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quired for modulating polymerase activity, are involved

in catalyzing HCV RNA synthesis during the replica-

tion process. NS3 is directly involved in RNA synthesis,
possibly through its helicase/NTPase activities. The he-
licase activity is presumed to be involved in unwinding
a putative double-stranded replication intermediate or

to remove regions of secondary structure so that MS5B-

RdRp can copy both strands of the viral RNA. It is
likely that the NTPase activity is coupled with the heli-
case function, supplying the energy required for disrupt-
ing RNA duplexes. Although little is known about the
function of NS4B in the HCV life cycle to date, NS4B
protein can induce a membranous web, consisting of
small vesicles embedded in a membranous matrix,'"
and it has been reported that the newly synthesized
HCV RNA and most of the viral nonstructural proteins
occur in these membrane webs or speckle-like struc-
tures."""™"® NS4B may play an important role in the
formation of the HCV RNA replication complex.'™
Evidence indicating an involvement of NS5A in viral
RNA replication is now accumulating. As described
above, a hot spot of the cell culture-adaptive mutations
that increase replication efficiency of HCV RNA is lo-
cated in the central region of NSSA.*! The membrane
association of NS5A through its amino-terminal trans-
membrane domain'" and the interaction between NS5A
and 5B'S are essential for RNA replication. Several
cellular proteins interacting with NS5A have been iden-
tified, and human vesicle-associated membrane protein-
associated proteins (hVAP-A and -B) are likely to play
a key role in RNA replication through the interaction
with NS5A."*!"" The 3’ NTR also contains a significant
predicted RNA structure with three distinct domains: a
variable region of about 40nt, a variable length poly(U/
UC) tract, and a highly conserved, 98-nt 3’ terminal
segment (3’X) that putatively forms three stem-loop
structures.'*'"® Viral RNA replication was not detected
when any of the three putative stem-loop structures
within the 3'X region or the entire poly(U/UC) was
deleted.” The variable region segment also contributes
to efficient RNA replication.'”

Several groups have succeeded in demonstrating the
in vitro replication activities of HCV RCs in crude
membrane fractions of cells harboring the subgenomic
replicons.'”'? These cell-free systems provide a valu-
able complement to the in vitro RdRp assays for bio-
chemical dissection of HCV RNA replication and are a
useful source for isolation of viral RCs. From the in vi-
tro replication studies, it appears that RNA synthesis
can be initiated in the absence of added negative-strand
template RNA, suggesting that preinitiated template
RNA copurifies with the RC.*'%'" Although the
newly synthesized single-strand RNA can be used as a
template for a further round of double-strand RNA
synthesis, no exogenous RNA serves as a template for
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HCV RC preparation.”™ Added RNA templates might
not access the active site of the HCV RCs owing to se-
questration by membranes. The HCV RCs contain both
positive- and negative-strand RNAs.'"**?" It has also
been reported that cell-free replication activity in-
creases at temperatures ranging from 25° to 40°C, and
divalent cations (Mn** and Mg*) can be used in the
reaction,'?'?’

Membrane flotation analysis and a replication assay
have shown that viral RNA and proteins are present in
detergent-resistant membrane structures, most likely a
lipid-raft structure, and RNA replication activity was
detected even after treatment with detergent.''? Lipid
rafts are cholesterol- and sphingolipid-rich microdo-
mains characterized by detergent insolubility.?* ™!
These structures are known to play a critical role in a
number of biological processes, such as as regulators
and organizing centers of signal transduction and mem-
brane traffic pathways, including virus entry and
assembly of, for example, influenza virus,”?"** human
immunodeficiency virus type-1,”">"* Ebola virus, Mar-
burg virus,'”’ enterovirus,' avian sarcoma and leukosis
virus,”® Coxsackie B virus, adenovirus,® measles vi-
rus,' and respiratory syncytial virus.'"' However, HCV
may be the first example of the association of a lipid raft
with viral RNA replication.

On the other hand, it has been widely believed that
most of the HCV life cycle, including protein processing
and genome replication, takes place in the ER, where
cholesterol-sphingolipid rafts are not assembled."%"*'#
Several studies using the replicon system have indicated
that the nonstructural proteins are associated with the
ER."*¥ Nevertheless, it is still possible that HCV non-
structural proteins synthesized at the ER relocalize to
lipid-raft membranes when they are actively engaged in
RNA replication. It has been shown by membrane sepa-
ration analysis that HCV nonstructural proteins are
present both in the ER and the Golgi, but the activity
of viral RNA replication was detected mainly in the
Golgi fraction."* Further studies to elucidate where
and how the HCV genome replicates in infected cells
are needed.

Viral assembly

The assembly of HCV and the virion structure remains
largely unknown. By analogy with related viruses, the
mature HCV virion presumably possesses a nucleocap-
sid and outer envelope composed of a lipid membrane
and envelope proteins. HCV virions are thought to have
a diameter of 40-70nm.'"'*® These observations were
recently confirmed by immunoelectron microscopy of
infectious HCV particles produced in cell cultures.*** It
has been reported that HCV circulates in various forms
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in the sera of infected hosts, for example, as (1) free
mature virions, (2) virions bound to low-density lipo-
proteins and very low density lipoproteins, (3) virions
bound to immunoglobulins, and (4) nonenveloped
nucleocapsids, which exhibit physicochemical and anti-
genic properties.'~'>

The HCYV structural proteins (core, E1, and E2) are
located in the N-terminal one-third of the precursor
polyprotein (Fig. 1). A crucial function of the core pro-
tein, which is derived from the N-terminus of the viral
polyprotein, is assembly of the viral nucleocapsid. The
aa sequence of this protein is well conserved among
different HCV strains, compared with other HCV pro-
teins. The N-terminal domain of the core protein is
highly basic, while its C-terminus is hydrophobic. When
expressed in mammalian cells and transgenic mice, the
core protein is found on membranes of the ER, on
the surface of lipid droplets, on the mitochondrial outer
membrane, and, to some extent, in the nucleus.'”'**
The core protein is likely multifunctional and is not only
involved in formation of the HCV virion but also has a
number of regulatory functions, including modulation
of lipid metabolism and hepatocarcinogenesis."*'¥-*
The envelope proteins E1 and E2 are extensively gly-
cosylated and have an apparent molecular weight of
30-35 and 70-75kDa, respectively. Predictive algo-
rithms and genetic analyses of deletion mutants and
glycosylation-site variants of the E1 protein suggest that
E1 can adopt two topologies in the ER membrane: the
conventional type I membrane topology and a polytopic
topology in which the protein spans the ER membrane
twice with an intervening cytoplasmic loop.'® E1 and
E2 proteins form a noncovalent complex, which is be-
lieved to be the building block of the viral envelope.

