	1	ı		1		ŧ			ı		1		ı		1	1		ı		į.	1								r				ī			1
0.05	0.004	0.003	0.40	0.01	0.13	0.01	0.12	0.21	0.002	0.07	90000	0.13	0.01	0.18	0.007	<0.001	0.23	0.01	0.74	0.003	NA	0.15	0.05	0.63	0.97	0.08	0.87	0.97	Y Y	0.57	0.10	0.51	0.04	0.77	0.63	0.004
0.83 (0.68-1.01)	0.85 (0.74-0.98)	0.68 (0.50-0.92)	0.83 (0.47-1.48)	0.76 (0.60-0.97)	0.87 (0.73-1.04)	0.75 (0.58-0.98)	0.74 (0.42-1.30)	0.89 (0.75-1.06)	0.75 (0.58-0.97)	0.90 (0.75-1.10)	0.72 (0.54-0.97)	0.86 (0.72-1.03)	0.67 (0.52-0.88)	0.91 (0.77-1.09)	0.71 (0.54-0.92)	0.63 (0.49-0.81)	0.90 (0.77-1.07) f	0.74 (0.57-0.96)	0.91 (0.56-1.47)	0.75 (0.63-0.91) f	0.58 (0.38-0.89)	0.94 (0.77-1.14)	0.83 (0.64-1.08)	1.06 (0.84-1.32)	1.00 (0.88-1.13) f	0.88 (0.66-1.19)	0.89 (0.52-1.53)	1.00 (0.82-1.23) f	0.58 (0.38-0.89)	0.99 (0.78-1.27)	0.81 (0.62-1.06)	0.93 (0.74-1.16)	0.84 (0.70-0.99) f	1.16 (0.80-1.67)	1,11 (0.62-1.96)	0.70 (0.55-0.89) f
ιΩ	4	រល	ro.	4	ហ	2	10	IO.	ĸ	10	ro.	tO.	C)	S	5	£	0	വ	D	0	10	NO.	KO.	លេ	0	ın	Ω	0	10	ın	22	ın	0	ın	ıo	0
発作	発症	死亡	死亡	死亡	発症	死亡	死亡	発症	死亡	発症	死亡	発症	死亡	船市	溶魚	発症	発布	死亡	死亡	死亡	完命	溶魚	発症	発症	発症	死亡	死亡	死亡	発症	場所	発症	光	発症	死亡	死亡	死亡
6.1	61	6.1	9	9	6.1	6.1	9	6.1	6.1	6.1	6.1	6.1	6.1	6.1	9	10	6~10	6.1	9	6~10	ເດ	6.1	9	10	6~10	6.1	9	6~10	S	6.1	9	10	6~10	6.1	9	6~10
50~69	25~74	50~69	N 45	25~74	50~69	50~69	N 45	50~69	50~69	50~69	50~69	69~09	50~69	50~69	40~75	37~64	35~99	50~69	1745	35~99	45~59	50~69	40~75	37~64	35~99	50~69	1 45	35~99	45~59	50~69	40~75	37~64	35~99	50~69	≥45	35~99
Σ	M/M	Σ	W	M/W	Σ	Σ	×	Σ	Σ	Σ	M	M	N	M	×	W	M/W	Σ	W	M/W	×	Σ	×	W	M/W	Σ	×	M/W	Σ	Σ	Σ	×	M/W	Σ	W	M/M
21930	9776	21930	39876	9776	21930	21930	39876	21930	21930	21930	21930	21930	21930	21930	43757	68782	336244	21930	39876	336244	2423	21930	43757	68782	336244	21930	39876	336244	2423	21930	43757	68782	336244	21930	39876	336244
E	USA	FIN	USA	USA	E	E	USA	E	NE	F	FIN	NE	NE	E	USA	USA	POOL	NE	USA	POOL	ž	FIN	USA	USA	POOL	FIN	USA	POOL	ž	NE	USA	USA	POOL	FIN	NSA	POOL
Dietinen (1996)	Bazzano (2003)	Pietinen (1996)	Liu (2002)	Bazzano (2003)	Pietinen (1996)	Pietinen (1996)	Liu (2002)	Pietinen (1996)	Rimm (1996)	Wolk (1999)	Pereira (2004)	Pietinen (1996)	Liu (2002)	Pereira (2004)	Fehily (1993)	Pietinen (1996)	Rimm (1996)	Wolk (1999)	Pereira (2004)	Pietinen (1996)	Liu (2002)	Pereira (2004)	Fehily (1993)	Pietinen (1996)	Rimm (1996)	Wolk (1999)	Pereira (2004)	Pietinen (1996)	Liu (2002)	_						
大浴存存整備架	the first take dots, they depend that				不溶性食物繊維			リグニン		セルロース		INCP		般物由来食物繊維							野菜由来食物繊維								果物由来食物繊維							

INCP=不溶性かつセルロース以外のポリサッカライド USA=米国

FIN = ス・フ・ン・ド POOL = 10研究のブール分析 NED = オランダ 7C = 7か国研究 UK = 英国 M = 男性 W = 女性 NA = 示されていない - = 有意な負の関連あり

