pCAGGS-HSP105

HSP105

fower than those in C26 (C20) tumor cells, which suggests a
low risk of damage to normal tissue as a result of immune
responses to the HSP105 antigen. To evaluate the risk of
autoaggression by immunization against self-HSP105, the
tissues of mice immunized with HSP105 DNA were histo-
logically examined. All mice were apparently healthy, and
without abnormalities, suggesting autoimmunity for, for
example, dermatitis, arthritis, or neurological disorders.
The brain, liver, lung, heart, kidney, and spleen tissues of
HSP105-immunized mice were critically scrutinized and
compared with those of normal mice. These tissues had normal
structure and cellularity for each of the two groups examined,
and pathological changes caused by immune response, such
as infiltrations of CD8* or CD4* T cells, or tissue destruction
and repair, were not present (Fig. 4b). Although CD4* T cells
and CD8* T cells infiltrated into the C26 tumor (Fig. 4a),
infiltration of CD4* T cells or CD8* T cells was not observed
in any of the normal adult tissues examined (Fig. 4b). These
results indicate that T cells stimulated with the HSP105 DNA
vaccine do not recognize normal cells that express HSP10S5 at
physiological levels.
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Fig. 3. Expression of HSP105 protein and
infiltration of CD4* T cells and CD8* T cells in
the HSP105 DNA vaccine-injected sites. To
observe HSP105 expression and infiltrating
cells in muscles injected with the HSP105
DNA vaccine, we carried out intramuscular
immunizations with pCAGGS-DNA into the
right anterior tibialis muscle, and with
pCAGGS-HSP105 DNA into the left anterior
tibialis muscle in four mice. After 48 h, we
killed the mice and studied their muscle
tissue by using HE staining and histological
analysis, and immunohistochemical analysis
of HSP105, CD4, and CD8. Representative
results are shown. Objective magnification
was 400x.

Anti-C26 tumor adoptive immunity elicited by injection
with CD4* T cells or CD8* T cells from HSP105 DNA-
vaccinated mice

Antitumor responses could be augmented by homeostatic T
cell proliferation in the periphery, involving the expansion of T
cells recognizing MHC/tumor antigenic peptide ligands.*'*®
To ascertain that the tumor rejections induced by HSPI05
DNA vaccination were mediated through the activation of
CD8* T cells or CD4* T cells, in a homeostatic lymphocyte
proliferation model, we subcutaneously inoculated BALB/c
mice with C26 cells (3 x 10%) 6 days after sublethal irradiation
(5 Gy). We intravenously injected 1.5 x 107 whole spleen cells
or 3 x 10° CD8* T cells, CD4* T cells, NK cells, or CD§~ CD4~
NK- cells derived from each untreated or HSP105 DNA-
vaccinated mouse on day 3 before the tumor inoculation
(Fig. 5a). Measurements of tumor size were continued for
22 days after inoculation with the tumor cells (Fig. 5b). Each
group consisted of four mice. Inoculation with whole spleen
cells or CD8* T cells, CD4* T cells, NK cells, or CD8~ CD4-
NK- cells derived from untreated mice, and with NK cells, or
CD8  CD4~ NK- cells derived from HSP105 DNA-vaccinated
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Fig. 4. Vaccination with HSP105 DNA induced infiltration of both CD4* T cells and CD8* T cells into C26 tumors, but not into normal
tissues. (a) Subcutaneous C26 tumors removed from two HSP105 DNA-immunized mice, a saline-inoculated mouse, and a pCAGGS-
immunized mouse that did not reject the tumor challenges were analyzed using immunohistochemical staining with anti-CD4 mAb and
anti-CD8 mAb. (b) Normal tissues of mice vaccinated with HSP105 DNA were histologically and immunohistochemically examined.
Objective magnification was 200x. The spleen was used as a positive control for staining of both CD4 and CD8.
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Fig. 5.
antitumor adoptive immunity. (a) Experimental protocol; each group

Injection of either CD4* T cells or CD8* T cells sensitized with HSP105 DNA vaccine into sublethally irradiated mice elicited effective

consisted of four mice. (b) Suppression of the growth of HSP105-

expressing C26 tumors inoculated subcutaneously into mice transferred with each group of spleen cells. Tumor area was calculated as the
product of width and length. The result is presented as the mean area of tumor £ SE, and we evaluated the statistical significance using the
unpaired t-test. (c,d) Percentage tumor free rate (c) and percentage overall survival (d) were calculated using the Kaplan-Meier method,
and the statistical significance of differences in survival time between groups was evaluated using Wilcoxon'’s test.

mice did not cause the mice to reject challenges with C26 cells
(3 x 10%). Conversely, two of the four mice (50%) that were
treated with whole spleen cells, CD8* T cells, or CD4* T
cells derived from HSP 105 DNA-vaccinated mice completely
rejected challenges with C26 cells (3 x 10% Fig. 5b—d). Thus,
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sublethally irradiated lymphopenic mice transfused with
CD4* T cells or CD8* T cells derived from HSP105 DNA-
vaccinated mice displayed tumor growth inhibition. These
results suggest that both CD4* and CD8* T cells play critical
roles in antitumor immunity induced by immunization with
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Involvement of both CD4* T cells and CD8" T cells in protection against B16.F10 induced by vaccination with HSP705 DNA. (a)

Experimental protocol for in vivo depletion of CD4* T cells and CD8* T cells. Each group consisted of four mice. (b) Suppression of the growth

of HSP105-expressing B16.F10 tumors inoculated subcutaneously into

mice vaccinated with HSP105 DNA. Tumor area was calculated as the

product of width and length. Data are presented as mean area of tumor £ SE, and we evaluated the statistical significance using the

unpaired t-test. (c,d) Percentage tumor free rate (c) and percentage

overall survival (d) were calculated using the Kaplan-Meier method,

and the statistical significance of differences in survival time between groups was evaluated using Wilcoxon'’s test.

the HSP105 DNA-vaccine. The mice shown in Figure 5
were killed more than 100 days after lymphocyte transfer,
respectively. All mice were apparently healthy and without
abnormalities, suggesting autoimmunity for, for example,
dermatitis, arthritis, or neurological disorders. The brain, liver,
lung, heart, kidney, and spleen tissues of HSP/0S5 DNA-
immunized mice were critically scrutinized and compared with
those of normal mice. These tissues had normal structures
and cellulanty for each of the two groups examined, and
pathological changes caused by immunc response, such as
CD8* or CD4* T lymphocyte infiltration or tissue destruction
and repair, were not present, as shown in Figure 4b. These
results indicate that T cells stimulated with HSP105 do not
recognize notmal cells that express HSP105 at physiological
levels.

Involvement of both CD4* T cells and CD8"* T cells in
protection against B16.F10 induced by HSP105 DNA-
vaccination

To determine the role of CD4* T cells and CD8* T celis in the
protection against B16.F10 tumor cells induced by HSP105

Miyazaki et al.
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DNA-vaccination, we depleted mice of CD4* T cells or CD8*
T cells by treatment with anti-CD4 or anti-CD8 mAb in vivo.
More than 90% of CD4* T cells or CD8* T cells were
depleted (data not shown). During this procedure, mice were
immunized with DNA vaccine and challenged with B16.F10
cells (Fig. 6a). Depletion of either CD4* T cells or CD8* T cells
almost totally abrogated the protective immunity induced by
immunization with HSP105 DNA vaccine (Fig. 6b—d). These
results suggest that both CD4* T cells and CD8* T cells play
critical roles in antitumor immunity induced by immunization
with HSP105 DNA vaccine.