Several expression systems have been used to inves-
tigate HCV capsid assembly using mammalian, insect,
yeast, bacteria, and reticulocyte lysates, as well as puri-
fied recombinant proteins."*'*"'® The results suggest
that immunogenic nucleocapsid-like particles are heter-
ologous in size and range from 30 to 80nm in diameter.
The N-terminal half of the core protein is important for
nucleocapsid formation.'*'®!"™ HCV capsid formation
occurs in the presence or absence of ER-derived mem-
brane, which supports cleavage of the signal peptide at
the C-terminus.'”

Nucleocapsid assembly generally involves oligomer-
ization of the capsid protein and encapsidation of ge-
nomic RNA. In fact, study of a recombinant mature
core protein has shown it to exist as a large multimer in
solution under physiological conditions, within which
stable secondary structures have been observed.'”
Studies using yeast two-hybrid systems have identified
a potential homotypic interaction domain within the
N-terminal region of the core protein (aa 1-115 or
-122), with particular emphasis on the region encom-
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passing aa 82-102.">'" However, other studies have
identified two C-terminal regions, extending from aa
123 to 191 and from 125 to 179, as responsible for self-
interaction. Furthermore, Pro substitution within these
C-terminal regions has been observed to abolish core
protein self-interaction.””™"™ Circular dichroism spec-
troscopy has further shown that a Trp-rich region span-
ning aa 76-113 is largely solvent-exposed and unlikely
to play a role in multimerization.'”" Recently, our group
demonstrated that self-oligomerization of the core pro-
tein is promoted by aa 72-91 in the core.'®

Once a HCV nucleocapsid is formed in the cyto-
plasm, it acquires an envelope as it buds through intra-
cellular membranes. Interactions between the core and
E1/E2 proteins are considered to determine viral mor-
phology. Expression of HCV structural proteins using
recombinant virus vectors has led to successful genera-
tion of virus-like particles with similar ultrastructural
properties to HCV virions. Packaging of these HCV-
like particles into intracellular vesicles as a result of
budding from the ER has been noted.'*"'”'"® Mapping
studies to determine the nature of interaction between
core and El proteins have demonstrated the impor-
tance of C-terminal regions in this interaction.'™'"
Since corresponding sequences are not well conserved
among various HCV isolates, interactions between core
and E1 proteins might depend more on hydrophobicity
than on specific sequences. By contrast, it has been
shown that interaction between the self-oligomerized
HCV core and the E1 glycoprotein is mediated through
the cytoplasmic loop present in a polytopic form of the
E1 protein.'®

Implication of the ubiquitin-proteasome pathway in
core protein maturation

The ubiquitin—proteasome pathway is the major route
by which selective protein degradation occurs in eu-
karyotic cells and is now emerging as an essential mech-
anism of cellular regulation.™"® This pathway is also
involved in the posttranslational regulation of the core
protein.**'¥-'® We have reported that processing at the
carboxyl-terminal hydrophobic domain of the core pro-
tein leads to its efficient polyubiquitylation and protea-
somal degradation.”® Recently, our group identified the
ubiquitin ligase E6AP as an HCV core-binding protein
and showed that E6AP enhances ubiquitylation and
degradation of the mature as well as the carboxyl-
terminally truncated core proteins, and that the core
protein produced from infectious HCV is degraded via
an E6AP-dependent pathway (Fig. 3)."® E6AP, the pro-
totype of HECT domain ubiquitin ligases,'® was ini-
tially identified as the cellular factor that stimulates
ubiquitin-dependent degradation of the tumor suppres-
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sor p53 in conjunction with E6 protein of cancer-
associated human papillomavirus types 16 and 18.'5!%
Exogenous expression of E6AP reduces intracellular
core protein levels and supernatant viral infectivity in
infected cell cultures. Knockdown of exogenous E6AP
by siRNA increases intracellular core protein levels and
virus titers in the culture supernatants. The core protein
interacts with EGAP through the aa 58-71 region of the
core, which is highly conserved among all HCV geno-
types, suggesting that E6GAP-dependent degradation of
the core protein is common to a variety of HCV isolates
and plays a critical role in the HCV life cycle or viral
pathogenesis.

A role for the proteasome activator PA28y core-
binding protein in degradation of the core protein has
also been demonstrated (Fig. 3)."*%'® Overexpression of
PA28y promotes proteolysis of the core protein. PA28y
predominates in the nucleus and forms a homopolymer,
which associates with' the 20S proteasome,'®’ thereby
enhancing proteasomal activity.'"® Both nuclear reten-
tion and core protein stability are regulated via a PA28y-
dependent pathway.

