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Comparative Molecular Field Analysis (COMFA) is most widely used as one of the 3-dimensional QSAR
(3D-QSAR) methods to identify the relationship between chemical structure and biological activity.
Conventional CoMFA requires at least 3 orders of experimental data, such as ICsy and Kj, to obtain a good
model, although practically there are many screening assays where biological activity is measured only by
a rating scale. Hence, rating classification-oriented CoMFA coupled with ordinal logistic regression has
been developed, and its predictive ability and 3D graphical analysis ability have been investigated. As a
result, this novel COMFA (Logistic COMFA) has been found to be more robust than conventional CoMFAs
in both predictive and 3D graphical analysis abilities. Furthermore, Logistic CoMFA is useful since it can

207

provide the probability of each rank.

INTRODUCTION

A detailed understanding of the quantitative structure—

activity relationship (QSAR) is one of the principal goals of .

medicinal chemistry. To be able to clarify the relationship
between chemical structure and biological activity is very
important, particularly in the hit-to-lead stage of drug
discovery. Researchers need to identify various properties
of a large number of compounds in a limited period of the
hit-to-lead stage. The growing need for early ADMET! 3
increases the number of biological assays, such as Caco-2
cell permeability, CYP families inhibition, and hERG
blockade, per compound. Unfortunately there are more
experimental errors in screening data in the early screening
stage of drug discovery than in reliable assays employed in
the late stage. Since QSAR analysis generally makes use of
ICsp and pK; values as the indices of biological response,
non-negligible differences between experimental and true
ICs¢/pK; values can be found in some screening assays.*> In
addition, there are many in vivo assays where biological
activity is measured only by a rating scale. These circum-
stances make it difficult to build a good QSAR model.
Prediction of activity rating, in which the potency of a
compound is rather roughly assigned, enables us to.quanti-
tatively analyze the data set, which has not been able to be
quantitatively analyzed because of noise. Treatment of a
couple of data would be necessary to determine the rating
classification since the ratings are not expressed in a metric
scale. i
Several studies on the application of the rating classifica-
tion to classical QSAR have been performed. Martin et al.b
conducted a classical QSAR analysis of monoamine oxidase

* Corresponding author e-mail: satan@gen-info.osaka-u.ac.jp.

t Graduate School of Pharmaceutical Sciences, Osaka University.
# Tanabe Seiyaku Co., Ltd.

¥ Osaka Ohtani University.

' Research Institute for Microbial Diseases, Osaka University.
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inhibition by using a rating scale with linear discriminant
analysis (LDA). Dunn, W. J, III et al.” analyzed the QSAR
of B-adrenergic agents with the SIMCA (Soft Independent
Modelling of Class Analogy) method,? which is based on a
pattern recognition technique. LDA and SIMCA methods
are not considered to be suitable for rating classification
because both are introduced under the assumption that classes
are independent. To harness the characteristics of ordinal
classes, Takahashi et al.® developed ORMUCS (ORdered
Multicategorical Classification using Simplex optimization
technique). ORMUCS is also a pattern recognition method
that determines a discriminant function using a simplex
optimization. Apart from these methods, it is possible to
apply the ordinal logistic regression method (OLR) to QSAR
analysis. OLR is considered a statistical method that uses
the probability of each rating for classification. In fact, OLR
is one of the most popular methods used in social psycho-
logical studies and is more often applied to clinical data.'®!!

Comparative Molecular Field Analysis (CoMFA) has
become one of the most widely used 3-dimensional QSAR
(3D-QSAR) methods!*~* since it was introduced by Cramer
et al.1’ to identify the relationship between 3-dimensional
molecular structure and biological activity. Prevalence of
commercial cheminformatics tools, such as Sybyl and high-
performance CPU, makes it convenient to use 3D-QSAR
analysis. However, the rating classification-oriented 3D-
QSAR method has not yet been developed. Considering the
prevalence of 3D-QSAR, it is desirable to classify rating with
a 3D-QSAR method. 3D-QSAR analysis with SIMCA has
not been used for rating classification and, unfortunately,
has been limited to dichotomous (active/inactive) analysis'®
or selectivity analysis.!”

