid metabolism and hepatocarcinogenesis.'*>" "%
The envelope proteins E1 and E2 are extensively gly-
cosylated and have an apparent molecular weight of
30-35 and 70-75kDa, respectively. Predictive algo-
rithms and genetic analyses of deletion mutants and
glycosylation-site variants of the E1 protein suggest that
El can adopt two topologies in the ER membrane: the
conventional type I membrane topology and a polytopic
topology in which the protein spans the ER membrane
twice with an intervening cytoplasmic loop.'" E1 and
E2 proteins form a noncovalent complex, which is be-
lieved to be the building block of the viral envelope.

Several expression systems have been used to inves-
tigate HCV capsid assembly using mammalian, insect,
yeast, bacteria, and reticulocyte lysates, as well as puri-
fied recombinant proteins.®'* The results suggest
that immunogenic nucleocapsid-like particles are heter-
ologous in size and range from 30 to 80 nm in diameter.
The N-terminal half of the core protein is important for
nucleocapsid formation.'>'*""® HCV capsid formation
occurs in the presence or absence of ER-derived mem-
brane, which supports cleavage of the signal peptide at
the C-terminus."”®

Nucleocapsid assembly generally involves oligomer-
ization of the capsid protein and encapsidation of ge-
nomic RNA. In fact, study of a recombinant mature
core protein has shown it to exist as a large multimer in
solution under physiological conditions, within which
stable secondary structures have been observed.”
Studies using yeast two-hybrid systems have identified
a potential homotypic interaction domain within the
N-terminal region of the core protein (aa 1-115 or
-122), with particular emphasis on the region encom-
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passing aa 82-102.">'” However, other studies have
identified two C-terminal regions, extending from aa
123 to 191 and from 125 to 179, as responsible for self-
interaction. Furthermore, Pro substitution within these
C-terminal regions has been observed to abolish core
protein self-interaction.” " Circular dichroism spec-
troscopy has further shown that a Trp-rich region span-
ning aa 76-113 is largely solvent-exposed and unlikely
to play a role in multimerization."”" Recently, our group
demonstrated that self-oligomerization of the core pro-
tein is promoted by aa 72-91 in the core.'®

Once a HCV nucleocapsid is formed in the cyto-
plasm, it acquires an envelope as it buds through intra-
cellular membranes. Interactions between the core and
E1/E2 proteins are considered to determine viral mor-
phology. Expression of HCV structural proteins using
recombinant virus vectors has led to successful genera-
tion of virus-like particles with similar ultrastructural
properties to HCV virions. Packaging of these HCV-
like particles into intracellular vesicles as a result of
budding from the ER has been noted.*">' Mapping
studies to determine the nature of interaction between
core and El proteins have demonstrated the impor-
tance of C-terminal regions in this interaction."”"
Since corresponding sequences are not well conserved
among various HCV isolates, interactions between core
and E1 proteins might depend more on hydrophobicity
than on specific sequences. By contrast, it has been
shown that interaction between the self-oligomerized
HCV core and the E1 glycoprotein is mediated through
the cytoplasmic loop present in a polytopic form of the
El protein.'®

Implication of the ubiquitin-proteasome pathway in -
core protein maturation

The ubiquitin-proteasome pathway is the major route
by which selective protein degradation occurs in eu-
karyotic cells and is now emerging as an essential mech-
anism of cellular regulation.”*'® This pathway is also
involved in the posttranslational regulation of the core
protein."**8® We have reported that processing at the
carboxyl-terminal hydrophobic domain of the core pro-
tein leads to its efficient polyubiquitylation and protea-
somal degradation.”™ Recently, our group identified the
ubiquitin ligase EGAP as an HCV core-binding protein
and showed that E6AP enhances ubiquitylation and
degradation of the mature as well as the carboxyl-
terminally truncated core proteins, and that the core
protein produced from infectious HCV is degraded via
an E6AP-dependent pathway (Fig. 3)."® E6AP, the pro-
totype of HECT domain ubiquitin ligases,"™ was ini-
tially identified as the cellular factor that stimulates
ubiquitin-dependent degradation of the tumor suppres-
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sor p53 in conjunction with E6 protein of cancer-
associated human papillomavirus types 16 and 18.*%1%
Exogenous expression of E6AP reduces intracellular
core protein levels and supernatant viral infectivity in
infected cell cultures. Knockdown of exogenous E6AP
by siRNA increases intracellular core protein levels and
virus titers in the culture supernatants. The core protein
interacts with EGAP through the aa 58-71 region of the
core, which is highly conserved among all HCV geno-
types, suggesting that EGAP-dependent degradation of
the core protein is common to a variety of HCV isolates
and plays a critical role in the HCV life cycle or viral
pathogenesis.

A role for the proteasome activator PA28y core-
binding protein in degradation of the core protein has
also been demonstrated (Fig. 3)."***® Overexpression of
PA28y promotes proteolysis of the core protein. PA28y
predominates in the nucleus and forms a homopolymer,
which associates with the 20S proteasome,”™ thereby
enhancing proteasomal activity.'® Both nuclear reten-
tion and core protein stability are regulated via a PA28y-
dependent pathway.

In eukaryotic cells, targeted protein degradation is
increasingly understood to be an important mechanism
by which cells regulate levels of specific proteins, and
thereby regulate their function. The core protein is be-
lieved to play a key role in viral replication and patho-
genesis since it forms the viral particle and regulates a
number of host cell functions. Although the biological
significance of ubiquitylation and proteasomal degrada-
tion of the core protein is not fully understood, EGAP
possibly affects the production of HCV particles through
controlling the amount of core protein (Fig. 3). This
mechanism may contribute to virus persistence by main-
taining a (moderately) low level of the viral nucleocap-
sid. The E6AP binding domain within the core protein
resides in the region that is considered to be important
for binding to the viral RNA and several host factors.'®
These factors may affect the interaction between
the core and E6AP, resulting in control of EGAP-
dependent core degradation. A recent study demon-
strated that a knockdown of the PA28y gene induces the
accumulation of the core protein in the nucleus of hepa-
tocytes of HCV core gene-transgenic mice and disrupts
development of both hepatic steatosis and hepatoceliu-
lar carcinoma.'® Upregulation of several genes related
to fatty acid biosynthesis and lipid homeostasis by the
core protein was observed in the cells and the mouse
liver in the PA28y-dependent manner. Thus, it is likely
that PA28y plays an important role in the development
of liver pathology induced by HCV infection.
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