Discussion

Advances in molecular biology and tumor immunology have
paved the way for identification of a large number of genes
encoding TAA and antigenic peptides recognized by tumor-
reactive CTL, hence peptide-based cancer immunotherapy
has been the focus of much research.*-2® However, current
clinical trials for peptide-based immunotherapy have rarely
resulted in tumor regression.”” The immunogenicity of these
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tumor antigenic peptides or the vaccination strategy may be
sufficient to induce CTL responses but not to elicit CD4* T cells.

DNA-based immunization is potentially a powerful method
for immunizing against microbial, viral, and tumor antigens
through both humoral and cell-mediated immune responses.®
The generation of T-cell immunity involves local target cell
transfection and protein antigen production, which is taken
up by host APC, leading to cross-presentation in draining
lymph nodes; in addition, direct DNA transfection into APC
in peripheral tissue has also been demonstrated.“” Compared
with orthodox vaccines consisting of tumor proteins or viral
components, DNA vaccination stimulates host immunity against
transgene-encoding proteins without the processes related to
protein purification. In the present study, a DNA vaccine was
used to activate HSP105-specific tumor immunity.

Although the SEREX method facilitated the identification
of tumor antigens that could be recognized by antibodies
and CD4* Th cells, few of their T cell epitopes have been
determined.?*” We previously reported that HSP103, identified
by SEREX of pancreatic adenocarcinoma, was overexpressed
specifically in a variety of human cancers, including pancreatic
and colon adenocarcinoma.!> Other investigators identified
HSP105 by SEREX using other ¢cDNA libraries derived
from tissues including colorectal cancer, melanoma, and
normal testis. HSP105 are complexes associated with HSP70/
HSC70,%'*2  which negatively regulate HSP70/HSC70
chaperone activity.®® In addition, HSP105 protects neuronal
cells against the apoptosis induced by various stresses.®"
HSP105 consists of HSP105a and HSP10583. HSP105a is a
constitutively expressed 105-kDa HSP that is induced by a
variety of stresses, whereas HSP105p is a 90-kDa HSP that
is specifically induced by heat shock at 42°C. HSP1050 is a
truncated form of HSP105¢."? We used in this study the
mouse HSP105a DNA and protein. Recently, Subjeck and
colleagues reported that recombinant HSP110 and cancer
antigens such as Her2/neu or gp100 complexes are powerful
cancer vaccines.®%3% Their HSPI10"" and our HSP1050; are
in fact the same protein.

Although they noted that HSP110 did not have immuno-
genic properties, we emphasize in this study that HSP105
does have a strong immunogenic action. Although we did not
identify the HSP105-derived epitope peptides of CD8* T-
cells or CD4* T-cells in this study, we did prove that HSP105
itselt’ could induce both CD4* T-cells and CD8* T-cells to
become reactive to tumor cells expressing HSP10S. As shown
in Figure 5, in a homeostatic lymphocyte proliferation model,
we demonstrated that adoptive transter of either CD4* T cells
or CD8" T cells alone into sublethally irradiated mice was
sufficient to reject C26 cells that do not express MHC class
II molecules. To ascertain whether this is also true for
B16.F10 that express both MHC class 1 and II molecules in
the presence of interferon (IFN)-v, further investigation is needed.
As shown in Figure 6, we demonstrated that both CD4* T
cells and CD8* T cells were required for rejection of B16.F10
in the induction phase. In terms of the mechanism for the
rejection of C26 tumors, we have other data relating to vac-
cination with HSP105 protein-pulsed BM-DC instead of
HSP105 DNA vaccination. In those experiments, we also
demonstrated that both CD4* T cells and CD8* T cells were
required for rejection of not only B16.F10 but also C26 in the
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induction phase by depleting CD4* T cells and CD8* T cells
using the in vivo administration of antibodies (unpublished data).
Therefore, both HSP105-specific CD4" T cells and CD8* T cells
seem to be important for the rejection of HSP105-expressing
tumors in the induction phase, and either CD4* T cells or CD§*
T cells can independently exert anti-C26 tumor effects in the
effector phase in a homeostatic lymphocyte proliferation model.

Tt has been reported that antigen-specific CD4* T-cell help
is required to activate memory CD8* T cells to fully functional
effector killer cells.®® The peptides derived from exogenous
antigens acquired by endocytosis are typically presented on
MHC class 11 molecules on the surface of APC, and activate
CD4* T cells. We observed in this study that CD4* T cells
specific to HSP105, in fact, have an important role in tumor
rejection, even when tumors do not express MHC class 1
molecules, such as the C26 tumors used in this study. It was
recently reported that tumor-specific CD4* T cells may have
a pivotal role in preventing early tumorigenesis by secreting
IFN-y and stimulating the classical macrophage-activation
pathway. This results in the inhibition of mumor cell growth,
even when tumor cells themselves do not express MHC class
I1 molecules.®” To better understand the mechanism of C26
tumor rejection by HSP105-specific CD4* T cells, further
studies are needed. Furthermore, peptides derived from
exogenous self-antigen, HSP105, acquired by endocytosis arc
possibly presented by MHC class I molecules on the surface
of APC by cross-presentation to activate CD8" T cells.

Because HSP are present in all organisms, low levels of
human HSP-derived peptides serve as harbingers of auto-
immune responses after CTL have been primed to respond to
bacterial HSP-derived peptides.*® However, because many
cancers overexpress HSP, CTL-based vaccines that elicit an
anti-HSP response might be effective against many different
wmors.®” Indeed, in this study, HSP105 itself evoked T-cell-
mediated tumor rejection without autoimmune reactions. In the
present paper, all results shown in the figures were obtained
using female mice, but we have carried out the same experiment
using male mice. HSP105 DNA vaccination did not induce T-
cell infiltration or damage in testis tissue (in which HSP105
is highly expressed). Furthermore, HSP/05 DNA vaccination
was also able to induce antitumor immunity in male mice
(data not shown), indicating that male mice did not acquire
immunological tolerance to HSP105 expressed in testis tissue.

To substantiate the specificity for HSP105, we searched
for mouse cancer cell lines derived from BALB/c mice and
C57BL/6 mice that do not express HSP105. However, all
cancer cell lines we examined strongly expressed HSP105.
BALB/3T3 fibroblasts expressed HSP105 relatively weakly,
but these cells unfortunately did not form tumors in mice.
Further investigations are needed to clarify whether HSPI05
DNA vaccination affects the growth of some tumors that do
not express HSP105.