In this study, we present the development and applicability
of a novel rating classification-oriented CoMFA with OLR
and compare it to conventional CoOMFA analysis using 2 data
sets. One data set is the corticosteroid binding globulin

© 2008 American Chemical Society
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Figure 1. Composition and structure of steroids in the CBG data set.

(CBG) receptor binding data set, and it is popular for its
3D-QSAR benchmark. The other data set is the angiotensin
converting enzyme (ACE) inhibitor data set. Each data set
will be analyzed from 2 aspects of CoMFA method. First,
the prediction accuracy of novel CoMFA will be investigated.
Next, contour map analysis will be performed to clarify the
portions important for keeping interaction between protein
and ligand. A

METHODS

1. Data Sets. /.1. CBG Data Set. Activities and chemical
structures of the CBG data set ligands were used for
validation of novel CoMFA-based analysis. Some groups
have reported validation of each original 3D-QSAR using
the CBG data set as a 3D-QSAR benchmark.'*=2° The CBG
data set comprises 21 compounds for training and 10
compounds for test'S (Figure 1). From the Web site,?! not
only activity values but also rating classes of the CBG data
set are obtained (pICsy values range widely from 5.00 to
7.88: Class1 (pICso > 7.0), Class2 (5.8 < pICsp < 7.0), and
Class3 (pICso < 5.8)). Unfortunately, there is no steroid of
Class3 in the test set. Of course, it is desirable that all rating
classes are included in the test set. However, in this study
we used the data set without modifications, such as shuffling
between the training set and the test set, since the CBG data
set is a 3D-QSAR benchmark. The 3D coordinates were
calculated by the 3D structure generator CORINA by Dr.
Johann Gasteiger’s group.?

1.2. ACE Data Set. Activities and chemlcal structures of
the ACE data set ligands were also used for validation of
novel CoMFA-based analysis. The ACE data set consists of
a series of 31 inhibitors (22 training compounds and 9 test
compounds) selected from DePriest’s report,?? which de-
scribes the use of the ACE data set for COMFA modeling.
In this study, we used 3D coordinates and partial charges as

described by Sutherland et al.2} (pICsy values range widely
from 2.74 to 8.96, and activity classes are allocated as
follows: Classl (pICsy > 7.2), Class2 (4.0 < pICsy < 7.2),
and Class3 (pICsp < 4.0) (Figure 2)). Unlike the CBG data
set, the test set of the ACE data set comprises all activity
classes.

2. Molecular Modeling. The 3D coordinates were used
without any refinement for both data sets. Gasteiger—Hiickel
charges were assigned to each atom by Sybyl versions 7.22
(Tripos Inc.) only for the CBG data set. For the ACE data
set, atomic partial charges in mol2 files obtained from
Sutherland’s study?® were used.

3. Calculation of Steric and Electrostatic Potential
Fields. The CoMFA methodology of 3D-QSAR is based on
the assumption that interactions between a ligand and its
receptor are primarily noncovalent in nature and shape-
dependent. Therefore, QSAR can be derived by sampling
the steric and electrostatic fields surrounding a set of ligands
and correlating the differences in those fields to biological
activity. The steric and electrostatic CoMFA potential fields
were calculated at each lattice intersection of a regularly
spaced grid as implemented in Sybyl using Lennard-Jones
and Coulomb potentials, respectively. Calculations were
performed with Sybyl standard parameters (Tripos standard
field, dielectric constant 1/r, cutoff 30 kcal/mol, a volume
dependent lattice with 2 A step size in each direction beyond
the aligned molecules) using an sp’ carbon probe atom with
a charge of +1.0. The CoMFA lattice for the CBG series
was9 x 11 x 9A (X=-842107.58, Y= —4.23 10 15.77,
Z = —10.60 to 5.40) with 891 points, and the CoMFA lattice
for the ACE series was 11 x 11 x 10 A (X = —9.58 to
12,19, Y = —14.92 10 6.37, Z= —7.70 t0 10.97) with 1210
points. :