In eukaryotic cells, targeted protein degradation is
increasingly understood to be an important mechanism
by which cells regulate levels of specific proteins, and
thereby regulate their function. The core protein is be-
lieved to play a key role in viral replication and patho-
genesis since it forms the viral particle and regulates a
number of host cell functions. Although the biological
significance of ubiquitylation and proteasomal degrada-
tion of the core protein is not fully understood, EGAP
possibly affects the production of HCV particles through
controlling the amount of core protein (Fig. 3). This
mechanism may contribute to virus persistence by main-
taining a (moderately) low level of the viral nucleocap-
sid. The E6AP binding domain within the core protein
resides in the region that is considered to be important
for binding to the viral RNA and several host factors.'®
These factors may affect the interaction between
" the core and E6AP, resulting in control of E6AP-

dependent core degradation. A recent study demon-

strated that a knockdown of the PA28y gene induces the
accumulation of the core protein in the nucleus of hepa-
tocytes of HCV core gene-transgenic mice and disrupts
development of both hepatic steatosis and hepatocellu-
lar carcinoma.'® Upregulation of several genes related
to fatty acid biosynthesis and lipid homeostasis by the
core protein was observed in the cells and the mouse
liver in the PA28y-dependent manner. Thus, it is likely
that PA28y plays an important role in the development
of liver pathology induced by HCV infection.
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Abstract

Hepatitis C virus (HCV) exists in infected individuals as quasispecies, usually consisting of a dominant viral isolate and a variable mixture of
related, yet genetically distinct, variants. A prior HCV infection system was developed using human hepatocellular carcinoma cells cultured in the
three-dimensional radial-flow bioreactor (RFB), in which the cells retain morphological appearance and their differentiated hepatocyte functions
for an extended period of time. This report studies the selection and alteration of the viral quasispecies in the RFB system inoculated with pooled
serum derived from HCV carriers. Monitoring the viral RNA and core protein in the culture supernatants, together with nucleotide sequencing
of hypervariable region 1 of the HCV genome, demonstrated that (1) the virus production intermittently fluctuated in the cultures, (2) the viral
genetic diversity was markedly reduced 3 days post-infection (p.i.), and (3) dominant species changed on days 19-33 p.i., suggesting that the virus
populations can be selected according to susceptibility to the viral infection and replication. A therapeutic effect of interferon-a also demonstrated
the inhibition of HCV expression. Thus, this HCV infection model in the RFB system should be useful for investigating the dynamic behavior of
HCV quasispecies in cultured cells and evaluating anti-HCV compounds.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hepatitis C virus (HCV) is a major cause of chronic liver
diseases (Choo et al., 1989; Kuo et al., 1989; Saito et al., 1990)
and has been estimated to infect more than 170 million peo-
ple throughout the world (Poynard et al., 2003). Symptoms of
persistent HCV infection extend from chronic hepatitis to cirrho-
sis and ultimately hepatocellular carcinoma (Choo et al., 1989;
Kuo et al., 1989; Saito et al., 1990). HCV belongs to the genus
Hepacivirus, included in the family of Flaviviridae, and pos-
sesses a viral genome of a single, positive-stranded RNA with

* Corresponding author. Tel.: +81 3 5285 1111; fax: +81 3 5285 1161.
E-mail address: tesuzuki@nih.go.jp (T. Suzuki).
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a nucleotide (nt) length of approximately 9.6kb (Choo et al.,
1991; Grakoui et al., 1993; Hijikata et al., 1991). It has been
shown that HCV, like many other RNA viruses, circulates within
infected individuals as a diverse population and closely related
variants are referred to as quasispecies (Martell et al., 1992).
This quasispecies model of mixed virus populations may imply
a significant survival advantage because the simultaneous pres-
ence of multiple variant genomes and/or high rate of generation
of new variants allow rapid selection of the mutants are better
suited to new environmental conditions (Pawlotsky, 2006).
Studies on HCV replication and development of selective
antiviral drugs have been hampered primarily by the lack
of efficient cell culture systems. Establishment of selectable
dicistronic HCV RNAs that are capable of autonomous repli-
cation to high levels in human hepatoma Huh-7 cells was a
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significant breakthrough in HCV research; however, virus pro-
duction has not been observed in the conventional monolayer
cultures (Blight et al., 2000; Lohmann et al., 1999). Recently,
it has been described that infectious HCV particles are effi-
ciently produced from a genotype 2a isolate JFH-1 in Huh-7 cells
(Blight et al., 2000; Wakita et al., 2005; Zhong et al., 2005). This
JFH-1 based HCV culture system is an invaluable achievement
permitting a variety of studies on the complete HCV life cycle.
However, HCV infection systems with human sera or plasmas
containing intact virions are still limited because of low levels of
propagation in the cultures. Reverse transcription (RT)-PCR was
typically used to detect the viral RNA in cell extracts; however,
synthesized viral proteins were not observed in these systems
(Ikeda et al., 1998; Tagawa et al., 1995).

There are reports of differentiated human hepatoma FLC4
(functional liver cell 4) cells grown in a three-dimensional (3D)
radial-flow bioreactor (RFB) that can be infected by HCV-
positive serum and support viral replication (Aizaki et al., 2003).
Furthermore, production and release of infectious HCV has been
observed in the RFB system following transfection of FLC4 cells
with in vitro transcribed HCV genomic RNA, as well as in a 3D
system using Huh-7 cells harboring genome-length dicistronic
RNAs (Murakami et al., 2006). The RFB system, in which the
bioreactor column consists of a cylindrical matrix with porous
bead microcarriers extended vertically, was aimed initially at
developing artificial liver tissues and allows liver-derived cells
to maintain morphological appearance as well as their phys-
iological functions, such as the ability to synthesize albumin
and drug-metabolizing activity mediated by cytochrome P450
(Iwahori et al., 2003). The radial-flow configuration permits full
contact between culture medium and cells at a physiologic perfu-
sion flow rate, and prevents excessive shear stresses and buildup
of waste products, thus ensuring the long-term viability of 3D
cell culture.

The aim of the present study was to characterize HCV dynam-
ics in the RFB system during long-term cultures inoculated
with pooled serum obtained from HCV carriers, and to examine
the therapeutic effects of interferon-alpha (IFN-«) in this HCV
infection model. .

2. Materials and methods
2.1. Cell cultures

FLC4 cells (Aoki et al., 1998), which were derived from
human hepatocellular carcinoma cells and negative for HCV
RNA and HBV DNA, were maintained in serum-free ASF104
medium (Ajinomoto, Japan) supplemented with 4 g/L D-glucose
on the collagen-coated dishes before inoculating into the RFB
column. The RFB system (ABLE, Japan) was manipulated as
described previously (Aizaki et al., 2003) with minor modifi-
cations. Briefly, RFB columns, which have bed volumes of 30
or 4mL and are filled with porous glass microcarriers (diame-
ter 0.6 mm, vacant capacity 50%, pore size <120 um) (Hongo
et al., 2005), were seeded with FL.C4 cells, which subsequently
attached to the surface and inside of porous glass beads. ASF104
medium containing 2% fetal calf serum was added at a flow rate

of S50 mL/day, and the culture condition was automatically con-
trolled by monitoring temperature, pH value and oxygen levels
in the vessel throughout the duration of the study.