We showed in this study that FSP105 DNA vaccination
can prime T cells to be reactive to tumor cells expressing
HSP105 in vivo, and that growth of C26 and B16.F10 cells
expressing HSP105 was prevented without inducing auto-
immune destruction in murine subcutaneous CRC and
melanoma models. We believe that HSP105 DNA vaccination
is a novel strategy for the prevention of CRC and melanoma in
patients treated surgically who are at high risk of recurrence
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of CRC or melanoma. Whether or not HSP105 is an ideal
target for immunotherapy in human cancers will continue to
be investigated in our laboratory.
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Abstract Glypican-3 (GPC3) mRNA and protein are expressed in >80% of human hepatocellular carcinomas (HCC)

but not in normal tissues except for placenta and fetal liver. The oncofetal antigen GPC3 is a glycosylphospha-
tidyl inositol-anchored membrane protein and may be secreted. It is a novel tumor marker for human HCC:
GPC3 protein was present in sera from 40-50% of HCC patients, but was not detected in sera from patients with
liver cirrhosis or chronic hepatitis, or in sera from healthy individuals. a-Fetoprotein (AFP) and PIVKA-HII
(protein induced by vitamin K absence or antagonist-Il), are well known major tumor markers for HCC.
Generally, AFP shows high positivity for HCC but also high false-positivity in detection assays. Lens culinaris
agglutinin-reactive fraction of o-fetoprotein (AFP-L3) is a recently described marker of HCC. Detection of
AFP-L3 shows a much higher specificity than AFP, but a lower sensitivity. On the other hand, detection of
PIVKA-II shows a lower false-positivity, but is not always sensitive enough to detect low levels secreted by
small HCCs. There was no correlation between the three tumor markers, AFP, PIVKA-11, and GPC3 in terms of
their presence in HCC cells. All three tumor markers showed similar positivity in patients with HCC, detecting
80% of patients with the disease.

GPC3 is also a novel tumor marker for the diagnosis of human melanoma, especially in the early stages of the
disease. Expression of GPC3 mRNA and protein was evident in tumor cells from >80% of patients with
melanoma and melanocytic nevus, which is a common benign lesion. GPC3 protein was detected in sera from
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40% (36/91) of melanoma patients, but not in sera from those with large congenital melanocytic nevus, or from
healthy donors. Surprisingly, we detected serum GPC3 even in patients with stage 0, in situ melanoma. The
positive detection rate of serum GPC3 at stage 0, I, and II (44.4%, 40.0%, 47.6%, respectively) was significantly
higher than that of 5-S-cysteinyldopa, a well known tumor marker for melanoma (0.0%, 8.0%, and 10.0%,

respectively).

Interestingly, GPC3 was highly immunogenic in mice and elicited effective anti-tumor immunity with no
evidence of autoimmunity. Thus, GPC3 is useful for diagnosis of HCC and melanoma and may also have a role
in immunotherapy or tumor prevention. However, studies in humans are warranted.

Primary hepatocellular carcinoma (HCC) is one of the most
common solid malignancies in the world and accounts for about |
million deaths each year. Numerically, most of these cases occur
in the Far East and are related to chronic infection with the
hepatitis B virus (HBV) although, proportionally, chronic hepatitis
C (HCV) is more important in developed Western countries.!'
Because of the global pandemic of hepatitis B and C viral infec-
tions, the incidence of HCC is increasing rapidly in Asian and
Western countries,') and this trend is expected to continue for the
next 50 years because of the long latency between infection and
the development of HCC. The prognosis of patients with advanced
HCC remains poor, and novel treatment and diagnostic strategies
are needed urgently. There are several tumor markers, including
carcinoembryonic antigen (CEA),?# carbohydrate antigens (CA)
19-9,5) and a-fetoprotein (AFP),!%) which may be used in different
settings in cancer patients, including screening measures, differen-
tiating between malignant and benign lesions, monitoring the
response 1o treatment, and detecting recurrences. AFP and
PIVKA-II (protein induced by vitamin K absence or antagonis-
t-ID" are well known tumor markers for HCC. Generally, detec-
tion of AFP shows a high sensitivity but also shows a high
false-positivity. Serum AFP levels are often increased in patients
with benign liver diseases such as chronic hepatitis (CH) and liver
cirrhosis (LC). Lens culinaris agglutinin-reactive fraction of
o-fetoprotein (AFP-L3) is a recently described marker of HCC.
Detection of AFP-L3 shows a much higher specificity than AFP,
but a lower sensitivity. On the other hand, PIVKA-II shows a
lower false-positivity, but is not always sensitive enough to detect
low levels of PIVKA-II in small HCCs.

Age-adjusted incidence rates for melanoma have been increas-
ing in most fair-skinned populations in recent decades. The annual
increase in incidence rate varies between populations but generally
has been in the order of 37% for fair-skinned Caucasian popula-
tions. Annual incidence rates vary from >40 per 100 000 persons
in Australia to <5 per 100 000 in countries of low insolation in
Northern Europe. The increase in incidence rates among
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non-European people with darker skin has not been as consistent,
although the incidence rates are generally very low and trends are
difficult to determine. The incidence in these populations varies
from 0.1 to 3 per 100 000 persons per year depending on the skin
type and latitude.!®! In the last decade, several molecules have been
evalualed as tumor markers to detect melanoma, including mela-
nin metabolites, adhesion molecules, cytokines, and melanoma-as-
sociated antigens.!") In melanoma, several tumor markers have
been evaluated for use as prognostic variables, to monitor response
to therapy, and to detect recurrence.l'>'¥ Several investigators
have reported!'>13) that 5-S-cysteinyldopa (5-S-CD) is useful as a
marker for melanoma progression or for monitoring metastatic
melanoma. 5-S-CD is often used as a tumor marker for melanoma
in Japan and the usefulness of melanoma-inhibitory activity (MIA)
as a tumor marker has also been reported.'?2l However, detection
of 5-S-CD often gives a false-positive result. Serum 5-S-CD levels
are often increased in patients with a large congenital melanocytic
nevus, which is a benign tumor.?'! There is no available tumor
marker that can detect primary melanomas at early stages, that are
small, and without metastasis. In addition, current methods are not
sensitive enough to detect organ metastasis at early stages. A
simple, inexpensive, and non-invasive method with high sensitivi-
ty to detect a serum tumor marker would aid the management of
high-risk patients who have already had the disease but are at high
risk of recurrence.

1. Novel Strategies for Identification of
Tumor-Associated Antigens

Cloning of the human melanoma antigen (MAGE) gene with
cDNA expression cloning methods, has indicated that the human
immune system can recognize cancer as a foreign body and can
respond to it.?21 This “genetic approach’ to T-cell epitope cloning
led to the identification of a large number of genes encoding tumor
antigens and antigenic peptides that are recognized by tumor-
reactive cytotoxic T Iymphocytes (CTLs), thereby enhancing the
possibility of antigen-specific cancer immunotherapy.'?*201 In
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1995, tumor-derived cDNA expression libraries were screened for
identification of tumor-associated antigens. The antigens were
recognized by high-titered IgG antibodies present in sera of cancer
patients, so called serologic identification of antigens by recombi-
nant expression cloning (SEREX). This method allows for the
systematic identification of many human cancer-associated anti-
gens, indeed, over 1500 types of tumor antigen have been identi-

- fied using the SEREX method. 27-3) ¢cDNA microarray technolo-
gy, by which investigators can obtain comprehensive data regard-

- ing gene-expression profiles, is progressing rapidly. Studies have
demonstrated the usefulness of this technique for identification of
novel cancer-associated genes and for classification of human
cancers at the molecular level.34-3!