e=摂取量がfg/日増加したときのリスク変化量(%)。 行取量10g/日増加あたりの相対危険。

表2 つづき B=偏回帰係数。 h=摂取量6g/日増加あたりの相対危険。

— 60 —

R
耳
J
F
竹
和市
+
1234
45
祭作了巴图道方格計
の問記
7
U.S.
4
147
D)
量量
世
95
会加强推择
が解

次の「現在が現在で行る人」間、これ	女。女力変統(Proxのの方式)の内がでいた。 「Manager And	- WI 22		本學本				每年城市	でおり	個に対か はしなって 単位 は 記述		
	廉頭者者(年)	[4]	人数	体別	年	追跡年数	群の数	成る形式の相対	年に対する	の相対危険(95%信頼区間)	傾向性のP値	運運
子宮(研究数=1)												
総食物繊維	Jain (2000)	CND	3918	*	40-59	8-13	4	1.24		- 1.87)	>0.05	
水溶性食物機維	Jain (2000)	CND	3918	×	40-59	8-13	4	1.09		- 1.65)	>0.05	
不溶性食物纖維	Jain (2000)	CND	3918	×	40-59	8-13	4	1.10	(0.74	1.63)	>0.05	
穀物由来食物繊維	Jain (2000)	CND	3918	×	40-59	8-13	4	1.07		- 1.58)	>0.05	
果物由来食物繊維	Jain (2000)	CND	3918	×	40-59	8-13	4	1.08	(0.73	- 1.61)	>0.05	
野菜由来食物繊維	Jain (2000)	CND	3918	×	40-29	8-13	4	06.0	(0.61	- 1.34)	>0.05	
(1一类品目) 發拍												
存職へを七次ーフ数を登録権	Stolzenberg-Solomon (2002)	Z	27111	Σ	50-69	9	ເກ	1.01	0.59	- 1.74)	0.90	
大松存何を認為	Stolzenberg-Solomon (2002)	K	27111	2	50-69	9	LO.	0.95	(0.57	- 1.60)	0.99	
不溶性食物纖維	Stolzenberg-Solomon (2002)	R	27111	Σ	50-69	9	ıs	1.02	95'0)	- 1.63)	0.91	
卵巢(研究数=2)												
総食物機維	Kushi (1999)	USA	29083	*	55-69	10	4	1.01	(0.61	- 1.68)	0.95	
	Silvera (2007)	CND	49613	×	40-59	16	4					
	閉経的女性(ベースレイン時)							0.61	(0.33	- 1.12)	0.14	
	閉経後女性(ベースルイン時)							0.86	0.20	- 1.48)	0.95	
大浴性食物纖維	Silvera (2007)	CND	49613	×	40-59	16	4					
	開経前女性(ベースライン時)							0.64	(0.33	- 1.23)	0.32	
	閉経後女性(ベースライン時)							06'0	(0.48	(991 -	99.0	
不溶性食物繊維	Silvera (2007)	CND	49613	W	40-59	16	4					
	開経前女性(ペースライン時)							0.78	(0.43	- 1.43)	0.44	
	閉経後女性(ペースライン時)							0.65	(0.35	- 1.18)	0.11	
リグニン	Silvera (2007)	CND	49613	×	40-59	16	4					
	閉経前女性(ペースライン時)							0.59	(0.32	- 1.06)	0.07	
	開経後女性(ペースライン時)							1.03	(0.57	- 1.85)	0.80	
セルロース	Silvera (2007)	CND	49613	W	40-59	16	4					
	開経前女性(ベースライン時)							0.64	(0,35	- 1.14)	0.25	
	昭経後女性(ベースライン時)							0.81	0.46	- 1.44)	0.74	
穀物由來食物機縫	Silvera (2007)	CND	49613	W	40-59	16	4					
	閉経前女性(ベースライン時)							1.30	(0.72	- 2.36)	0.67	
	開経後女性(ベースライン時)							0.90	(0.47	- 1.73)	0.63	
果物由来食物織維	Silvera (2007)	CND	49613	M	40-59	16	44					
	開経前女性(ペースライン時)							0.63	(0.35	- 1.14)	0.10	
	閉経後女性(ベースライン時)							0.82	(0.48	- 1.40)	0.93	
野菜由来食物纖維	Silvera (2007)	CND	49613	M	40-59	16	4					
	閉経前女性(ベースライン時)							0.77	(0.43	- 1.35)	0.47	
	閉経後女性(ベースライン時)							1.14	(0.64	- 2.03)	0.97	
乳取(母乳数=15) ※◆性は	(000)	401	0 10 10 10 10 10 10 10 10 10 10 10 10 10	33	145	r	u	1 07	0.78	1	AN	
お及物種種	Granam (1992)	200	00001		200	- 0) U	000	000		200	
	Willett (1992)	USA	88484	\$;	20142	no i	n	20.	0.00	1 00 1	0.02	
	Ronan (1993)	CIND	10/1	AA	40.03	2		0,00	0.70	-	29.5	

数3 しつや											-	And in case of	
	Kushi (1995)	USA	34388	×	55-69	ID.	69						
	ER+/PR+							0.92	0.70	1.20	^	0.45	
	ER+/PR-							1.24	. 17.0	- 2.17	^	0.45	
	ER-/PR+							1.48	100	99.9 -	_	0.81	
	ER-/PR-							0.98		1.84	^	0.98	
	どちらかが不明							1.04	(0.77	- 1.42	_	0.85	
	Jarvinen (1997)	FIN	4697	×	>=15	25	က	1.1				AN	
	Verhoeven (1997)	NED	62573	Μ	55-69	4	ເດ	0.83		- 1.24	^	0.16	
(8)	Horn-Ross (2002)	USA	111526	W	>45	2	ເດ	0.9	(0.7	- 1.2	^	0.3	
	Sleri (2002)	IL	270	Α	71-70	9	63	0.73	0.33	1.59	^	0.45	
	Terry (2002)	CND	89835	Α	40-59	16	ES.	0.92	(0.78	- 1,09	^	0.16	
	Cho (2003)	USA	90655	M	26-46	8	ID.	0.88	(0.67	- 1.14	^	0.60	
	Holmes (2004)	USA	88678	×	34-59	18	ID.	0.98		- 1.11	^	AN	
	Mattisson (2004)	SWD	11726	×	>==50	80	ID.	99'0	(0.44	- 0.99	^	0.40	1
	Giles (2006)	AST	12273	3	40-69	6	0	1.08	(0.92	- 1.26) 3	NA	
	Cade (2007)	Š	35792	×	35-69	1	o ko	2				į	
	部 な は か か (ペース レメン 報)							0.48		960 -	_	0.01	1
	記録多々存(ペーメルイン程)							00 00	0.70	1.99	_	0.97	
	Suzuki (2008)	CIMS	51823	W	60	60	ΙΩ						
	ER+/PR+	1			;			0.85	0.64	- 113	^	0.35	
	ED+/DD-							0.03	0.50	1 31		0.25	
	FD-/DD+ 17+1: 45.48 7F BB							000	0.00	100		0000	
	ロローノアドナ、ロックルルントリ							0.00	0.00			0.00	
THE REAL PROPERTY AND ADDRESS OF THE PERSON	T (2000)	Civic	2000	141	0	ç	u	40.0	0.40			0.00	
水净压尿池纖維	leny (2002)	CNC	68883	Λ.	90-04	0 0	0 1	0.80	0.70		~ -	0.23	
	Cho (2003)	NSA	90655	×	26-46	00	2	0.87	(0.67	- 1.13	~ .	0.50	
不浴住疫物纖維	Terry (2002)	CND	89832	*	40-29	16	IO.	0.89	0.76		_	0.13	
	Cho (2003)	NSA	90655	*	26-46	80	ß	0.81	(0.62	- 1.07	^	0.14	
リグニン	Terry (2002)	CND	89835	M	40-29	16	ល	0.89	92.0)	- 1.03	^	90.0	
セルロース	Terry (2002)	CND	89835	3	40-59	16	ល	0.97	(0.83	- 1.14	^	0.64	
穀物由來食物繊維	Terry (2002)	CND	89835	×	40-59	16	22	0.90	(0.78	- 1.04	^	0.13	
	Cho (2003)	USA	90655	W	26-46	80	ın	0.91	69'0)	- 1.21	^	0.21	
	Giles (2006)	AST	12273	×	40-69	6	0	1.08	(0.95	- 1.23) a	NA A	
	Cade (2007)	ž	35792	×	35-69	7	S						
	閉経前女性(ベースライン時)							0.59	(0.32	- 1.10	^	0.05	1
	閉経後女性(ペースライン時)							1.15	89.0)	- 1.94	^	0.89	
	Suzuki (2008)	SWD	51823	W	09	80	ın						
	ER+/PR+							0.99	(0.77	-1.29	^	0.46	
	ER+/PR-							0.86	0.56	- 1.32	^	0.26	
	ER-/PR+、どちらかが不明							0.91	(0.75	1.11	^	0.10	
	ER-/PR-							69.0	(0.39	- 1.24	^	0.21	
學物由來食物描錄	Terry (2002)	CND	89835	×	40-59	16	ı,	1.07	(0.92	- 1.25	^	0.51	
	Cho (2003)	USA	90655	W	26-46	60	ເດ	1.13	0.88	- 1.46	_	0.54	
	(2) (2) (2) (3) (3)	TSA	19973	3	40-69	ø	C	1 00	0 88	- 113	-	NA	
	(2002)	- 2 -	06700	. 7	25 25) r) to	20.	00.0	-	0		
	Cade (2007) BB(22 柱 十 本 (メーレー くっぱ)	5	28/66	À	80-08	•	0	0.91	10.44	1 40	,	000	
	お称号 ペロ(ハーベン・ノミ) 四級 多 女 存(スーメルメン報)							1.10	0.66			0.64	