2.2. Infection of HCV-positive sera

HCV antibody-positive sera used in this study were blood
donor samples supplied by The Japanese Red Cross Center,
Tokyo, Japan. HCV RNA loads in the sera were as follows:
serum A, 2.4 x 108 copies/mL; serum B, 8.6 x 108 copies/mL;
serum C, 5.9 x 10° copies/mL; serum D, 2.5 x 10° copies/mL;
serum E, 1.0 x 107 copies/mL; serum F, 1.4 x 107 copies/mL
(Table 1). In the first experiment (Fig. 3), aliquots of each
serum containing 2 x 10° copies of HCV RNA were mixed and
pooled serum sample with 1.2 x 107 copies was prepared as an
inoculum. The pooled serum (2.5 mL) was added to the 3D
cultured-FL.C4 cells in the 30-mL RFB column, and the culture
medium was changed after 12 h of incubation. At various times
during the culture period, culture medium (50 mL) was collected
to determine HCV RNA and the core protein. Collected culture
media were passed through a 0.20-p.m filter to remove the debris,
and stored at —80 °C. In the second experiment to evaluate a ther-
apeutic effect of anti-HCV drug (Fig. 4), 4-mL RFB columns
were used. IFN-a (Sumiferon 300; Sumitomo Pharmaceuticals,
Japan) was added to one of two columns at a final concentration
of 100IU/mL after the infection. Culture medium was periodi-
cally collected for determination of HCV RNA, the core protein
and transaminases, and was replaced with the same volume of
fresh medium with or without IFN-a.

2.3. Quantitation of HCV RNA and core protein

HCV RNA was extracted from 140 pL of each serum or
culture medium using QIAamp Viral RNA Mini spin column
(QIAGEN); RNA was eluted in 60 L. of water and stored at
—80°C. Real-time RT-PCR was performed using TagMan EZ
RT-PCR Core Reagents (PE Applied Biosystems), as described
previously (Aizaki et al., 2003; Suzuki et al., 2005). The viral
core antigen in the culture medium was quantified by immunoas-
say (Ortho HCV-Core ELISA Kit; Ortho-Clinical Diagnotics),
according to the manufacturer’s instruction (Murakami et al.,
2006).

2.4. PCR amplification and nucleotide sequencing of HVRI
domain and its flanking region

Five microliters of RNA samples prepared as above were
reverse transcribed using SuperScript II (Invitrogen) and a
specific primer 5'-CATCCATGTGCAGCCGAACC-3 (cor-
responding to nucleotides [nt] 2006-1987 of HCV NIHJ1)
(Aizaki et al., 1998). For the nested PCR, a genotype-
independent set of primers specific for hypervariable region
1 (HVR1). The first round of PCR was performed with the
outer sense primer 5'-GCATGGCTTGGGATATGATG-3' (nt
1291-1310) and with the reverse transcription primer described
above as the outer antisense primer. After the initial 3.5-min
denaturation step at 94°C, 35 PCR cycles, with each cycle
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HCV-positive sera used in this study

Serum Clone HCV HVR1sequence % in the serum ganotype
A A1 KVLIVMLS FAGVDGSTRTIGGRTAHTTQGSASLFS SGPAQKIQLINTNGS 75 1
A2  ceema- b PP NewHeVewAV-SSme afT=caKLescccacaana S=== 125
A  ~cmoee- LecvcmeN=YAS ===AGLL=RaVe =I«TAccmonc= === S===- 125
B B1 KVVVILLLAAGVDAGTNTIGGSAAQTTSGFTGLFRSGARQNIQLINTNGS 50 2
B2 wesceccccmcccccccrccrcrcnecc—a mmemmcessemeases====R 125
B} wrccccccccccsccwmccsmcccccccanaaa cmemceeSennmuneas 125
B4 colLeVemwFecceoE=HVT==N=GR==A=LVeclLTPerKererraennan 12.5
e I el D e TS V.2
C €1 KVLIVMLLFAGVDGDTHVSGGTQGRAAYGLASLFALGPTQKIQLVNTNGS 833 1
L2 —=ma= e mmes e esmeseesam———-—— By G S (- % 4
D D1 KVLIVMLLFAGVDGVTHTSGAAAGHNAR SLSGLFSLGSAQKLQLINTNGS 40 1
D2 eccccscanccencpaYeeoGTeeY=TKTFTeFenRePSeclnancaana 20
D3 eecemcemmcccccccacman- TeeYaweTeTocamPrnnncne alenen= 10
M4 ceccmmmccccsa==- mmsamccrenecelemcnPecncaan alen nea 10
D5 —e=me= emmmmesecmcccc—ceccccm——— SRRV RV ; AR 10
DB —-meccrccccmccaccccccccca¥eTeafTacasSemaneleaVoemax 10
E E1  KVLIVMLLFAGVDGSTRVSGGQAGRVTK SLAS FFSPGPQQKIQLVNS NGS 40 1
E2 sorecccccccoccccccccacccaa- HGFT=L==A=S=«cne ceucee== 30
B reccccccccce. cemamemmencan——- QGFT=LmeA~Scccccccnnacx 10
M  eee-- e mmmmmceee—.———————- SeFTeLeTVeccccac ccnacan 10
BB ~cmeemcceccccaaNeYecoceccccBHeeTel~=A=Seccmacccuaan 10
F F1  KVLIVMLLFAGVDGETNVMGGRAGHTTNTFTSLFSVGPAQKIQLVNS RGS 37 1
F2 cececeea T s L - 1) T - B B ey 27
F3 eeaea ——mmeman ) CLT T EYSYRIRY- B REPPY ) JENUYRE - JEyayy sy 18
M4 cocmccncaa- e mneec—- mAcccccmcheaTKeencann anDeene 9
FO) crcmceccecemas Gummmmmme A==A=el==ccTR==§=mmceom=a== 9

consisting of 1min at 94°C, 2min at 45°C, and 3 min at
72 °C, were carried out, followed by a 10-min extension step at
72°C. The second round was performed with the inner sense
primer 5-GGTAAGCTTTCCATGGTGGGGAACTGGGC-3'
(nt 1419-1447) and the inner antisense primer 5'-
CTGGAATTCGCAGTCCTGTTGATGTGCCA-¥ (nt
1627-1599). The amplified products were cloned into the
PGEM-T vector (Promega), and at least 8 independent clones
were sequenced with an automatic DNA sequencer (ABI
PRISM 310, PE Applied Biosystems).