2. Identification and Expression of Glypican
(GPC)-3 in Hepatocellular Carcinoma (HCC)
and Melanoma

2.1 Identification by cDNA Microarray Analysis of the
GPC3 Gene Over-Expressed in HCC

Antigens ideal for HCC tumor immunotherapy are those that
are strongly expressed in almost all HCCs, but not in normal adult
tissues (except for immune-privileged tissues such as testis and
placenta or fetal organs). To identify such HCC antigens, two
kinds of data were used from cDNA microarrays containing
23 040 genes. One was a comparison of expression profiles be-
tween 20 HCCs (10 cases were HBV-positive and 10 were HCV-
positive) and corresponding adjacent non-cancerous liver tis-
sues.! % The other data was from various normal human tissues.!4!!

GPC3 was identified as a gene over-expressed specifically in
HCC."2! [n 16 of 20 HCCs, the expression of GPC3 mRNA in the
- cancer tissue was 25-fold higher than that in non-cancerous tis-
sues. The GPC3 gene was found to be over-expressed in most
HCCs and the expression was not related to HBV or HCV infec-
tion. GPC3 mRNA is highly expressed in the placenta, fetal liver,
fetal lung, and fetal kidney and expression is low in most normal
adult tissues. Similar observations on GPC3 have been published
by other investigators, based on northern blotting studies.!4344]
Thus, like AFP, GPC3 is a novel oncofetal antigen present in
HCC.

2.2 Limited Expression of GPC3 Protein in Human HCC,
Melanoma, and Fetal Tissues

GPC3 has been found to be overexpressed in HCC 13242-48) apd
melanoma;*) immunohistochemical analysis of GPC3 has been
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conducted using various human tissues (table 1).1! Immunohis-
tochemical staining of GPC3 in HCC and melanoma tumor cells
usually had a coarsely granular pattern located near the cell
membrane. Strong membrane staining was also observed in sever-
al cases. Occasionally, there was diffuse nongranular staining of
the cytoplasm. In >80% of HCC, melanoma, and melanocytic
nevus tumor samples there was evident expression of GPC3
mRNA and protein.*>%*30 GPC3 protein was expressed in placen-
ta and fetal liver, but little or no expression was observed in all
normal adult human tissues tested, including brain, lung, heart,

liver, kidney, mammary gland, spleen, and thymus (table 1).I5%

3. Detection of GPC3 in Patients

3.1 Detection of Soluble GPC3 in Sera from Patients
with HCC

GPC3 is a glycosylphosphatidyl inositol (GPI)-anchored mem-
brane protein and may be secreted. Using an enzyme-linked im-
munosorbent assay (ELISA), soluble GPC3 protein could be de-
tected in culture supernatants from four of five HCC cell lines and
in sera from 40% of patients with HCC.12! The quantification by
ELISA of GPC3 protein in sera from 40 HCC (27 HCV, 8 HBV, 6
non HBV or HCV), 13 LC (8 HCV, 4 HBV, | non HBV or HCV),
34 CH (31 HCV, 3 HBV) patients, from other patients, and from
60 healthy donors (HDs) is indicated in table I1. We detected and
quantified GPC3 protein in the sera from 16 of 40 HCC patients,
but not in sera from patients with LC, CH, autoimmune hepatitis
(AIH), primary biliary cirrhosis (PBC), HD, and other kinds of
cancers (colon, gastric, pancreatic, biliary, esophageal, lung, and

breast).

Table I. The expression levels of glypican-3 protein in various human
tissues as determined by immunohistochemical analysis

Expression level Tissue

Very strong HCC, melanoma
Strong Placenta, fetal liver
Weak Lung, mammary gland

Very weak or none  Liver, brain, heart, kidney, pancreas, spleen,
thymus, stomach, smali intestine, colon, ovary,

uterus, prostate, testis

HCC = hepatoceltular carcinoma.
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Table Il. Clinical profiles of serum donors and detection of glypican (GPC)-3 using ELISA

Disease Mean Sex (m/f) UICC stage? GPC3 positive rate
age (y) 0 | il 1] I\ (% of patients)
HCC 66 36/4 1 15 14 10 16/40 (40)
Liver cirrhosis 65 6/7 0/13 (0)
Chronic hepatitis 60 15/19 0/13 (0}
Autoimmune hepatitis 65 0/2 0/2 (0)
Primary biliary cirrhosis 79 0/1 0/1 (0)
Melanoma 66 43/48 9 25 21 18 18 36/91 (40)
Large congenital melanocytic nevus 21 3/2 0/5 (0)
Healthy donors 40 25/35 0/60 (0)
Cancers
colon 66 16/5 1 6 5 0/21 (0)
gastric 71 9/5 7 3 4 0 0/14 (0)
pancreatic 58 6/5 0 0 0 11 0/11 (0)
biliary 70 2/4 0 3 1 2 0/6 (0)
esophageal 59 6/0 1 0 2 3 0/6 (0)
lung 64 7/0 3 0 0 4 0/7 (0)
breast 50 0/10 2 2 2 0/10 (0)

a UICC classitication; TNM classification of malignant tumors.

f = female; HCC = hepatocellular carcinoma; m = male; TNM = tumor, nodes, metastasis; UICC = International Union Against Cancer; y = year.

3.2 Comparison of Serum Concentrations of GPC3,
a-Fetoprotein (AFP), and PIVKA-II in Patients with HCC

There was no correlation between the three tumor markers
AFP, PIVKA-II, and GPC3 in terms of their presence in HCC
cells.?) In our study, the sensitivity of AFP, AFP-L3, PIVKA-II,
and GPC3 was 20/40 (50%), 10/36 (27.7%), 20/40 (50%), and 16/
40 (40%), respectively. We could not diagnose 28 of 40 (70%)
HCC patients using AFP and PIVKA-II without using GPC3.
However, with GPC3 we could identify an additional four patients
with HCC among 12 patients; three were classified as being in a
relatively early disease stage (International Union Against Cancer
[UICC] stage II), hence GPC3 may be useful for diagnosis of
early-stage HCC. We could diagnose 80% of our patients with
HCC using AFP, PIVKA-II, and GPC3.14%

3.3 Detection of Soluble GPC3 in Sera from Patients
with Melanoma

Soluble GPC3 protein could be detected in culture supernatants
of 5 of 11 melanoma cell lines and in sera from 40% of patients
with melanoma.t*’! The quantification by ELISA of GPC3 protein
in sera of 91 preoperative patients with melanoma, five patients
with large congenital melanocytic nevus, and 60 HDs who had
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many small melanocytic nevi was performed.*/! We detected and
quantified GPC3 protein in the sera of 36 of 91 melanoma patients
(39.6%), but more importantly, not in sera of patients with large
congenital melanocytic nevus and HDs, whereas GPC3 mRNA
and protein were expressed in melanocytic nevus tissues.!*!