4. Comparison of Novel CoMFA with Several Con-
‘ventional CoMFAs, The Partial Least-Squares (PLS) or the
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Figure 2. Composition and structure of pyrrolidine series in the ACE data set.
Principal Component Regression (PCR) method is used in 1 PR~
the process of conventional CoMFA. In this study, only the % e
PLS method was used to perform novel CoMFA as well as é Class3 /!
conventional CoMFA. S )/

Ordinal logistic regression analysis was coupled with £ ’ Class 2
CoMFA-PLS in this novel CoMFA. Basically, logistic E K Class 1
regression analysis is chosen for analyzing dichotomous data. 3 S
Using 2 logistic functions enables us to analyze the rating 0 - 0

classification. Latent variables calculated by PLS were
applied as explanatory variables of ordinal logistic regression.
The following shows details of the novel COMFA (Logistic
CoMFA).

Logistic COMFA: OLR analysis gives the probability of
each rank. The data set is categorized into 3 rating classes,
and the respective probabilities are ‘

Prb(Class1) = {1 + exp(—nl)}_1 N
Prb(Class2) = {1 + exp(—n,)} "' — {1 + exp(—-ﬂl)}a)
Prb(Class3) = 1 — {1 + exp(—7,)} " (3)

where 77, and 7, are rewritten as
=q,—ft @
- pt &)
a S, (6)

where t is a set of latent variables, which are introduced
from steric and electrostatic potentials (explanatory variables)
X by PLS. Figure 3 shows curves of the cumulative
probabilities Prb(Class1) and Prb(Class1 or Class2). Latent
variables are extracted as long as the leave-one-out (LOO)
cross-validated Spearman’s rank coefficient (gs) increases.

Figure 3. Cumulative probability of each class vs 7.

The coefficients a,, a;, and f are evaluated by maximum
likelihood estimation (MLE). In general, MLE yields values
for unknown parameters, which maximize the probability
of the observed set of data. The conjugate-gradient numerical
optimization algorithm is adopted to maximize the log-
likelihood.?*

In contrast, 3 types of conventional CoOMFAs were used
to examine the prediction accuracy of rating classification.
The methods are described below.

CoMFAL1: Observed pK; values are learned and expected
pK; values are calculated. Expected K; classes are then
determined using the expected pK; values.

CoMFA2: Observed K; classes are learned without any
treatment and expected K; classes are calculated.

CoMFA3: Scales between classes are not necessarily
equivalent, in which case, it is often effective to use the
average rank from the top toward each rating class. In
CoMFA3, average ranks are learned and expected ranks are
calculated. Expected K; classes are then determined using
expected average ranks.

5. CoMFA Program. CoMFA1 was carried out with
Sybyl version 7.22. Logistic COMFA and other conventional
CoMFAs (CoMFA2 and CoMFA3), programmed in For-
tran90, were computed on a dual core Xeon 2.0 GHz
computer.
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Figure 4. Predicted vs observed pK; of the 21 training steroids.

Table 1. Summary of Leave-One-Out Cross-Validation of the CBG
Training Set by Logistic and Conventional COMFA Analyses

CoMFA
Logistic CoMFA2 CoMFA3
gs” 0.75 0.75 0.81
no. of cmpnts 1 4 5
no. of correct 13 17 17
accuracy 62% 81% 81%

4 Cross-validated Spearman’s rank correlation coefficient.

Table 2. Prediction of the CBG Test Set by Logistic and
Conventional CoMFA Analyses

CoMFA
Logistic CoMFA2 CoMFA3
gs? 0.45 0.077 —0.024
no.of correct 7 6 4
accuracy 70% 60% 40%

“ Cross-validated Spearman’s rank correlation coefficient.

RESULTS AND DISCUSSION

1. Steroids of CBG Binding Analysis. /.1. Validation of
the CBG Data Set. Figure 4 shows the CoMFA1 model of
the CBG data set (number of latent variables = 2, ©* = 0.901,
cross-validated r? = 0.804). Almost all compounds satisfied
the CoMFA1 model. Although predicted pKis of aldosterone
and 4-androstenedione were distant from observed pKs, the
CoMFA1 model, as a whole, can elucidate the relationship
between structure and activity. The results also indicate that
CBG activity was measured with relatively high precision.