3. Results
3.1. The outline of the RFB system

The RFB system was initially aimed at developing artificial
liver tissues and allows liver-derived cells to maintain morpho-
logical appearance as well as their physiological functions, such
as the ability to synthesize albumin and drug-metabolizing activ-
ity mediated by cytochrome P450 (Iwahori et al., 2003). Fig. 1
shows the outline of the RFB system. The bioreactor column
consists of a vertically extended cylindrical matrix with porous
glass microcarriers, which were most suitable for FLC4 culture
asdescribed in Section 2. The conditioning vessel is connected to
a circulation system including tanks either for supplying fresh
medium or for recovering sample aliquots. Oxygen consump-

tion, temperature and pH of the culture medium are monitored
continuously and conditioned in the vessel by computer and
mass flow controller throughout the culture. Thus, the radial-
flow configuration permits full contact between culture medium
and cells at a physiologic perfusion flow rate, and prevents exces-
sive shear stresses and a buildup of waste products, thus ensuring
the long-term viability of 3D culture. For the long-term culture
up to 110 days, temperature in the vessel gradually decreased
from 37 to 30°C as shown in Fig. 2A. The oxygen consump-
tion, which indicates the cell growth condition, increased slowly
from days O to 80 post-inoculation of the cells, and maintained a
constant level afterwards. Under this condition, the production
rate of albumin was found to be stable from days 15 to 105. The
following experiments of HCV infection were done in such a
stable phase of the cell condition after 3 weeks of pre-culture.
Cell grown in the RFB column reached confluence at the end
of culture (day 110) since the cells were observed outside the
matrix bed (Fig. 2B).

3.2. Infection of HCV-positive sera to RFB cultured FLC4
cells

Previously, HCV RNA could be detected in FL.C4 cells grown
in the RFB up to 4 weeks of culture following inoculation with
an HCV carrier plasmid (Aizaki et al., 2003). Establishment of
a long-term stable culture system of human liver-derived cells
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Fig. 1. Outline of the RFB system. RFB system consists of vessel, column and PC monitoring system. Culture condition was automatically controlled: oxgen
concentration, temperature, pH, and oxgen level in the conditioning vessel are continuously monitored by PC and conditioned by mass flow controller.

retaining their differentiated hepatocyte function, as described
above, enables evaluations of dynamic analysis of HCV repli-
cation and selection of viral variability and quasispecies. The
potential of this culture system for screening HCV-positive sera
was well suited for the viral infection.

Table 1 shows the serum samples (A-F) from six HCV car-
riers. The nucleotide complexity of HCV in serum samples was
determined by sequencing the 1449-1598 nt region of the HCV
genome, which includes HVR1 located at the N-terminal region
of E2. Each serum was a mixture of a dominant HCV clone and
related but distinct viral populations. The dominant species in

sera A, C, D, E, and F were found to be genotype 1, and that
in serum B was genotype 2. Viral loads in A-F, respectively,
were 2.4 x 105, 8.6 x 10, 5.9 x 105, 2.5 x 106, 1.0 x 107 and
1.4 x 107 copies/mL, which were determined by real-time RT-
PCR, as previously described (Aizaki et al., 2003; Suzuki et
al., 2005). HCV loads of 2 x 109 copies from each serum sam-
ple were mixed to prepare a pooled serum sample containing
1.2 x 107 copies of HCV RNA. After FLC4 cells were inocu-
lated into the RFB and subjected to 2 weeks of pre-culture for
the preparation of 3D culture, the cells were infected with the
pooled serum. Cell number at infection was about 108 in the 30-

2
8 8

Temperature (°C)
3

(w6} wiwnary

(kep/Bw) uondwinsuod ‘O

—— Albumin
-O— 0, consumption
@ empenture

Day0

Day 110

Fig. 2. Long-term culture of FL.C4 cells in the RFB system. (A) Long-term culture of FL.C4 cells in the RFB system. Temperature (closed circles) was gradually
decreased from 37 to 30 °C. Oxygen consumption (open circles) was gradually increased from days 0 to 80 and reached the steady-state level. Albumin concentration
(closed triangles) was constant from days 15 to 105. (B) The appearance of the RFB column at the beginning (day 0) and at the end (day 110) of culture.
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Fig. 3. HCV propagation in FL.C4 cells cultured in the RFB system following inoculation with pooled sera obtained from HCV carriers. The 3D-cultured FL.C4
cells were incubated with a pooled serum sample for 12 h, followed by changing the culture medium to fresh one. Culture medium was periodically collected for
42 days after inoculation, and HCV RNA and the viral core protein were quantified, respectively, by real-time RT-PCR and ELISA. (A) HCV RNA level in culture
supernatant. (B) HCV-core protein (closed circles) and oxygen consumption (open triangles) levels in culture supernatant, (C) Changes in the viral quasispecies
distribution after the inoculation. Percentages in the inoculum or in the culture medium at each time point (day 3, 9, 19, or 33 p.i.) are indicated at the right side. *,

termination codon.

mL RFB column, as estimated from the glucose consumption
(Kawada et al., 1998). Culture medium in the RFB was replaced
with fresh medium 12h post-infection (p.i.) and periodically
sampled for 42 days.