There is no convincing correlation between levels of secreted
GPC3 as measured by ELISA and levels of GPC3 mRNA and
protein expression determined by RT-PCR and immunohis-
tochemical analysis in HCC and melanoma cell lines, or in HCC
and melanoma tissues. About 40% of HCC and melanoma patients
showed characteristics of GPC3 secretion, irrespective of GPC3
expression levels. The mechanisms of secretion of GPC3 from
HCC and melanoma cells remain to be elucidated.

3.4 Comparison of Serum Concentrations of GPC3,
5-5-CD, and Melanoma Inhibitory Activity in Pafients with
Melanoma Classified by Stage

We compared the serum concentrations of GPC3, 5-S-CD, and
MIA in patients with melanoma classified by stage.*"! Although
serum concentrations of 5-S-CD and MIA increased markedly in
patients with stage IV disease, percentages of serum GPC3-posi-
tive patients were almost equal among the five clinical stages. To
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our surprise, we detected GPC3 in the sera of patients with very
small melanomas, such as stage 0 or 1. There was no correlation
between the positive state of three tumor markers, GPC3, 5-S-CD,
and MIA .1 More importantly, 27 of 36 GPC3-positive patients
were negative for both 5-S-CD and MIA, and many were classi-
fied as having relatively early UICC stage 0, I, and II disease.
Thus, GPC3 is very useful for the diagnosis of melanoma at early
- stages. Finally, we could diagnose 59 of 91 (64.8%) cases of
melanoma using 5-S-CD, MIA, and GPC3.

3.5 GPC3 Protein in the Sera of HCC and Melanoma
Patients Disappeared After Surgical Treatments

Changes in serum levels of GPC3 before and after surgical
treatments were seen in 15 pre-operative GPC3-positive patients
(three HCC patients and 12 melanoma patients). For example,
GPC3 protein was detectable in three patients with HCC prior to
surgery, but GPC3 was not detectable after the surgery. GPC3
protein was detected in sera of 12 melanoma patients prior to
surgery, but not so after the surgery, except for one patient, who
could not be followed after postoperative day 27. Thus, GPC3 is
useful for monitoring the response to treatment. Taken together,
these results indicate that GPC3 may prove appropriate for diag-
nosing patients with HCC and melanoma and determining the
outcome of therapy.

4. Known Biologic Properties of GPC3

In 1996, Pilia et al.®!) reported that GPC3, which encodes one
member of the glypican family, is mutated in patients with Simp-
son-Golabi-Behmel syndrome. This syndrome is an X-linked dis-
order characterized by pre- and post-natal overgrowth, and a broad
spectrum of clinical manifestations that vary from a very mild
phenotype in carrier females, to infantile lethal forms in some
males.® The list of clinical manifestations of this syndrome
includes a distinct facial appearance, cleft palate, syndactyly,
polydactyly, supernumerary nipples, cystic and dysplastic kid-
neys, and congenital heart defects.33* Most GPC3 mutations are
point mutations or small deletions encompassing a varying num-
ber of exons.333¢ Given the lack of correlation between patient
phenotype and location of the mutations, it has been proposed that
Simpson-Golabi-Behmel syndrome is caused by the lack of a
functional GPC3 protein, with additional genetic factors being
responsible for the intra- and inter-familial phenotypic variation.
The development of GPC3-deficient mice added strong support
for this hypothesis.’”) These mice have several abnormalities
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found in Simpson-Golabi-Behmel syndrome patients, including
overgrowth, and cystic and dysplastic kidneys.

Furthermore, it was reported that GPC3 could induce apoplosis
in certain types of tumor cells.*® Some reports indicated that
GPC3 expression is downregulated in tumors of different origin.
They showed that, although GPC3 is expressed in normal ovary,
mammary gland, and mesothelial cells, the expressions are unde-
tectable in a significant proportion of ovarian and breast cancer,
and mesothelioma cell lines.!®! In all cases where GPC3 expres-
sion was lost, the GPC3 promoter was hypermelthylated, and
mutations were nil in the coding region. GPC3 expression was
restored by treatment with a demethylating agent. In addition, the
authors demonstrated that ectopic expression of GPC3 inhibits
colony-forming activity in several of these cancer cell lines. Col-
lectively, these data suggest that GPC3 can act as a negalive
regulator of growth in these cancers. As the expression of GPC3 is
reduced during tumor progression in cancers originating from
tissues that are GPC3-positive in adults, this reduction seems to
play a role in gencration of the malignant phenotype.

However, in the case of HCC tumors originating from tissues
that express GPC3 only in the embryo, GPC3 expression tends to
reappear with malignant transformation. Whether or not re-expres-
sion of GPC3 plays a role in progression of these tumors is
unknown, i.e. why is GPC3 upregulated only in HCC and melano-
ma? Whether GPC3 is involved in oncogenesis in melanoma and
HCC is under investigation in our laboratory.

4.1 Mouse Homolog of a Human GPC3 Evokes T
Cell-Mediated Tumor Rejection Without Autoimmune
Reactions in Mice

GPC3, expressed in almost all HCCs and melanomas, but not in
normal tissues except for placenta or fetal liver, is an ideal tumor
antigen for immunotherapy. Very recently, we reported that GPC3
could be highly immunogenic in mice, eliciting effective anti-
tumor immunity with no evidence of autoimmunity in mice.™! In
this study, we identified a mouse GPC3-derived and Kd-restricted
CTL epitope peptide in BALB/c mice. Inoculation of these GPC3
peptide-specific CTLs into subcutaneous Colon26 cancer cell
tumors transfected with the mouse GPC3 gene (C26/GPC3) led to
rejection of the tumor in vivo. In addition, intravenous inoculation
of these CTLs into sublethaly irradiated mice markedly inhibited
growth of an established subcutaneous tumor. Inoculation of bone-
marrow-derived dendritic cells pulsed with this peptide prevented
the growth of subcutaneous and splenic C26/GPC3 tumors accom-
panied with massive infiltration of CD8+ T cells into wmors.
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Evidence of autoimmune reactions was not observed in surviving
mice that had rejected tumor cell challenges.

Thus, GPC3 is useful, not only for the diagnosis of HCC and
melanoma, but also for possible immunotherapy or prevention of
these tumors.

5. Conclusion

The novel oncofetal protein GPC3 appears to be a novel tumor
marker useful for the diagnosis of HCC and melanoma, especially
in early stages of the disorder. Furthermore, we found GPC3 to be
highly immunogenic in mice and elicited effective anti-tumor
immunity with no evidence of autoimmunity. Thus, GPC3 may be
useful not only for diagnosis of HCC and melanoma, but also for
possible immunotherapy or tumor prevention. The next step is to
introduce GPC3 into the clinic as a tumor marker and as a cancer
antigen for immunotherapy. We are making a GPC3 ELISA kit for
the diagnosis of HCC and melanoma, and are planning to conduct
a clinical trial of immunotherapy for HCC using GPC3 as a cancer
antigen.
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New era of tumor immunotherapy

HREF PEEt  ERES

| Key words RS N P Ay

& C &I

IR, S FERERIMEE BTV B2
BEEREDOSFICBVLTHBERNICRET S
TFeERE LREER, THREELICY
B FeBENE LERELR EVBEAIITD
NBLI o TE HlLITBHMBICIERY
EHESFRVET Y —0F2ERET B b
LHifEdi k2 LRE SN, BRICEHShiR
VRO ONDODOH 5.