Next, Logistic CoMFA, CoMFA2, and CoMFA3 models
were performed with LOO cross-validation (Table 1). All
models were good in terms of gs, but COMFA3 was found

OHGARU ET AL.

Figure 5. Profiles of each class probability vs #.

to be the best model to calculate accurate activity ratings.
All models were accurately analyzed using 1—5 latent
variables. The fact that the best number of latent variables
is small means that the model is simple and is expected to
readily interpret contour maps.

The prediction capability of each model was next inves-
tigated using the best numbers of latent variables. As a result,
Logistic CoMFA prediction was found to be the most
accurate of all. CoOMFA3 was found to be the worst model
in terms of prediction accuracy as well as gs because of
overfitting (Table 2). COMFA2 and CoMFA3 use more latent
variables than Logistic CoMFA to obtain the best PRESS
values. Besides, considering Logistic CoOMFA, the probability
of each class, shown in Figure 5, changes gradually vs #. In
this case, the pKj class changes from 1 to 3 with decreased
7. Thus, Logistic CoMFA, unlike CoOMFA2 and CoMFA3,
can give the probability of each rank (Table 3).

1.2. Contour Interpretation. Logistic CoMFA was found
to be more robust than conventional CoMFA methods as it
is required to predict portions of the molecule to improve
the binding affinity. The contour maps obtained by CoMFA
show how 3D-QSAR methods are useful to identify features
important for recognizing protein—ligand interactions.
CoMFA steric interactions are represented by favored green
and disfavored yellow contours, while electrostatic interac-
tions are represented by negative charge favored red and
positive charge favored blue contours. Figure 6 shows a
comparison of contour maps (STDEV*Coeff) derived from
the CoMFA1 model and the Logistic COMFA model. The
cortisol centered molecule is strongly bound to CBG, and
reduction of C-3 causes low binding affinity. This is
supported by both contour maps. In addition, the CoMFA 1
map supports the fact that the carbonyl at position 17 causes
low activity, though the Logistic COMFA map, unfortunately,
does not support this idea. This is probably because the
numbers of latent variables used are distinct between Logistic
CoMFA and CoMFA 1. Each latent variable holds informa-
tion of portions important for activity. In this study, Logistic
CoMFA uses only one latent variable, which probably
contains the portions around C-3 and C-11. Interestingly,

Table 3. Prediction and Probability of Activity Classes of the 10 Test Steroids by Logistic COMFA

steroids Classpsa Classpred Prb(Class1) Prb(Class2) Prb(Class3)
16a.,17a-dihydroxyprogesterone 2 2 0.46 0.47 0.07
16a.-methylprogesterone 1 1 0.81 0.17 0.02
19-norprogesterone 2 2 0.34 0.55 0.11
19-nortestosterone 2 3 0.01 0.12 0.87
2a-methyl-9o-fluorocortisol ) 1 0.99 0.01 0.00
2a-methylcortisol 1 1 0.99 0.01 0.00
4-pregnene-3,11,20-trione 2 2 0.26 0.58 0.16
cortisol acetate 1 3 0.00 0.00 1.00
epicorticosterone 1 1 0.72 0.26 0.02
predonisolone 1 1 0.90 0.09 0.01
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Figure 6. Comparison of contour maps (STDEV*Coeff) derived from the conventional CoMFA model (left) and the classification-oriented
Logistic CoMFA model (right). The centered molecule, cortisol, is strongly bound to CBG. For an increase of the activity, the positive
charge in blue and the negative charge in red have to be increased. The molecular volume has to be increased (green) or decreased (yellow)

to increase the activity.

¢

Figure 7. Comparison of contour maps (STDEV*Coeff) derived from the conventional CoMFA model (left) and the classification-oriented
Logistic CoMFA model (right). The centered molecule, MOL_27, is strongly bound to CBG. For an increase of the activity, the positive
charge in blue and the negative charge in red have to be increased. The molecular volume has to be increased (green) or decreased (yellow)

to increase the activity.