数3 つづき												
	Suzuki (2008)	SWD	51823	×	09	80	ω			1	6	
	ER+/PR+							0.62	0.39	(16.0 -	0.02	1
	ER+/PR-							0.80	0.29	- 1.22)	0.14	
	ER-/PR+、どちらかが不明							0.66 (0.47	- 0.93)	0.007	ı
	ER-/PR-							0.50	0.18	- 1.39)	0.15	
野菜由来食物繊維	Terry (2002)	CND	89835	X	40-59	16	2	0.90	0.75	- 1.08)	0.21	
	Cho (2003)	USA	90655	×	26-46	80	ហេ	0.97 (0.75	- 1.24)	0.52	
	Giles (2006)	AST	12273	×	40-69	6	0	1.07	0.95	- 1,20)a	NA	
	Cade (2007)	ž	35792	×	35-69	7	ro.					
	野経前女性(ペースライン時)							0.97	0.75	- 1.24)	0.52	
	開経後女性(ベースライン時)						21	1.20 (0.74	- 1.94	0.40	
	Suzuki (2008)	SWD	51823	>	09	00	LO.				0	
	ER+/PR+							0.85		1.18	0.23	
	ER+/PR-							1.03	0.59	1.80	0.79	
	ER-/PR+、どちらかが不明							0.92	0.72	1.18	0.50	
四日共令经额转	Gias (2006)	AST	12273	×	40-69	6	0	0.97	0.86	- 1.11) a	NA	
いも由来食物繊維	Giles (2006)	AST	12273	×	40-69	6	0	0.97	0.85	^	NA	
結盟・直陽(研究数=10)												
総食物繊維	Park (2005)	POOL	725628	M/W	AN	6-20	D.	0.94 (0.86	- 1.03)	0.75	
	Bingham (2003)	EPIC	519978	M/W	25-70	ın	22	0.75 (0.59	- 0.95)	0.01	ı
	Bingham (2005)	EPIC	519978	M/W	25-70	9	2	0.79 (0.63	(66.0 -	0.01	I
	Lin (2005)	USA	36976	×	>=45	10	2	0.75 (0.47	- 1.18)	0.11	
	Michels (2005)	USA	76947	W	30-55	16	2	0.94 (0.70	- 1.25)	0.61	
	Michels (2005)	USA	47279	Z	40-75	14	ນ	0.95 (69.0	- 1.32)	0.90	
	Otani (2006)	NAC	40761	Σ	40-69	10	D.	0.92	0.67	- 1.30)	0.30	
	Otani (2006)	NAC	45651	×	40-69	10	D.	1.40 (0.95	- 2.20)	0.90	
	Shin (2006)	CHA	73314	×	40-70	9	D.	1.00	0.60	(08.1 -	0.65	
	Nomura (2007)	USA	85903	Σ	45-75	7	വ	0.62	0.48	- 0.79)	0.002	1
	Nomura (2007)	NSA	105108	Α	45-75	7	ומ	0.88	0.67	1.14)	0.25	
	Schatzkin (2007)	NSA	489611	M/W	50-71	n 02	in ai	0.99	0.80	1.15	0.90	
	Wakai (2007)	Ndo	43115	M/M	40-79	00 (n u	0.73	0.0	1.03	0.03	1 1
水浴在飯物廳	Wakai (2007)	Ndo	43115	M/M	40-78	D 0	n u	10.0	0.47	108	0.02	į
个,如一种或必要精 机备子 中令各群群	Wakai (2007)	NA CIO	610070	M/ W	94-10	ס גר	ט נר	0.78	0.00	(860 -	0.06	ı
权约由不及均赖福	Ungram (2003)	LISA	36976	M	>=45	10) 107	0.97	0.66	- 1.42)	0.69	
	Michels (2005)	USA	76947	. >	30-55	16	co.	0.89	0.71	- 1.12)	0.63	
	Michels (2005)	USA	47279	Σ	40-75	14	ın	0.79	09.0	- 1.05)	0.19	
	Nomura (2007)	USA	85903	Σ	45-75	7	D)	0.86	0.69	(70.1 -	0.48	
	Nomura (2007)	USA	105108	×	45-75	7	2	1.00	0.78	- 1.27)	0.68	
	Schatzkin (2007)	USA	489611	M/W	50-71	5	22	0.86	0.76	(86.0 -	0.01	I
果物由来食物繊維	Bingham (2003)	EPIC	519978	M/W	25-70	ເດ	5	0.78	0.64	(160 -	0.17	1
	Lin (2005)	USA	36976	M	>=45	10	10	1.00	0.67	- 1.49)	0.65	
	Michels (2005)	USA	76947	×	30-55	16	5	0.88	0.68	- 1.13)	0.20	
	Michels (2005)	USA	47279	Σ	40-75	14	ın	0.92	0.68	- 1,23)	0.62	
	Nomura (2007)	USA	85903	Z	45-75	7	co.	0.78	0.63	(200 -	0.08	1
	Nomura (2007)	USA	105108	×	45-75	7	C)	0.82	0.64	- 1.05)	0.48	
	Schatzkin (2007)	USA	489611	M/W	50-71	2	22	1.08	0.95	- 1.23)	0.14	
				-								