F72, 199142 Boon HIZL Y X5 ) — <
FEMAGE DBEZFHPREEN, © b DO THEA
FERYE LUCRGRL, HEBRLBAZ Lok
MRBWPBE 2 SN0 Thbb, BELICH
HELUCTHRRLCEAENEESNSLE, hbic
HRTANRTF FHHLAYZ 5 A IFFITHESL
THROEMBREh, CDSHIRLEEMT
#ia (cytotoxic T lymphocyte: CTL, ¥5— T
M) PN o 2385 LTIt S h, 4l
AT HEV) XA X ANFEET S (X 1).
BET T, KL REBEEREB X ORTF
FARZE S, Zh5%2HW7-ERARI R
BT TWA. L L, BORERENE
REDO—D2L LTHUMXZBU-0 L IZEE
2, BREETEEIRICLERTF Py 25
YEHPLE LS OBKRE, P oL —
Vatw - ) —F ORI, BLOHELE

RTbDTRed o7z Thbh, BEICER
T5CTLIRBBEDOENTHETE 525, B
ERICETCEES LV E Vo ERNTLAY
Thole. LaL, FiGFHEE) - HAAH
(EEFRIE) - BURBREOE O 3 KERO B
NOBEIIH LTI, Bom eBgTsor
HECHMTH L, 20 L0 dEEICKET S
CTLAHEPICHFETE L L WIHEREILZ 2, &,
LZIFIERBTRETIRZVWES I D,

FI T, WA cancer immunoediting D%
BEBN, B RERECHET 520123,
EDXI T Ta—FBURETHILON 4 E L
TWL 2 &2 T 5,

1. [BEEREZRDHKES  cancer immu-
noediting

PR LD, MEEHRL MBI RERICLY
RS NEEEXNS, WO BICH T2 REE
PIBHE OBE2 A Burnet & Thomas 12 & 1) $218 %
NT&7z LA L, ZOHMIESPTidLr
DRDER, BHE, TOFEREIRERD D
BT DA X LNHENITL D DDH 5.

MBS DRIEBEBRE D b kR, SBRT
TbhbLZErons(@2). TTFHIERT
&, F7F 25 NVF5—H#a (natural killer cell:
NK#) R+ F 25 VF 5 — TH# M (natural
killer T cell: NKT#iff2), %7z CTL< CD4*~ V.
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2 & B 5L

THIBL €T 5 —
(TCR)

HLAZ S A1

EHEFR AR L, HLAIK XY B85k ©
BRENTF F2 THRICERT 5.

PURRRAIRIC

&

™~
e E

it Py A |—| ADCCBIU

CDCIZ& %
e DEE

=)

I7 x5~ THlRS X UCREERE

ﬁ%rﬁﬁ£m+4 I THIROERAL T 12 k 2 BRI 5 G D5

1 EERREENRERICORY LS

REFIZBW TR O=YAHHVIET R P =Y AR LV BRE N BRI T 2 BAE L AR L 2RM
2AIRMEAY, HLA 2 5 X I 5F%° CD80/86 s & DI F 2 63 L 7o jRibhIRA g~ L b L 2 2 S BTUR
N YNREANERITT A, £ THA -7 ThMlllRB LU CTL 21 LL, =77 ¥ — THE~NEHLEE5.
EEfb s - Th#ifi, IL-2%ED Thid A bh A EEELBEE LS N CD8 B T MMM RE T
Ll iz, MERTRMELEELTS. 272275 —CTLiE, BMBOHLIAZ 3 ATICRR S Tw 3 EEH
BARTF P2, ChefETs HIAZSANZRAL T ABMRAICH LTI, =722 %— Thiil
DBWRENTOLEEHREZERT A LW TE, ThEBELLDTA Y I VOEELRLEITS. 72, &
HALCD4 B HETHIRIZIL-4 RIL-6 2 EDTh2H 4 b A4 YEEETHZ LT Y, B RAEEMBAL
MeEE, REBBRANEESINSLI LS. Z0X) RHEMAICED, HAKEEEREEEYE (ADCC) RH
HEREMMBEEEE(CDOPFESNT, BMBEIKESNS. DLEOX)2BFICLY, E%?ﬂ!ﬁ%ﬁﬂ@

RIERIGBELTWAE EEZ bNTN 5,

N—THIFR (ThARRR) T X D B S h, HEiAE
3 HER E T < (elimination). # 2 BRRS T
RERICEI VRV ESNIEENSEXELS
TLDOTELLEHMEL b o BRI ENS &
9127% Y (equilibrium), #E3IBREELT, £D
X AR lEL, BEL2ERL TWwL
(escape), WO N TH B2, ZDEHEMC
A5, BHRO D ORBERBOFELDOTH 5.

B ZIE, BHRSRAERICEIYMHCY 5 X1
SFERBLELL 2D E, CTLIZXB5E»S

BB TELL-DEBLTEDLIHIRD, EE
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2, BHBEICBVTTIRTDZ TR HHW0
O BIEFOREN DL STREL
TW5.

—EHIT, 7 5 A IHEEL TR A
L CTiE NK#iF22° NKT fifa st & % R
ZEPHIBRTWEY, ThETHbATE:
CTL, ThHIFL M CORBEEICML T, 5%
EINKBIXUNKTHRED SO -RBEREEZE
ATV BENHLEEX NS,

Rocken 51%, 75 2 1 OREBIMEWFEHIEIC
LT, NKAFASRS LT IEN~y & 55 5
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1R REERC L I
D HEE: (elimination)

E2RME REMRICL T, HkR
SN WHERIR O MR

(equilibrium)

8 3 BB : JEE DL (escape)

2 3BREZE/-EREOREERIEH S OYuEE
(Nature Immunology 2002 X b &%)
AR ORIZRD O DB, IBETITLRBELEZ OGN TS, BEYER (elimination) £
T, REEABREICLVEMROHRIMTOA TV, T (equilibrium) B¢, MM,

REMRRICL DRV BESNIBBI CEEEPLIENTES LS I,

HEE 4 ICEEERR

BTV, Rl (escape) ic 2 5 &, BEMICHBERES SHBEENLZ VI ) CREER LS

COREMRANEIEL, BEEERL W LIIR B,

ZEizX b, #HRKIA (dendritic cell: DC) 5%
BALENIL-1225WT 5 L9124k, BiC
CTLA2YEHA L SN, 75X IDRHEMEL TH
EHIRABETEDL LI LI ERHEL
0 Fh, BEOMY vy RELT, G
WMo S5 AI5F0—2T, BEIIFESTD o
KT T A (RER) KR LM LR
Y, TNOOHMRERERDKENHF T
W5 HLA-GAEMBICRBT A2 10k Y,
FEARRR A NK ML % CTL OB H & 3k L T v
5EVIHMENHINTVS, ZOBRRIITE
MRBIC BT AHBM Y 5 A I FOREIELEN
MELTBY, IL-10D 5 LTwa 5 LnY,