Table 4. Summary of Leave-One-Out Cross-Validation of the ACE
Data Set by Logistic and Conventional CoOMFA Analyses

CoMFA
Logistic CoMFA2 CoMFA3
qs" 0.69 0.67 0.67
no. of cmpnts 3 3 3
no. of correct 13 14 14
accuracy 59% 64% 64%

? Cross-validated Spearman’s rank correlation coefficient.

Table 5. Prediction of the ACE Test Set by Logistic and
Conventional CoOMFA Analyses

CoMFA
Logistic CoMFA2 CoMFA3
gs” 0.62 0.54 0.54
no. of correct 7 7 7
accuracy 78% 78% 78%

% Cross-validated Spearman’s rank correlation coefficient.

hydroxylation of C-11, which is held by Logistic CoMFA
but not by CoMFAL1, leads to high activity. Therefore, in
order to obtain an ideal contour map, we need to improve
the selection of latent variables. The result indicates that
important information is retained by use of ordinal classes
although CoMFA1 uses pK; values, while Logistic CoMFA
uses pK; classes, that is, rounded pKi.

2. ACE Inhibitors. 2.1. Validation of the ACE Data Set.
Shown in Table 4 are the results from LOO cross-validation
of each CoMFA method. Logistic CoMFA was found to be
the best model in terms of both gs. As for accuracy rate,

CoMFA2 and CoMFA3 were found to be slightly better than
Logistic CoMFA. Thereafter, the prediction capacity of each
model was investigated using the best numbers of latent
variables. As it turned out, the Logistic CoMFA prediction
was merely found to be as accurate as COMFA2 or CoMFA3.
Still, from the gs point of view, Logistic CoMFA marked
the best value of the 3 models. Thus, Logistic CoOMFA can
be considered as the most robust- method to perform rating
classification analysis.

2.2. Contour Interpretation. Contour maps of CoMFAI
and Logistic CoMFA are shown in Figure 7 with MOL_27
depicted in the center. Both maps exhibit steric potential,
which is more important than electrostatic potential for
inhibitory activity. The CoMFA1 contour map clearly shows
a narrow space behind the benzamido group and the benzyl
group. The Logistic COMFA map also shows a narrow space
around the benzamido group and behind the benzyl group.
Furthermore, the Logistic CoMFA map clearly exhibits a
free space in front of the benzyl group. This emphasizes the
fact that MOL_25 and MOL_27 are stronger inhibitors.
Interestingly, in some cases Logistic CoMFA makes it
possible to grasp the substituent effect better than CoMFA1.
Thus, ordinal classification of the activity can facilitate
understanding of the structure—activity relationship.

CONCLUSION

In the present study, we compared the performance of
different classification methods based on CoMFA analyses.
Logistic CoMFA, which couples OLR with CoMFA, was
found to be the most robust model with respect to not only
prediction accuracy but also graphical analysis. Moreover,
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Logistic CoMFA, unlike conventional CoMFAs, has been
shown to be a statistical method that gives the probability
of each rank. As a great amount of rank-scale biological
activity data are produced in the process of drug discovery,
we believe that Logistic CoMFA is a novel solution to
analyze rating data and to facilitate novel drug developments.
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STRUCTURE NOTE

Crystal Structure of Pyrococcus horikoshii
PPC Protein at 1.60 A Resolution

Linyen Lin,! Hiroaki Nakano,' Shota Nakamura,? Susumu Uchiyama,' Satoru Fujimoto,'
Sachihiro Matsunaga,’ Yuji Kobayashi,” Tadayasu Ohkubo,” and Kiichi Fukuil*
'Department of Biotechnology, Graduate School of Engineering, Osaka University,

2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan

2Graduate school of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, 565-0871 Osaka, Japan

AHL1 (AT-hook Motif and Nucleus Localized protein 1)
is a protein localizing at the nuclear matrix and origi-
nally identified in Arabidopsis thaliana by using a ran-
dom GFP-cDNA fusion method.! A. thaliana AHL1
(AtAHL1) consists of an AT-hook motif and PPC domain
(Plants and Prokaryotes Conserved domain). It was
revealed based on the deletion of A*AHL1 that the
hydrophobic region of PPC domain is essential for its
nuclear localization [Fig. 1(A)].! Phylogenetic analysis of
PPC revealed that this domain is conserved among
AHL1 homologues and also in bacteria and archaea;
whereas neither yeasts nor animals has a protein with
this domain [Fig. 1(B)].! To infer the function of PPC,
our study aims at the clarification of three-dimensional
(3-D) structure of this protein.