表3 つづき								-		Service of the last of the las			-
	Wakai (2007)	NAC	43115	M/W	40-79	80	മ	1.06	0.78	1.43	~ .	0,55	
野菜由来食物繊維	Bingham (2003)	EPIC	519978	M/W	25-70	ເດ	in.	1.04	0.84	- 1.30	_	0.31	
	Lin (2005)	NSA	36976	×	>=45	10	D.	1.00	0.65	1.56	^	0.66	
	Michels (2005)	USA	76947	×	30-55	16	വ	1.20 (0.94	- 1.56	^	0.11	
	Michels (2005)	USA	47279	Σ	40-75	4	2	1.09	0.83	- 1.42	^	0.57	
	Nomura (2007)	USA	85903	M	45-75	7	ŧΩ	0.78 (0.62	- 0.97	^	0.05	1
	Nomura (2007)	USA	105108	×	45-75	7	Ω	0.95	0.75	- 1,20	^	0.77	
	Schatzkin (2007)	USA	489611	M/W	50-71	S	ស	1.01	0.89	- 1.15	^	0.70	
	Wakai (2007)	NdC	43115	M/W	40-79	80	ro.	0.89	0.65	- 1.24	^	0.65	
印在朱布智德籍	Lin (2005)	USA	36976	W	>=45	10	S	09.0	0.40	- 0.91	^	0.02	1
milities desired to place a party of the distance of these	Nomitra (2007)	USA	85903	Σ	45-75	7	S.	0.87	0.68	- 1.10	^	0.19	
	Nomira (2007)	USA	105108	×	45-75	7	ıΩ	1.16	0.90	- 1.49	^	0.32	
	Schatzkin (2007)	USA	489611	M/W	50-71	ıo	10	0.93	0.83	- 1.04	^	0.25	
	Wakai (2007)	Ndo	43115	M/W	40-79	ස	S	0.74 (0.55	- 0.99	^	90.0	ı
結腸(研究数=9)		000	000	100	414	00 0	и	4 00	000	- 111	-	0.40	
彩技物機能	Park (2005)	POOL	97007/	M/ W	24-50	07-0	מ כ	000	25.0			0.70	
	Willett (1990)	Ano:	00000	4 4	24 00	0 0	י פ	00.0	5				
	Seller (1998)	Ken	01700	AA		0	,	0 0	C tt	1.0	-	0 3	
	※殊様なし おおはない							1.0	0.6	2.8	` ^	9.0	
	Hiroham (2003)	FPIC	519978	M/W	25-70	ıO	so.						
	小你是	i						0.65	0.43	- 0.99	^	0.03	1
	九年高							0.73	0.46	- 1.19	^	60.0	
	Bingham (2005)	EPIC	519978	M/W	25-70	9	Ω						
	画力							0.77	0.58	- 1.02	^	0.01	1
	大大							0.58	0.39	- 0.86	· ·	<0.001	1
	右結陽							0.93	0.59	1.47	^	0.47	
	Michels (2005)	USA	76947	W	30-55	16	S	0.95	0.65	- 1.39	^	0.63	
	Michels (2005)	NSA	47279	×	40-75	14	ın	0.85	0.56	- 1.30	_	0.76	
	Shin (2006)	CHA	73314	×	40-70	9	2	1.20	0.60	- 2.40	_	0.84	
	Nomura (2007)	NSA	85903	N	45-75	7	2	0.64	0.48	- 0.86	<u> </u>	0.03	1
	Nomura (2007)	NSA	105108	W	45-75	7	2	0.92	0.68	1.25	0	0.36	
	Wakai (2007)	NGO	43115	M/W	40-79	80	iC)	0.58	0.38	- 0.88	~	0.002	1
水溶性食物機	Wakai (2007)	UPN	43115	M/W	40-79	00	2	0.55	0.36	- 0.84	^ t	0.002	ı
不溶性食物機維	Wakai (2007)	NAC	43115	M/W	40-79	co	ın	0.63	0.42	96.0 -	~ ~	0.004	1
穀物由来食物繊維	Willett (1990)	USA	88751	M	34-59	9	Ω	0.74	0.43	- 1.21	_	0.62	
	Bingham (2005)	EPIC	519978	M	25-70	9	ດ	0.93	0.76	1.15	0	0.44	
果物由来食物纖維	Willett (1990)	USA	88751	M	34-59	9	2	0.62	0.37	1.05	0	0.12	
	Bingham (2005)	EPIC	519978	M/W	25-70	9	C)	0.81	0.68	- 0.97	-	0.42	
760	Wakai (2007)	NAC	43115	M/M	40-79	60	22	1.06	0.73	- 1.54	0	0.83	
野菜由来食物繊維	Willett (1990)	NSA	88751	M	34-59	9	S	1.07	0.65	- 1.76	0	0.87	
	Bingham (2005)	EPIC	519978	M/M	25-70	9	D	0.94	92.0)	- 1.16	9	0.52	
	Wakai (2007)	Ndo	43115	M/W	40-79	80	n n	0.74	0.50	1.1	<u> </u>	0.17	
豆由来食物纖維	Bingham (2005)	EPIC	519978	M/W	25-70	9	ıo	0.98	0.82	- 1.17	1)	0.86	
	Wakai (2007)	Ndo	43115	M/W	40-79	80	so.	0.67	(0.47	- 0.95	2	0.04	1
证据(研究第二7)													
総合物繊維	Park (2005)	POOL	725628	M/W	¥	6-20	2	0.85	(0.72	1.01	-	0.18	