Strand 51, FFHIKEAS Fas DREBEE L
L&Y, CTLIZRHET 5 FasLOKED S
RN TVWBET TR, BHEE S FasL %
R4 ELIZLY, VIUNRKREBEELTCVS
WEEMENH B LHEL TS, 20k, kB
i, PG, MBS, mMEWIEIC Y FasLas
BBRLTBY, YUNREREEELTVWL LN
HwEMNLENRTWS, PD-113, fIRSEOFHE
FRICRIS MM SN2 BEF & L THEEXQ,
THIRSEZRICHBELTEY, REESOM
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FICDEBELRBEZELL TR EEZILNT
WAHGFTHS. B, BEL2ELHEBOME
Ehb, PD-1DYH ¥ FO—>TH % PD-L1
PVIEGHRICER L TBY, RER»S DMk
WCHE LTV EO|MENLZEN TV B,

2. EBEEENErFA TV BINEME

RIBBENDISEYZ 25581213, 0%
COBEBEOTRTOBMBIIERRE LTV L
W PLRYE, QEMIRE X CTEEMRGE T
FHL TS &) FRE, @RERMEIHE
CHIHIMEREBEREZREI LIS WHE, T4b
HREGEMESE C, BLCEELTWAED
WHEHEEZRC LIZLL, BItBCHRELRY
DEEERFEOBRBUIBE N LOBE,S
ENEORHME L 52 3 0ENRD 2. EBICS
ST RTDEM L2 THENREDO S5 T
5 DI Tidevds, WT-17, hTERT?, survivin?
LB ERRoRELH LB, BE
IR S LTHRERRLED LR TV 2,

3. EMEREOAEERES®
HAEITICHMEIN TS e MEFREY 55
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£1 kb MNEREORESE

1) b & BE U EER RN T 5 THRSE OB
MRBOBIICEEL-ERETFLHRAHEETFEDORRERYS S, BEEH
DERPT, DHVIXTANVATRICEHRTARTF VP REMICEABRTITH
FLOOFERA (X R Ras, Z % p53, BCR/ABL 137»)
2) BMRICRFRMICKIST A2 THIRR(Z o =) 2FIB L7, BHRRERO DNAK
BS54 T3V —DAZ Y —=v 7 (MAGE-1/3, Fui+—¥, gpl00, Melan-

A/MART-1, SART-1IH»%%)

3) WEEMET OHEER G2 FIMH L7, BHMRBERO DNARRS 175
V—DAZ Y —=r 5 (SEREX #) (NY-ESO-1, KM~HN-1, SSX-2ii0%#)

4) cDNA~YA 707 VA BITICE 5, BREFRAOHEMIFREISREEREOFRIC
LT 5 EHRREF DOREK (GPC3, PP-RP I HEEITH)

TAHL, OMBFRIUR (LR RERIEN
PUR), @cancer-testis(CT) HUR, @M<
BEBRLTVWLEHEICHRTIHE, @
SR HE LEEETF, BOfEET, B
GREFOEWICHRET AHE, ©FMis
RHERENTF FRERNAR TS Vv 7%
ORFEFELZEICLEHD), @FBHRICERY
7Oy Y ZIZEVELBRENRTFF, @
FEBEETANVAICHRTEHE, 2EBHT
bha, T, TOREMREEFERE LTE
LIZRT 400HIFohb, ZFodTdhEER
AT TN B 2DODFFEIIOWTEHRT
5,

a. SEREX % (serological identification
of antigens by recombinant expres-
sion cloning) I & 2 [EEIEEHFEDE
E

D10, BHMEHEKRDOCDNAS AT

) -2 KBHICERSY, FO0EE»AE
DIEPOTUEENE IgGHMAETR 2 ) —= >
7§ % SEREXEIZ L W 8L  OBREDOER
BRESN TS, EEOHIHEEDSEREX T
[ 5% L 7= heat shock protein 105(HSP105) D&
Hit, RAOLEEHESZCIIBETERETLL
FILAERBR LD, G KEE - £
B - FRBRE - B2 OB TRIZLALDE
PITEBRERERTI Loz, Ly,
HSP105 i BMABIC BT 5 7 K b — ¥ 2 0¥kl
ZhhboTnAI EIRENT.

CTHR L B SN HPRIL, BRIART &
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BYHICHE 4 OFBHERS L CEEESTIIRER
M HIREES N7 testis (FEBE, 25H), IRH, Al
DHERTHIHERT, hORXAS5/)—<T
[l & N7z OHEPUE MAGE, SEREX TH
EENTNY-ESO-1 RENZ CTHETH
B, BHNY — UL RBEREOBEN L Y —
Py bheZEBZONTEBY, AEENCTHE
zy =7y b LB EREREO KRR
PEECATbhTwa, 3% L { SEREX#%TCT
HREZEETHIRELT, FHOIL, FHHR
BEEOMF gGIZ KIS T 5HE DNAT A 7
YU —DRZEEITV, 3EHEOHECTHE %
FELZ?. D% H KM~HN-1 i GE5EER98 L
ST D SR BHIRICREZ R, T-MmiEh
\Z KM-HN-1Z39 % 1gG Viikfli A%, BHEA
TIZIEEAERBENZVDICHNR, B2l
BEOL-100%ICBVWTHRHENLZ L E
AL, *0EE~—H—LLTORAE®RL
71': 13).

b. ¢cDNAY A JO7 L 1 fBifI- & 318488

BREBERREOERERTE

BEFRBELHEENICAZY—Z v T5T
EDTEDHCDNA~NA 707 LA BT 2FAT
BIEIEY, MMBRRE, SHENE B
REENR T, BEREBRELELZRAET S
TENTREE ot BEO, RAERH -
v b ATy o HiEEL E O LFER
FIZEY, cDNATA 27 L4 2FfALR2
FFER T B2 5 BI5T O (hepatocellu-
lar carcinoma: HCC) & IEEMRKIZ BT 2 HH
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B Tr—5 5T, LEoBBENLERELE
LTAHEHhbLWHCCERN IR IEER
JF & LT glypican—3(GPC3) #F%E L72. GPC3
BEEZATHW SN, BAD a7 754
v (AFP) B X U PIVKA-IIIZ A CHCCDE3 D
EBE~—7—L LTOFRBELREIALY. F
72HIZ, GPC3DAT ) —<IIBITAEE~—
H—E LTOFRBEDIRENTY., FEHELIE
ERBICBWTORABROFEICLY, BERIH
RIICEHER L THEBICOBEET 2 HHNE,
proliferation potential —-related protein (PP-RP)
EEELZY. hboiBEIIVwTRd CTLIC
ik SN, <7 AIBIT 5 in vivo EERCTHEER
IR EFTET L LIREND,