We first tried to over-express A. thaliana PPC (A¢PPC)
(gi: 23506149) .using Escherichia coli system. However,
AtPPC was obtained only as an inclusion body in all con-
ditions tested. Recent structural studies on the counter-
part of eukaryotic proteins, which were found in thermo-
philic archaea or bactéria, provide structural insight for
original eukaryotic proteins. We therefore turned our
attention to PPC from Pyrococcus horikoshii, a hyper-
thermophilic archea. P. horikoshii is a hyperthermophilic
archaea, proteins produced by this archaea are highly
stable against heat and chemical denaturants, thus are
suitable for structural and functional analysis over a
wide temperature range and various solution condi-
tions.? P. horikoshii PPC protein (PAPPC) (gi: 3257212)
possesses nearly full-length sequence and consists of
143 amino acids. In the present study, 3-D structure of
PhPPC with high resolution was determined, providing
the information on functional aspects of this protein.

Materials and Methods. Methods and the material for
sample preparation, crystallization, and preliminary crys-
tallographic analysis of PRPPC have been reported.®
X-ray diffraction data of native and Se-Met-substituted
crystals were collected to a resolution of 1.6 and 2.6 A,

© 2007 WILEY-LISS, INC.

respectively, at BL41XU in SPring-8 (Hyogo, Japan).
These diffraction data were processed using DENZO* and
SCALEPACK?® SeMet-substituted PAPPC crystal be-
longed to the hexagonal space group P6322, with unit-cell
parameters a = b = 53.922 A, ¢ = 159.181 A. Four wave-
lengths (0.9794, 0.9796, 0.9744, and 0.9843 A) were
selected for MAD (multiwavelength anomalous disper-
sion) analyses. Phase calculations were performed using
SOLVE/RESOLVE.® Model building and refinements
were carried out using XtalView” and REFMAC5.2 Data
and refinement statistics are summarized in Table I. The
model obtained from MAD data was applied for further
refinement of the native data set at 1.6 A resolution. The
final model was deposited with the PDB under the code
2DT4. Figures were generated by PyMOL (http:/pymol.
sourceforge.net/).

Results and Discussion. The final model of PAPPC
crystal structure was determined at the resolution of
1.6 A. This model includes 143 residues, 177 water mole-
cules, and 1 glycerol molecule. The R and Ry, factors of
the model were 16.4 and 19.3%, respectively [Table IJ.
Ramachandran plot statistics for 119 non-glycine and |
non-proline residues showed 113 (95.0%) residues in the
most favored region, 6 (5.0%) residues in the additional

Abbreviations: AtAHL1, AT-hook Motif and Nucleus Localized
protein 1 from Arabidopsis thaliana, AtPPC, Plants and Prokar-
yotes Conserved domain of Arabidopsis thaliana; PRPPC, Plants
and Prokaryotes Conserved domain of Pyrococcus horikoshii.
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allowed region. The secondary elements of PAPPC are
arranged as follows, Bl-al-B2-B3-B4-B5-B6-37-38. Topo-
logically, PAPPC has a single «-helix packed against an
antiparallel B-sheet, which is formed by five B-strands
[Fig. 2(A)]. We first assumed that PAPPC was ribonucle-
ase because it can be classified as a member of the mi-
crobial ribonuclease superfamily (M-RNases) according
to the Structural Classification of Protein (SCOP).? As a
possible enzymatic feature, a histidine cluster consisting
of H89, H91, and H105 was found in the vicinity of a
glycerol molecule, which was added as a cryoprotectant.
This cluster is located at the center of a pocket cradled
between two arms, B3-B4 (52-65) region and long C-ter-

(A)