History (2005) EPIC 518978 M/W 25-70 6 5 101 (0.52 - 2.29) Michaels (2005) USA 47279 M 40-75 14 5 110 (0.52 - 2.29) Michaels (2005) USA 47279 M 40-70 6 5 100 (0.40 - 2.10) Nontract (2007) USA 47279 M 40-70 6 5 0.08 (0.52 - 2.89) Nontract (2007) USA 105108 W 45-75 7 5 0.02 (0.48 - 1.43) Nontract (2007) USA 105108 W 45-75 7 5 0.02 (0.48 - 1.43) Michaels (2007) USA 105108 W 45-75 7 5 0.02 (0.48 - 1.43) Michaels (2007) USA 105108 W 45-75 7 5 0.02 (0.48 - 1.43) Michaels (2007) USA 105108 W 46-75 7 5 0.02 (0.48 - 1.43) Michaels (2007) USA 105108 W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 105108 W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 105108 W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.59 - 2.07) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.49 - 1.37) Michaels (2007) USA 40115 W/W 40-79 8 5 110 (0.49 - 1.37) Michaels (2007) USA 75-75-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7		The state of the s	EPIC	519978	MVM	25-70	co.	ນ	0.80	(0.53	- 1.22)	0.32	
Michels (2005) USA 76847 W 30~55 16 5 110 (052 - 14 (2005) USA 76847 W 30~55 14 5 110 (052 - 14 (2005) USA 7313 W 40~75 14 5 114 (052 - 14 (2005) USA 7313 W 40~75 7 5 0.90 (0.40 - 14 (2005) USA 105108 W 45~75 7 5 0.90 (0.40 - 14 (2005) USA 105108 W 45~75 7 5 0.90 (0.40 - 14 (2005) USA 105108 W 45~75 7 5 0.90 (0.40 - 14 (2005) USA 105108 W 45~75 7 5 0.90 (0.40 - 14 (2005) USA 105108 W 40~79 8 5 1.10 (0.59 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 W 40~79 8 5 0.94 (0.49 - 14 (2005) USA 105108 W 40~79 W 4		Bingham (2005)	EPIC	519978	M/W	25-70	9	D	0.81	0.55	- 1.21)	0.50	
Shinches (2005) USA 47229 M 40-75 14 5 134 (062 - 134		Michels (2005)	USA	76947	W	30-55	16	S	1.10	(0.52	- 2.29)	0.91	
Sin (2006) CHA 73314 W 40-70 6 5 0.90 (0.40 - 10.40		Michels (2005)	NSA	47279	×	40-75	14	ın	1.34	(0.62	- 2.89)	0.58	
Nomura (2007) USA 85903 M 45~75 7 5 0.52 (0.32 – Nomura (2007) USA 105108 W 45~75 7 5 0.52 (0.32 – Nomura (2007) USA 105108 W 45~75 7 5 0.93 (0.48 – 生産物職 Wakai (2007) UPN 43115 M/W 40~79 8 5 0.94 (0.49 – 日来食物職権 Wakai (2007) UPN 43115 M/W 40~79 8 5 0.94 (0.49 – 日来食物職権 Wakai (2007) UPN 43115 M/W 40~79 8 5 0.94 (0.49 – 日来食物職権 Wakai (2007) UPN 43115 M/W 40~79 8 5 0.94 (0.55 – 日来食物職権 Wakai (2007) UPN 43115 M/W 40~79 8 5 0.94 (0.59 – 上人下リア		Shin (2006)	CHA	73314	×	40-70	9	ın	0.90	0.40	- 2.10)	0.34	
Websal (2007) USA 105108 W 45-75 7 5 0.82 (0.48 - 105108 W 46-75 7 5 0.082 (0.48 - 105108 (2007) JPN 43115 M/W 40-79 8 5 0.94 (0.49 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.94 (0.49 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.93 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.93 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.93 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.93 (0.58 - 105108 W 40-10 (2007) JPN 43115 M/W 40-79 8 5 0.93 (0.58 - 105108 W 40-79 W 40-79 8 5 0.93 (0.58 - 105108 W 40-79 W 40		Nomura (2007)	USA	85903	Σ	45-75	7	ID	0.52	(0.32	- 0.84 >	0.004	1
集食物機 Wakai (2007) JPN 43115 M/W 40-79 8 5 110 (0.59 - 4g的機 Wakai (2007) JPN 43115 M/W 40-79 8 5 1.00 (0.58 - 4g的機構 Wakai (2007) JPN 43115 M/W 40-79 8 5 1.00 (0.58 - 4g的機構 Wakai (2007) JPN 43115 M/W 40-79 8 5 1.00 (0.58 - 4g的機構 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 4g的機構 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 4grb Misk Makai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 4grb Misk Makai (2007) JPN 43115 M/W 40-79 8 5 0.91 (0.58 - 4grb Misk Makai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.49 - 4grb Misk Makai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 4grb Misk Misk Makai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 4grb Misk Misk Misk Misk Misk Misk Misk Misk		Nomura (2007)	USA	105108	M	45-75	7	D.	0.82	(0.48	- 1.43 >	0.64	
生食物構 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.94 (0.49 - 40-40 4 4 0.49 - 40-40 4 4 0.49 - 40-40 4 4 0.49 - 40-40 4 4 0.49 - 40-40 4 4 0.49 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 4 0.40 - 40-40 4 0.40 4 0.40 - 40-40 4 0.40 4		Wakai (2007)	Ndo	43115	M/W	40-79	8	ın	1,10	(0.59	- 2.07)	0.67	1
生食物繊維 Wakai (2007) JPN 43115 M/W 40-79 8 5 1.08 (0.58 - 1.4年食物繊維 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 1.46を物機権 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 1.46を物機権 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 1.46を食物機権 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 1.46を食物機権 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 1.46を食物機権 Wakai (2007) JPN 40-79 8 5 0.81 (0.48 - 1.46 (0.91 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 - 1.46 (0.48 (0.4	水溶性食物模	Wakai (2007)	Ndo	43115	M/W	40-79	00	S	0.94	(0.49	- 1.78)	0.64	
由来食物繊維 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.92 (0.55 - 4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	不溶性食物機維	Wakai (2007)	NdC	43115	M/W	40-79	00	S	1.08	(0.58	- 2.02)	0.66	
由来食物職権 Wakai (2007) JPN 43115 M/W 40-79 8 5 1.68 (0.91 ストラリア - ストラリア 40-79 8 5 0.81 (0.48 ストラリア - ストラリア 40-79 8 5 0.81 (0.48 ストラリア - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲル - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲン・レセブター - ストロゲル - ストロゲン・レセブター - ストロゲル - ストロゲ	果物由来食物糕維	Wakai (2007)	Ndo	43115	M/M	40-79	00	D	0.92	(0.55	- 1.54)	0.84	
条食物繊維 Wakai (2007) JPN 43115 M/W 40-79 8 5 0.81 (0.48 - 1 コーストラリア ーストラリア トダー ドロゲン・レセブター オイていない ランダ オイていない フング メリカ スリカ	野菜由来食物織維	Wakai (2007)	NdC	43115	M/W	40-79	80	rD.	1.68	(0.91	- 3.11)	90.0	
AST: オーストラリア CHA: 中国 CND: カナダ ERD: エストロゲン・レセプター FIN: フィンランド TTL: イタリア JPN: 日本 NH: 日本 NH: 日本 NH: カランダ POOL: 13研究のブール分析 POOL: 13研究のブール分析 NEO: オランダ NH: スープ・アイフェーデン UN: イギリス UN: イギリス	豆由来食物織維	Wakai (2007)	NdC	43115	M/W	40-79	ထ	S	0.81	(0.48	- 1.37)	0.42	
CNU: カナッ EPPIC: European Prospective Investigation into Cancer and Nutrition(ヨーロッパ10カ国) ER: エストロゲン・レセブター ITL: イタリア JPN: 日本 M: 男性 NPO: オランダ NPO: オランダ NPO: オランダール分析 PR: フケステロン・レセブター SWD: スケェーデン UK: イギリス	CHA: 4-M												
EPIC: European Prospective Investigation into Cancer and Nutrition(ヨーロッパ10方国) ER: エストロゲン・レセプター ITI: イタリア IN: コイケリア M: みされていない NEO: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス UK: イギリス	CND: 九十夕												
ER: エストロゲン・レセブター FIN: フインランド TTL: イタリア M: 日本 M: 男本 M: ラされていない NED: オランダ POOL: 13母究のプール分析 PR: プロゲステロン・レセブター SWO: スウェーデン UK: イギリス W: イギリス W: アメリカ W: ケギリス	EPIC: European Prospet	tive Investigation into Cancer a	ルプロー目 (コーロン)	(10力国)									
FIN: フィンランド ITL: イタリア JPN: 日本 M: 男性 NA: 示されていない NED: オランダ POOL: 13研究のブール分析 PR: ブロゲステロン・レセブター SWD: スウェーデン UK: イギリス W: オギリス W: アメリカ M: 女性	ER: エストロゲン・レセブ	7											
ITL: イタリア JPN: 日本 M: 男性 NA: 示されていない NED: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセブター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	FIN: フィンレンド												
M: 日本 M: 男性 NA: 示されていない NED: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	TT. 1917												
M: 男性 NA: 示されていない NED: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: タば	JPN: 日本												
NA: 示されていない NED: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	M: 男性												
NED: オランダ POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	NA: 示されていない												
POOL: 13研究のプール分析 PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	NED: オランダ												
PR: プロゲステロン・レセプター SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	POOL: 13研究のプール	分析											
SWD: スウェーデン UK: イギリス USA: アメリカ W: 女性	PR: プロゲステロン・レセ	プター											
UK: イギリス USA: アメリカ W: 女性	SWD: スウェーデン												
USA: アメリカ W: 女性	UK: イギリス												
W. 女性	USA: PXIJ												
	W. 女体												
	1 1 1 1												