Fig. 3A and B shows the levels of HCV RNA and viral
core protein in the culture medium, respectively. HCV RNA
was not observed on the first 2 days following infection, but
was detectable from day 3 p.i. Viral RNA levels fluctuated, with
peaks on days 3,9, 19-21 and 33-36 p.i. Atdays 19-21 p.i., the
- average amount of HCV RNA detected in the culture supernatant
was approximately 3 x 106 copies/day. Intermittent peaks were
observed in HCV core protein levels in the culture supernatant,
and the peak pattern of the core protein was largely consistent
with that of viral RNA. During the infection experiment, the level
of oxygen consumption was constant at approximately 12 ppm,
thus suggesting that the desired conditions (constant or very
gradually increasing cell number) were maintained.

3.3. Quasispecies analysi& in RFB culture

The above results suggest that, although the environment was
consistent in the pooled serum infection, there were periods
in which the viruses actively replicated and released from the
cells and periods in which they poorly replicated. The pooled
serum used for the infection exhibited HCV populations had at
least 26 distinct quasispecies (Table 1). To investigate whether
the quasispecies distribution was altered due to infection, and
whether HCV populations are selected during long-term culture
in the RFB, total RNA was extracted from the culture super-
natant samples collected on days 3, 9, 19 and 33 p.i., and the
nucleotide sequence of the region containing HVR1 was deter-

mined, as described above. As shown in Fig. 3C, it is of interest
that only two HCV species were detected in the sample at day
3 p.i.; the dominant clone C1-1, comprising approximately 70%
of the viral population, and clone B4, comprising 30%. Although
clone C1-1 was not detected in the sequence of the inoculum
shown in Table 1, it was most similar to clone C1, a dominant
clone in plasma C, among the HCV population observed in the
inoculum; thus, it is possible that clone C1-1 is one of the minor
species in serum C. Clone B4 was found to be derived from
serum B. An almost identical HCV population was observed
in the sample at day 9 p.i. In this sample, the dominant clone
C1-1 and clone B4-1, which differs from clone B4 by only one
amino acid, were detected. In contrast, more significant varia-
tion in quasispecies structure of the HCV species was observed
in the sample at day 19 p.i. than that at day 9 p.i. With B4 as the
dominant clone, the serum B-derived HCV species, clones B4
and B4-2, which differs from clone B4 by one amino acid, com-
prised 58% of the total population. Four types of HCV sequences
derived from serum C were detected. Two of these (clones C1-3
and C1-4) contained lethal mutations. It was also found that the
HCV species detected in the sample at day 33 p.i. included only
two clones (clones B4 and B4-3), derived from serum B. The
dominant clone, B4, was found to comprise 89% of the total
population.

3.4. Potential use of the RFB system for evaluation of
anti-HCV compounds

An experiment was carried out to determine whether this
HCV infection experiment system was useful for the evalu-
ation of anti-HCV drugs (Fig. 4). For this purpose, a small,
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Fig. 4. A therapeutic effect of IFN in HCV infection model in the RFB cultures.
HCV-infected FLLC4 cells were treated with or without 100 IU/mL IFN-a. (A)
Culture media were periodically collected, and HCV RNA levels were deter-
mined. Closed circles: without IFN treatment, open circles: treatment with [FN,
(B) Changes in the viral quasispecies distribution in the cells without IFN treat-
ment. Percentages in the inoculum or in the culture medium on day 32 p.i. are
indicated at the right side. *, termination codon.

4-mL RFB column was adopted and a pair of RFB cultures
infected with the HCV-positive pooled plasma (Table 1) was pre-
pared. IFN-a was added to one culture at a final concentration
of 100IU/mL at 12 h p.i. No cytotoxicity was observed in FLC4
cells under these conditions (data not shown). Culture media
from two cultures (12.5 mL each) were sampled periodically
for 35 days and replaced by the same volume of fresh medium
in the presence or absence of IFN-a. HCV RNA in the col-
lected media was quantified by real-time RT-PCR, as described
above. As shown in Fig. 4A, in the no-treatment culture, fluctu-
ations in the viral RNA levels with the peaks on days 7, 18, and
32 p.i. (1.5-5 x 10* copies/mL) were observed. However, while
HCV RNA at 0.5-0.8 x 10* copies/mL was detected in the IFN-
treated culture at days 5—11 p.i., no HCV RNA was detected at
days 12-30p.i. Serum levels of hepatic transaminases such as
ALT and AST are known to be markers of liver damage. In the
HCV-infection mode! with FLC4 cells cultured in RFB, the AST
levels in the culture medium, which ranged from 5 to 10IU/L
without HCV infection, increased to 20-50 IU/L according to
the viral infection (data not shown). Such increased AST levels
were found to fall by the IFN treatment to lower than 10 IU/L at
day 28 p.i. As reported previously, the ALT levels in the culture
medium were constantly low; its levels were less than 10 IU/mL,
with or without HCV infection (Aizaki et al., 2003). The viral
nucleotide sequence in the no-treatment culture medium at day
32 p.i. was determined. It was found that serum B-derived clone
B4 was dominant, and serum C-derived clone C1 was present as
a minor clone (Fig. 4B); thus, the results corresponded well with
those demonstrated in Fig. 3. An increase in viral RNA in the
IFN-treated culture after day 32 p.i. was observed; although the
degree of increase was only slight (Fig. 4A). It will be interesting
to test whether HCV species grown in the IFN-treated culture is
a variant resistant to IFN-a.

4. Discussion

At present an important limitation of the in vitro HCYV infec-
tion system is that the only established culture system is based
on genotype 2a, JFH-1 isolate, and Huh-7-derived cell lines.
The development of alternate infection systems in which other
HCV strains and host cells are available has been needed for
the study of HCV dynamics and virus—host interactions, and
for testing antivirals. This paper demonstrates that a long-term
culture of the 3D RFB system is a useful tool for investigating
HCYV dynamics. The present results revealed that the viral qua-
sispecies distribution altered in the HCV infection system in the
RFB system. The change probably occurs in the following two-
stage process. The first change was observed on day 3 p.i.; thus,
it is possible that the HCV species were selected according to
infectivity in FLC4 cells. It has been reported that HCV particle
populations in chronic hepatitis C patients consist of low-density
virions and higher-density immune complex forms (Hijikata et
al., 1993; Kanto et al., 1994). Inoculation of cultured cells with
HCV has demonstrated that the immune complex forms were
less infective than the antibody-unbound virions (Shimizu et al.,
1994). Therefore, another hypothesis may be that a large num-
ber of HCV populations in sera A, D, E, and F are immune
complex forms; thus, these sera are less susceptible to the cells
than sera B and C. The second change was observed on days
19-33 p.i. While the serum C-derived clone was dominant in
the early stages after infection, the serum B-derived HCV clone
became dominant over time. In the absence of immunological
selection pressure, viral nucleotide mutations at random posi-
tions are accumulated during viral replication, and the newly
generated variant species are selected principally, if not solely,
based on the intrinsic replicative advantages or disadvantages
that these mutations confer. Thus, these results suggest that the
use of pooled serum sample allowed for screening of infectious
materials compatible for the RFB culture.