1 * 356
anct [T
AT-hook PP
motif Jomai
(B)
ARL1 e ~FTP---HIITVNTGEDVTMKI 1 SFSQ0CPRS ICVLEANGVIS
Oryza_sativa = —————oeo FTP- - -1 ITVAPGEDVIMEV]SFSQQGPRAICILSANGVIS
Pyrococcus_horikeshii . LYY

minal loop (128-143). This pocket, which includes the
histidine cluster and has binding affinity for a small
molecule, is a plausible active site. However, RNase ac-
tivity assay revealed that PAPPC has no activity both at
low and high temperature conditions (data not shown).
Furthermore, the multimeric state of PAPPC is different
from that of M-RNases. PAPPC forms a trimer, which is
related by a three-fold axis corresponding to a crystallo-
graphic 63 screw axis whereas M-RNases exist as a
monomer'® [Fig. 2(B) and (C)]. This trimer is maintained
by the interactions on the opposite side of the single a-
helix in each subunit. These interactions can be classi-
fied into three regions, top, middle, and bottom parts.
Hydrophilic interactions are found in the top and bottom
parts e.g., salt bridges of Glu56-Lys47, Lys62-Glu98, and
Argl128-Glull5, while the hydrophobic interactions are
mainly formed in the middle part. The subunit-subunit
interface area per monomer is 3230 A% which is 36% of
the monomer surface area.

Structural similarity searches using the coordinates of
PhPPC were performed by DALIL"" The DALI server found
three weak potential structural homologues (Z > 2.0). They
are Bacteriophage T4 Gene Product 9 (1QEX),"* Transloca-
tor Domain of a Bacterial Autotransporter (1UYN),"® and

TABLE I. Data Collection and Refinement Statistics

RALL S---VTLRQP SCEPMIFND - - - == ===~ SGGTR
Oryza_sativa -V -HSGTR
_horikoshii NPKIGYFLEERKEYKVIPLEGSYELISLIGNVSLEDGRPTVIARVELGNE
Staphylococcus_aureus vV, EL
Bacherichia_celi T- - -DVALRYAGQOENTALL EQ5GE HL
. e

ANLY

Oryza_sativa
Pyrococcus_borikoshii
Staphylococcus aureus
Bacherichia_coli

Fig. 1. (A) Localization of AT-hook motif, PPC domain and hydro-
phobic region of PPC in AHL1 are indicated by red, yellow and asterisk
(+), respectively. (B) Sequence alignments of PPC-homologue proteins
from archaea, bacteria and plant. Asterisks (+) indicate the highly con-
served residues, colons (:) and periods («) denote the strong and
weaker conserved amino acid groups, respectively.

(A) (B)

Space group P6522
Wavelength (A) X 0.9794, 0.9796, 0.9744, 0.9843
Unit-cell parameters (A, ') a=b=53922 c= 159.181,

. v = 120.00
Resolution range (A) 10.0-1.60
Used reflections 17247
Completeness (%) 95.67
No. of atoms 1316
No. of solvents . 177
Average isotropic B value (A%) 11.74
RMSD bond length (A) 0.022
RMSD bond angle (") 1.519
Riactor (%)? 16.4
Riree (%)° 19.3

®Riactor is a formula for estimating errors in the data set. Racior =
Y| Fops—Feaic /E|Fons|: Fobs @nd Feac are the observed and calculated
structure-factor amplitudes, respectively.

°Ryee factor is calculated using an unrefined subset of reflection data.

©

Fig. 2. Ribbon diagrams of PhPPC structure. (A) The final model of PhPPC crystal structure which was
determined at the resolution of 1.6 A. PhPPC is composed of one a-helix and eight 3-strands. A glycerol
molecule is represented by the ball-stick model. Three histidine residues, H89, H91 and H105, are shown
as sticks. The trimer structure of PhPPC: (B) side view (C) top view.
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Neisserial Surface Protein A (1P4T).'* Their common fea-
ture is a B barrel structure, which is partially found in
PhPPC. However, the overall structure of PAPPC is quite
different from those of homologues. In addition, the trimer
formation has never been reported for these potential homo-
logues. Therefore based on the structural study, it is con-
cluded that PAPPC has a new fold and a trimer formation,
which is possibly unique to prokaryotes and plants.
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