a: 摂取量1g/日增加あたりの相対危険

表4 食物繊維が血圧に与える影響を検討した無作為割付試験のメタ・アナリシス

筆頭着者(年) 研究數 総対象者数 年齢(歳) 介入期間(週) 追加食物繊維量(g/日) 収締模量(g/日) 収締期(mmHg) 拡張期(mmHg) 拡張期(mmHg) Streppel (2005) 24 1404 23-63 2-24 3.5-42.6 -1.13 (-2.49, 0.23) -1.26 (-2.04, -0.48) Wheton (2005) 25 1477 18-78 2月26日 3.8-125 -1.15 (-2.68, 0.39) -1.65 (-2.70, -0.61)							血圧の変化は	95%信頼区間)
1404 23-63 2-24 3.5-42.6 -1.13 (-2.49, 0.23) 1477 18-78 2月26日 3.8-125 -1.15 (-2.68, 0.39)	筆頭蓄者(年)	研究数	総対象地数	年齡(歲)	介入期間(週)	追加食物繊維量(g/日)	収縮期(mmHg)	拡張期(mmHg)
2月26日 3.8-125 -1.15 (-2.68, 0.39)	Streppel (2005)	24	1404	23-63	2-24	3.5-42.6	-1.13 (-2.49, 0.23)	-1.26 (-2.04, -0.48)
	Whelton (2005)	25	1477	18-78	2月26日	3.8-125	-1.15 (-2.68, 0.39)	-1.65 (-2.70, -0.61)

衰5 食物繊維が血中コレステロールに与える影響を検討した介入試験のメタ・アナリシス

追加食物機 食物機雑1gあたりのコレステロール(mg/dL)の変化(95%信頼区間)		90 50 49 9.5 -1.10 (-1.34, -0.87) -1.13 (-1.37, -0.89) -0.07 (-0.13, -0.01) 0.07 (-0.35, 0.50)
	年龄(歳) 介入)	50
	認対象者数	2990
) 研究数	67
	筆頭著者(年)	Brown (1999)

		核	拉破船					結果影数	の中が個		
海回鄉班(年)	PH.	人数		年齡	追跡年数	群の数	結果究数	最高摄取群	嚴低摂取群	傾向性のP値	副連
Ludwig (1999)	IM	1602	男女	18-30	-	2	体腫(kg)	78.7	75.0	<0.001	ł
	国	1598	男女	18-30	10	ıs	ウエスト・ヒップ比	0.813	0.801	0.004	1
	米國(婦人)	1307	男女	18-30	10	ເດ	存順(内)	83.5	79.9	0.001	1
	題)開	1302	男女	18-30	10	ın	ウエスト・ヒップ比	0.809	0.799	0.05	1
1 in (2003)	題米	74091	女体	38-63	12	ıO	体重の変化(kg)	1.73	0.97	<0.0001	1
							問道度の数化(kg/m2)	0.64	0.36	<0.0001	1
Koh-Baneriee (2004)	巡米	27082	男性	40-75	89	rO.	体重の変化(kg)	1.4	0.39	<0.0001	ĺ
Jobal (2006)	ナンマーク	862	男性	30-60	IO.	0 a	体量の数代 (kg)	0.0096	0.0069	0.17	
de a a a ser como de a	ナンマーク	006	女体	30-60	ιΩ	0 a	体重の変化 (kg)	-0.0223	0.0134	0.10	

筆頭著者(年)	筆頭著者(年) 研究デザイン 国 対象者	ला		対象者		食事調査法	食物機維摂	便秘の評価	便秘者数(有
			人数	性別	年齡		取量(g/日)		症率)
有意な関連なし									
Murakami (2007)	CS	Ndo	3825	×	18-20	DHO	11.8 (mean)	Rome 1基準	1002 (26)
Everhart (1989)	PC (10 y)	USA	6790	W	25-74	1 × 24HR	8.2 (median)	BMF (<3 times/wk)	1412 (21)
Towers (1994)	00	USA	36	M/W	98-09	7 × DR	16.0 (mean)	BMF (<3 times/wk)	18 (50)
Campbell (1993)	CS	ZN	727	M/W	70-102	FFQ	NA	BMF (<2.33 times/wk)	34 (5)
Murakami (2006)	CS	NAC	1705	M	18-20	DHO	12.0 (mean)	自己申告	436 (26)
Whitehead (1989)	CS	USA	116	W	65-93	FFQ	9.2 (mean)	自己申告	36 (31)
有意な負の関連あり									
Dukas (2003)	CS	USA	62036	W	36-61	FFQ	12.5 (median)	BMF (<3 times/wk)	3327 (5)
Sanjoaquin (2003)	CS	¥	4654	Σ	22-97	FFQ	17.3 (mean)	BMF	AN
Sanjoaquin (2003)	CS	当	15976	W	22-97	FFQ	15.9 (mean)	BMF	AN
Everhart (1989)	PC (10 y)	USA	4414	Σ	25-74	1 × 24HR	8.2 (median)	BMF (<3 times/wk)	353 (8)
有意な正の関連あり									
Whitehead (1989)	CS	USA	59	Σ	65-93	FFQ	7.3 (mean)	自己申告	19 (32)