Evaluation methods for anti-HCV drugs using monolayer
culture systems with various culture cells, such as the repli-
con system and the JFH-1 based virion production system, have
been reported (Bartenschlager et al., 2003; Blight et al., 2000;
Boriskin et al., 2006; Lanford et al., 2003; Lindenbach et al.,
2005; Lohmann et al., 1999; Wakita et al., 2005; Zhong et al.,
2005). These methods utilize viral markers, such as HCV RNA
and antigens, as indicators of treatment efficacy. However, the
utility of long-term cell culture systems for anti-HCV drug eval-
uation based on infection with human sera is still limited. The
use of a chimpanzee model, the only non-human host for HCV
infection, is restricted due to several reasons such as problematic
availability and ethical consideration. Given intensive efforts to
reduce and replace animal testing in the course of development of .
new therapies worldwide, the RFB-based HCV infection model
is a potential alternative to animal models such chimpanzee for
assessing anti-HCV compounds. According to the studies with
regards to mathematical modeling of HCV kinetics (Dahari et
al., 2005; Dixit et al., 2004; Layden et al., 2003; Layden-Almer
et al., 2006; Perelson et al., 2005), IFN therapy against HCV
infection generally generates a biphasic decline in viral load;
there is a rapid decrease in the serum HCV RNA level over the



180 K. Murakami et al. / Journal of Virological Methods 148 (2008) 174—181

first 1 day of treatment, followed by the second phase, which is
slower than the first-phase viral decline. To date, there were no
such observable viral kinetics in the IFN treatment under such
experimental settings. Further detailed kinetic analyses of the
use of varying doses of IFN and of very early time points to
evaluate the antiviral effect are in progress.

 In summary, by investigating the dynamics of HCV popula-
tions in the RFB culture system, it was demonstrated that HCV
was intermittently detected in the culture supernatants of long-
term culture, and that changes in viral quasispecies appear to be
related to this fluctuation in the virus level. It was also shown
that an HCV-infection model using the RFB system is useful
for evaluating potential antivirals. Further investigation on the
infection and growth of various HCV-positive sera is currently
being conducted in order to obtain an adaptive clone with higher
replication efficiency in this culture system.
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Summary

We examined 976 sika deer serum samples, 159
liver tissue samples and 88 stool samples collected
from 16 prefectures in Japan, and performed ELISA
and RT-PCR assays to detect antibodies to HEV
and HEV RNA, respectively. Although 25 (2.6%)
of 976 samples were positive for anti-HEV IgG,
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the antibody titers were very low. The OD values
ranged between 0.018 and 0.486, forming a single
distribution rather than a bimodal distribution, sug-
gesting that the antibody detected in this study was
not induced by HEV infection, or that deer have
low sensitivity to HEV. HEV RNA was not detected
in these samples, also suggesting that deer may not
play a role as an HEV reservoir.

*

Hepatitis E virus (HEV), the sole member of the
genus Hepevirus, is the causative agent of type E
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acute hepatitis in humans [3] . HEV does not have an
envelope and is likely to have icosahedral symmetry.
The genome is a positive-sense single-stranded poly-
adenylated RNA molecule, and the 5’ end is capped
[11] . The genome of HEV contains three open read-
ing frames, ORF1, ORF2, and ORF3. ORF1 encodes

1693 amino acids (aa) encompassing nonstructural

proteins involved in viral replication. ORF2 encodes
a 660-aa capsid protein. ORF3 encodes a 123- or
114-aa protein of unknown function [23, 28].

To date, at least four major genotypes of HEV
have been identified by phylogenetic analyses.
Genotype 1 (G1) HEV was isolated from Asia and
Africa [16, 18], genotype 2 (G2) from Mexico [26],
Namibia and Nigeria [2, 12], and genotypes 3 (G3)
and 4 (G4) from the United States, European coun-
tries, China, Taiwan, Japan and Vietnam [4, 13, 17,
19, 27-29]. These viruses are thought to comprise a
single serotype [16].

Transmission of human HEV occurs primarily by
the fecal-oral route through contaminated water in
developing countries [1, 5]. Since 1997, when the
first animal strain of HEV was isolated from swine
in the United States, there has been much indirect
and direct evidence indicating that hepatitis E is a
zoonosis and that humans appear to be at risk of in-
fection with swine HEV by cross-species infection
[13-15]. Recently, direct evidence of HEV trans-
mission from wild boar (Sus scrofa) to humans was
provided in Japan, suggesting that these animals are
the main zoonotic reservoir of HEV in this country
[9]. Indirect evidence of HEV transmission from
swine to humans has also been accumulated [22, 30].

Because a case of HEV infection from sika deer
meat was reported by Tei et al., sika deer have been
considered a possible reservoir in Japan [24, 25].
However, there is only limited surveillance data of
HEV infection in deer. In this study, we collected
serum samples from wild deer and examined them
for the presence of anti-HEV IgG by an anti-
body ELISA using recombinant virus-like particles
(VLPs) as the antigen. We also attempted to detect
HEV RNA in serum, stool, and liver samples from
the wild deer by RT-PCR analysis.