4. CTLICL WSS h 2 ARMEOEL
BERRENTF FORE

FCREATIR HLA-A2 DBENB W &, A
T —=DBRENENI LR EOBRRBIZLDY,
FEEMPLERTF FELT, 25 —<HED
HLA-A2HREDO R TF FREBEMIZE L F
FBENTWE, BEAIZBWTH HLA-A2 D%
BRI 42.9% & LB W5, HLA-ASF
DR THRAZRDEENEWDIXS579% %
5 HLA-A24(A*2402) THh 5. YHE 504
LTWERWHAERAIZ16.4%I12F Evy, L7=a8
oTC, FEOVPFELL )%, BEALDE
BEOBARICBVWTERBE L TV AEHREIC
B LT, HLA-A24 & 5\ iZ-A2 M DR
MHRERTF FERIETAI EIZEY, L0
HEANBBEEWNRLE LIERTFFIrF 02
DC 775 r, BIIIETFHRIERE (adoptive—
cell-transfer therapy : ACT therapy) % &£ D%
MENTREL 25 EEZ N5, F7-, HLA-
A24 1T B AT HANRTSF FiE, BALB/c~w
ADZSAIDFTHHLIKUID L BEETHE
ENRbhoTEY, BREDT I BESOF
T, M=y XicHE R (HLA-A24 12 % K¢
IZHHELBA)RTFFEZERLT, #he
NOKRWMEMARERRT 528122y, ¢
e ADWETCILOFELRAALL &
HTED, TNEHMELT, IYREFVICH
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HAEENK 63 % #TI5 4 (2005)

i % in vivo BRERII R 2R TH L AT
5.

5. Thifllaz &4 ¥ 2 EEHE

HIAZ 5 2 N4rFit, BuRERFMBELIEEL
T YRR EEZRE, BEOSAMBIZIZRR
LTwinwgs, SBHBICRETAE4JHRLT
Bl {idhn®, < XT3+ 4 —7 CTL 2t
FAZ X 50 EREAE % %07 58312, ThiifabE
ELZWEBWIRAEISEEZRT AE) —
CTLAFEEN LW ERREINLTWBY,
CNODBEER, BORERELEZ S 2T,
MHCZ 5 211 B & U ThHIRIZOWT HEET
LHIENEETHLIEERLTWS, 25
P, CTLOIYE b —7R7F FORE L AT,
ThfiBOZ Y b —T2 BB DIIES TIEl
V., BEIZFREENZCILIY P~ 70l
~, ThfifaD ¥ } — 7OHEITEE B 2L
WO 75 ZNGFIHEETHRTF FOE
F—TWR I GRAIGFIIEBEEMED L, 75
AIGFFDOZNICHREFTHBN TR D Z LT
—HTH 5.

T, 7FAICBITAA2R A4 D LS IZH
FANERICBWTHABECBEESN 25X
I3+ & LTiL, 60% % ® DR53(DRB4*
0103) X LWV L2FLE L2V, L7255 T DR53
WRELYE P~ T2 ROLERIIDH LD, 20
MOSERKE 7 FANFFICIVRBRENDL LY
P =T RXRTF FedDIE LTORARICZL
V., BEREFENTh L HET 2201
i, BEEZTEERXLL, BHEEEFHS
WIEERHETI AT L2 AW/ DNAT 2 F >,
BHYFVEILR, Zho2EADLVITAE
HIELDCIZFUBENTHLLEELZ bR
. THIVIERTI, BEEEICIgCEES
#ES 5 SEREXETHRE S N-BHEIL, in
vivo TAR L ThHIMICFEB I N = LS
RIESNTWBI LH S, BEERESEEYTh
MROFBEICERTHHLEELZ OIS,

6. MEzFAL -IEEREREE
1975 N, 7)) F—< EXERSh
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< 77 Ak v FEF 2 SHE v hMididk
(= A% 100 %) (= A H3¥k 10-20 %) (= AH%E5-10 %)
- IR 24 BERY MR ERRE 1-2 80
- HEHEL, HAMAD4&L S - HUREBWD, BhELIS T
(HAMA £ L1z ¢

w3

)

o) &L
’ss 33 s s
Co =y AZRBEERS <Hitks FHR) > <Hiths (HK) >
COvirEHESRS » rituximab (CD20) + trastuzumab (Her2/Neu, ErbB2)
» cetuximab(EGF L &7 % —) + alemtuzumab (CD52)

3 EEOREEEICFHAShTVWAT/ 70-FILnA0RE L 15H
BIEFREICI T, v AHAEOVERE & MIADO CERICES S MIS 1 SHAMER X
hiz. RWT, PO HEB I TLO VHERIL, SIREOBESICEERS L TWA 43 1ol
SE$H3% CDR (complementarity determining region) ¥ Z W UNOFER (T V-2 T =2 :FRIZHTF SN B

2%, COROAMNY T APAHETFRIZL MUBICBEIRZ TH oL MedfErER ST,

WX, SYRE ya—F Pk R ERT
B ENWEICRY, BEREL TOHEKD
MREENB LI ol 1980 £ I NG
R I AT 7 0—FVHEERWFRER
REVITOND, +oREEGRZEBLIZE
X T&Lhol, TORRKODERIZ <7 X
Pifkdte MEERICRPE LTEBIATLE
W, b M~ 2Pk (human anti-mouse anti-
body: HAMA) HFEE XN TLEI P S THo
7. HAMAMSHBEINS L&, &5 L-HEH
B XD AR TEEL TL 3 W E Y &
LTLES ZEITMAT, Fitkoik5 240K
LTI Z eI TFI49Fy—REDY 5
v ZERZEITEREREL S LidoT,
NEOTHBEEOBRBIIDLEEL 2o 72, 1980 4F
DRI, HED 10-20 %At~ 7 ZHik %k
THEYiZe MIMkRRETH S e MIF 2 SHK
HERBEN, KWT, ZD5-10%DAIMRTY
APEHEFTH S ¢ METEIRRE SRz (K
3). TREFTIHEBOFMSIEREL LTREL
AN REBEATWS., BETIIE MK

— 256

BIEFIF I VAV 2=y rwy 2R Mkl
BFIT—=IF4RATVLBEIICLY, =€L b
B OVER R L 2o TET W5, Hifko
FEHIRBRZ D X B = X 203, FikEEEWia s
E % (antibody —dependent cellular cytotoxic-
ity: ADCC) & KA MR 5 E 5 (comple-
ment-dependent cytotoxicity: CDC) T 5 &
ZZboNhTWV5. _
BUIERR A 2 BIBREE ORISR HEIT L T
WBHH, EDEONIIDONT, AL,

(1) rituximab(CD20 233 % #i4k) : CD20
IBMRICERRMICRELTEY, BiZiEMHL
SN7:BHIRETIZE L O BRI TRE
EAHIMT 5. rituximab 12 ADCC & CDCIZ X
D CD20 # %HA L TV A &AL L7 B % %
KTHILNTESL, BHIIERYF ) w8
ERREBEEDOHS0%IZES L, FI(LFEMEE
EHRATHILETINROEDRNPBELNS Z.
EbHHEINRTNEY,

(2) trastuzumab (Her2 IZ%3 % Hifk) : Her2
I$ErbBFUY Y S5 —¥RELKT 7 IV -0