資 料

- Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M. Monetary costs of dietary energy reported by young Japanese women: association with food and nutrient intake and body mass index. Public Health Nutr 2007; 10: 1430-9.
- 2) Murakami K, Sasaki S, Takahashi Y, Uenishi K, the Japan Dietetic Students' Study for Nutrition and Biomarkers Group. Dietary energy density is associated with body mass index and waist circumference, but not with other metabolic risk factors, in free-living young Japanese women. Nutrition 2007; 23: 798-806.
- Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M, the Freshmen in Dietetic Courses Study II Group. Dietary fiber intake, dietary glycemic index and load, and body mass index: a cross-sectional study of 3931 Japanese women aged 18-20 years. Eur J Clin Nutr 2007; 61: 986-95.
- 4) Murakami K, Sasaki S, Takahashi Y, Uenishi K, Yamasaki M, Hayabuchi H, Goda T, Oka J, Baba K, Ohki K, Kohri T, Muramatsu K, Furuki M. Hardness (difficulty of chewing) of the habitual diet in relation to body mass index and waist circumference in free-living Japanese women aged 18-22 y. Am J Clin Nutr 2007; 86: 206-13.
- 5) Murakami K, Sasaki S, Takahashi Y, Uenishi K, Yamasaki M, Hayabuchi H, Goda T, Oka J, Baba K, Ohki K, Watanabe R, Sugiyama Y. Nutrient and food intake in relation to serum leptin concentration among young Japanese women. Nutrition 2007; 23: 461-8.
- 6) Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M, the Freshmen in Dietetic Courses Study II Group. Association between dietary fiber, water and magnesium intake and functional constipation among young Japanese women. Eur J Clin Nutr 2007; 61: 616–22.
- Murakami K, Sasaki S, Okubo H, Takahashi Y, Hosoi Y, Itabashi M, the Freshmen in Dietetic Courses Study II Group. Food intake and functional constipation: a cross-sectional study of 3,835 Japanese women aged 18-20 years. J Nutr Sci Vitaminol (Tokyo) 2007; 53: 30-6.
- 8) Okubo H, Sasaki S, Murakami K, Kim MK, Takahashi Y, Hosoi Y, Itabashi M, the Freshmen in Dietetic Courses Study II Group. Dietary patterns associated with functional constipation among Japanese women aged 18 to 20 years: a cross-sectional study. J Nutr Sci Vitaminol (Tokyo) 2007; 53: 232-8.

Monetary costs of dietary energy reported by young Japanese women: association with food and nutrient intake and body mass index

Kentaro Murakami¹, Satoshi Sasaki^{1,*}, Hitomi Okubo², Yoshiko Takahashi¹, Yoko Hosoi¹ and Mami Itabashi¹

¹Nutritional Epidemiology Program, National Institute of Health and Nutrition, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8636, Japan: ²Department of Nutrition Sciences, Kagawa Nutrition University, Saitama, Japan

Submitted 17 May 2006: Accepted 16 November 2006: First published online 18 June 2007

Abstract

Objective: Little is known about the relationship of monetary diet costs to dietary intake and obesity, particularly in non-Western populations. This study examined monetary cost of dietary energy in relation to diet quality and body mass index (BMI) among young Japanese women.

Design: Dietary intake was assessed by a validated, self-administered, diet history questionnaire. Diet costs were estimated using retail food prices. Monetary cost of dietary energy (Japanese yen 1000 kcal⁻¹) was then calculated. BMI was computed from self-reported body weight and height.

Subjects: A total of 3931 female Japanese dietetic students aged 18–20 years. Results: Monetary cost of dietary energy was positively associated with intakes of fruits, vegetables, fish and shellfish, and pulses; however, higher monetary cost of dietary energy was also associated with higher consumption of fat and oil, meat and energy-containing beverages, and lower consumption of cereals (rice, bread and noodles) (all P for trend <0.01). At the nutrient level, monetary cost of dietary energy was positively associated with intakes of dietary fibre and key vitamins and minerals, but also associated positively with intakes of fat, saturated fatty acids, cholesterol and sodium, and negatively with carbohydrate intake (all P for trend <0.0001). After adjustment for possible confounders, monetary cost of dietary energy was quite weakly but significantly negatively associated with BMI (P for trend = 0.0197).

Conclusions: Increasing monetary cost of dietary energy was associated with both favourable and unfavourable dietary intake patterns and a quite small decrease in BMI in young Japanese women.

Keywords
Monetary cost
Energy intake
Energy density
Nutrient intake
Food intake
Diet quality
Body mass index
Japanese women
Epidemiology

While food choice is influenced by a large number of factors¹, the price of food is clearly an important determinant^{2,3}. An inverse relationship exists between the energy density of foods (energy derived from foods per edible weight of foods) and energy cost (monetary cost of foods per energy derived from foods)⁴. Generally, energy-dense and nutrient-dilute foods such as cereals, fats and oils, and sugar and sweets provide dietary energy at the lowest cost. Conversely, the cost per calorie of energy-dilute and nutrient-dense foods including fish and shellfish, vegetables and fruit is much higher.

If healthier foods cost more then so too will healthier diets, suggesting that consumers with limited financial resources might select energy-dense and nutrient-dilute diets as a means of saving money. Observational studies (albeit a limited number) on the cost of freely chosen diets have consistently shown that healthful diets are

more expensive than less healthful diets^{5–10}. To our knowledge, however, all studies of self-selected diets and monetary costs have been conducted in European countries, with none reported in Asian countries, including Japan.

In contrast to Western populations, Japanese obtain the largest part of their energy intake from rice (29%)¹¹. Further, fat intake is relatively low (≤30% energy)¹². The relationship of dietary costs to dietary intake and diet quality may therefore differ between Western and Japanese populations. Here, we examined the monetary cost of dietary energy in relation to food and nutrient intake and energy density in a group of young Japanese women. Given recent findings from Spain of the higher monetary costs of healthy dietary patterns associated with a lower body mass index (BMI)¹⁰, we also examined the association between monetary cost of dietary energy and BMI.

^{*}Corresponding author: Email stssasak@nih.go.jp

Subjects and methods

Subjects and survey procedure

The present study was based on a self-administered questionnaire survey among dietetic students (n = 4679) from 54 universities, colleges and technical schools in 33 of 47 prefectures in Japan. Staff at each institution distributed two questionnaires on dietary habits and other lifestyle items during the preceding month at orientation sessions or early lectures for freshman students who entered dietetic courses in April 2005, in most institutions within 2 weeks after the course began. Students filled out the questionnaires during the session, lecture or at home, and then submitted the completed forms to staff at each institution. The staff then checked the responses according to the survey protocol. When missing answers or logical errors were identified, the students were asked to complete the questionnaire again. The staff then mailed the completed questionnaires to the survey centre, where the answers were checked once more. Problematic questionnaires were returned to the staff at the respective institution, and the students were asked to complete the questionnaires again. All questionnaires were thus checked at least once each by staff at the respective institution and at the survey centre. Most surveys were completed by May 2005. The protocol of the study was approved by the Ethics Committee of the National Institute of Health and Nutrition.