Between 2003 and 2006, 866 serum samples were
collected from wild deer captured in Hokkaido,
Iwate, Tochigi, Chiba, Nagano, Aichi, Mie, Hyogo,
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Shimane, Hiroshima, Oita, Fukuoka, Kumamoto,
Miyazaki, and Kagoshima prefectures, and 110 se-
rum samples were collected in 1991-1993 from a
deer farm, where the deer were introduced from
the habitat at Miyagi prefecture (Fig. 1). In Hyogo
Prefecture, an estimated age of 0—10 years was as-
signed by the tooth replacements and counting ce-
mentum annuli of the fist incisors [6]. A total of 88
stool samples were collected from deer captured
in Hokkaido, Iwate, Tochigi, Chiba, Nagano, Mie,
Hyogo, Hiroshima, Oita, Fukuoka, Kumamoto,
Miyazaki, and Kagoshima from 2004 to 2006. They
were resuspended in 10mM phosphate-buffered
saline (PBS) to prepare a 10% suspension, shaken
at 4°C for 1h, and clarified by centrifugation at
10,000 x g for 20 min. A total of 159 deer liver
tissue were collected from Hyogo (50), Iwate (11)
and Hokkaido (98) from 2003 to 2006. The tissue
was resuspended in lysis buffer (Qiagen, Inc.) and
homogenized. All of the specimens were stored at
—20°C until use. :

Serum anti-HEV IgG antibody was detected by
ELISA by the method described previously with
slight modification [8]. Briefly, a flat-bottom 96-well
polystyrene microplate (Immulon 2; Dynex Tech-
nologies, Inc. Chantilly, VA) was coated with the
purified VLPs (1 pg/ml, 100 pl/well) derived from
the G1 Myanmar strain [7]. The plates were incubat-
ed at 4 °C overnight. Unbound VLPs were removed,
and the wells were washed twice with 10 mM
phosphate-buffered saline containing 0.05% Tween
20 (PBS-T), and then blocked at 37 °C for 1 h with
200 pl of 5% skim milk (Difco Laboratories, Detroit,
MI) in PBS-T. After the plates were washed 4 times
with PBS-T, deer serum (100 pl/well) was added in
duplicate at a dilution of 1:200.in PBS-T containing
1% skim milk. The plates were incubated at 37°C
for 1h and then washed 4 times as described above.
The wells were incubated with 100 ul of peroxidase-
conjugated rabbit anti-deer IgG (H+L) (1:1000
dilution) (KPL, Guildford, UK) in PBS-T con-
taining 1% skim milk. The plates were incubated
at 37°C for 1h and washed 4 times with PBS-T.
Then, 100 pl of the substrate orthophenylenediamine
(Sigma Chemical Co., St. Louis, MO) and H,0,
was added to each well. The plates were incubated
in a dark room at room temperature for 30 min, then
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50 ul of 4N H,SO, was added to each well. After the
plates had stood at room temperature for 10 min, the
absorbance at 492 nm was measured.

Anti-HEV IgG-positive serum was obtained from
experimentally immunized captive sika deer that had
been shown to be negative for HEV IgG by ELISA.
The first and second immunizations were performed
with purified VLPs (100 pg) in Freund’s complete
adjuvant by intramuscular injection at intervals of
2 week. After 2 weeks, the deer received booster
injections of the same amount of VLPs in Freund’s
incomplete adjuvant. The deer was bled one week
after the last booster injection. Pre-immunization
serum was collected before administration and used
as the negative control. Anti-HEV IgG-positive
serum and pre-inoculation serum were stored at
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—30°C. The anti-HEV IgG titer of the positive se-
rum was 1:3,276,800.

Deer serum samples were tested for anti-HEV
IgG at a dilution of 1:200 by ELISA. The distribu-
tion of the optical density (OD) values is shown in
Fig. 2. The OD values of anti-HEV IgG ranged
from 0.018 to 0.486 with the highest antibody titers
being 1:400, and formed a single distribution. To de-
termine whether the IgG antibody detected in deer
sera was specific for HEV, the positive control se-
rum and negative control serum, and the sera whose
OD values were higher than 0.150 were selected and
examined by Western blot assay. Approximately
1 pg of the VLPs derived from G1, G3, and G4
HEV was separated by SDS-PAGE and electropho-
retically transferred onto a nitrocellulose membrane.
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Fig. 2. Distribution of OD values of IgG antibodies. Serum
samples from 976 deer were tested by ELISA. The arrows
indicate the cutoff values

The membrane was then blocked with 5% skim
milk in S0mM Tris—HCl (pH 7.4) and 150 mM
NaCl, and incubated with deer serum (1:200 dilu-
tion). Detection of deer I1gG antibody was achieved
by using phosphatase-labeled rabbit anti-deer 1gG
(H +L) (1:1000 dilution) (KPL, Gaithersburg, MD).
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Nitroblue tetrazolium chloride and 5-bromo-4-
chloro-3-indolyl phosphate P-toluidine were used
as coloring agents (Bio-Rad Laboratories, Hercules,
CA). As shown in Fig. 3, strong bands with a mole-
cular weight of 53 k corresponding to the G1, G3 and
G4 VLPs were detected with positive control sera.
Weak bands were detected with Hyogo 0588,
Hyogo 0409, and Miyagi 1, whose OD values were
0.486, 0.358, and 0.287, respectively, whereas no
band was detected with Iwate 137, D0505, or the
negative control serum, which had low OD values
of 0.205, 0.152, and 0.051. These results indicated
that the anti-HEV IgG detected in deer serum by
ELISA was specific for HEV.

After eliminating 17 serum samples found to be
positive by Western blot assay, 959 deer serum sam-
ples were used to evaluate the cutoff value of IgG.
The OD values of these sera were between 0.018
and 0.248, and the mean value was 0.058 with a
standard deviation (SD) of 0.043. Therefore, the cut-
off value, the mean value + 3SD, was calculated to
be 0.187 (Fig. 2). When this value was employed,
the prevalence of anti-HEV IgG appeared to be
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Fig. 3. Specificity of the IgG antibody determined by Western blot assay. The G1, G3, and G4 VLPs were used as the
antigens, and 7 deer sera with different OD values were evaluated. The results of the Western blot assay are indicated as
+++ (strong band), + (weak band), or — (no band). M Molecular weight marker