In total, 4394 students (4168 women and 226 men) answered two questionnaires (response rate = 93.9%). For the present analysis, we selected female subjects aged 18–20 years (n= 4060). We then excluded those who were in an institution where the survey had been conducted at the end of May (n= 98), those with extremely low or high energy intake (<500 kcal day $^{-1}$ or >4000 kcal day $^{-1}$) (n= 23) and those with missing information on the variables used (n= 12). As some subjects were in more than one exclusion category, the final analysis sample comprised 3931 women.

Dietary intakes

Dietary habits during the preceding month were assessed using a previously validated, self-administered, diet history questionnaire (DHQ)^{13–15}. This is a 16-page structured questionnaire that consists of the following seven sections: general dietary behaviour; major cooking methods; consumption frequency and amount of six alcoholic beverages; consumption frequency and semi-quantitative portion size of 122 selected food and non-alcoholic beverage items; dietary supplements; consumption frequency and semi-quantitative portion size of 19 cereals usually consumed as staple foods (rice, bread and noodles) and *miso* (fermented soybean paste) soup; and open-ended items for foods consumed regularly (once a week or more) but not appearing in the DHQ. Items and portion sizes were derived primarily from data

in the National Nutrition Survey of Japan and several recipe books for Japanese dishes¹³.

Estimates of dietary intake for 148 food and beverage items, energy and nutrients were calculated using an ad boc computer algorithm for the DHQ based on the Standard Tables of Food Composition in Japan 16. Information on dietary supplements and data from the open-ended questionnaire items were not used in the calculation. Energy-adjusted values of dietary intake were calculated using the percentage of energy for macronutrients and the amount per 1000 kcal for dietary fibre, vitamins, minerals and foods. Alcohol intake was not used because of an extremely low mean intake (0.8 g day⁻¹). Dietary energy density (kcal g⁻¹) was calculated by dividing total energy intake by the estimated edible weight of all foods and caloric beverages consumed (excluding alcohol). Detailed descriptions of the methods used to calculate dietary intake and the validity of the DHQ have been published elsewhere 13-15. Pearson correlation coefficients between the DHQ and 3-day estimated dietary records were 0.48 for energy, 0.48-0.55 for energy-yielding nutrients (excluding alcohol) and 0.19-0.68 for vitamins and minerals among 47 women¹³. In addition, the Pearson correlation coefficients between the DHQ and 16-day weighed dietary records among 92 women were 0.69 for total dietary fibre, 0.40 for energy density and 0.33 for edible weight consumed, and the Spearman correlation coefficients for food groups ranged from 0.28 to 0.59 (Sasaki S, unpublished observations, 2004).

Dietary costs

Monetary costs of habitual diets obtained from the DHQ (Japanese yen day⁻¹) were calculated by multiplying the amount of food consumed from the DHQ (g day⁻¹) by the estimated price of each food (Japanese yen g^{-1}) and summing the products (1 Japanese yen = 0.007 Euros = 0.008 US dollars in April 2006). The procedure for estimating costs was based on the assumption that all foods were purchased and then prepared and consumed at home. Alcoholic beverages (six items), non-alcoholic and non-caloric beverages (four items), drinking water, noodle soup, and water for miso soup were excluded from calculation. The price of each food was obtained mainly from the National Retail Price Survey 2004¹⁷ (122 of 135 items; 90%). This survey is conducted annually in 167 villages, towns and cities, and average prices were calculated as mean values of all survey areas, weighted for population size. For food items whose prices are not published in the National Retail Price Survey (13 of 135 items; 10%), prices were taken from the websites of nationally distributed supermarket (Seiyu, Japan) and fast-food restaurant (McDonalds, Japan and Mister Donut, Japan) chains. Sale prices were not used to determine costs. Costs of combined foods such as pizza were calculated using prices of frozen equivalents. Calculation included correction for preparation and waste

1432 K Murakami et al.

Table 1 Monetary cost of dietary energy of each food*

Food group	Food item (Japanese yen 1000 kcal ⁻¹)†
Rice	White rice (148), white rice mixed with barley (170), white rice with rice germ (149), 50% polished rice (149), 70% polished rice (148), brown rice (151)
Bread	White bread (154), butter roll (163), croissant (94), pizza (594), Japanese-style pancake (528), pancake (146), cornflakes (260)
Noodles	Japanese noodles (buckwheat and Japanese wheat noodles) (197), instant noodles (418), Chinese noodles (361), spaghetti (126)
Potatoes	Potato chips (268), French fries (466), other potatoes (390), sweet potatoes, yams and taros (624), konnyaku (devil's tongue jelly) (8639)
Confectioneries	Rice crackers (301), snacks made from wheat flour (282), Japanese sweets with azuki beans (598), Japanese sweets without azuki beans (564), cakes (758), cookies and biscuits (265), chocolates (242), candies, caramels and chewing gum (1297), jellies (841), doughnuts (411), cake bread (280), jam and marmalade (538), sugar for coffee and tea (48), sugar used during cooking (48)
Fat and oil	Margarine (72), mayonnaise (83), salad dressing (283), oils used during cooking (93), butter (211)
Pulses	Tofu (429), tofu products (582), natto (443), boiled beans (216), miso as seasoning (179), miso in miso soup (179), peanuts (247), other nuts (231)
Fish and shellfish	Dried fish (1005), small fish with bones (1534), canned tuna (667), eel (2113), white meat fish (2774), blue-back fish (812), red meat fish (1979), ground fish meat products (1048), shrimp (5498), squid and octopus (2488), oysters (4461), other shellfish (3392), fish eggs (2727), boiled fish, shellfish and seaweed in soy sauce (993), salted fish intestine (1608)
Meat	Ground beef and pork (1093), chicken (782), pork (712), beef (1563), liver (987), ham and sausages (935), bacon (545)
Eggs	Eggs (247)
Dairy products	Full-fat milk (302), low-fat milk (439), skimmed milk (439), sweetened yoghurt (585), non-sweetened yoghurt (632), moderately sweetened yoghurt (608), cheese (436), cottage cheese (1407), ice cream (687), coffee cream (908)
Vegetables	Carrots (825), pumpkins (384), tomatoes (3307), green peppers (3754), broccoli (3329), green leafy vegetables (4203), salted pickled plums (2468), other salted pickles (4195), cabbage (1768), cucumbers (3803), lettuce (4554), Chinese cabbage (1685), bean sprouts (1397), radishes (1045), onions (706), cauliflower (3457), aubergine (3389), burdock (1215), lotus root (2023), tomato juice (1917), vegetable juice (1917), mushrooms (7188), wakame seaweed (119 163), laver (9741)
Fruits	Oranges (1287), bananas (387), apples (1030), strawberries (4396), grapes (2385), peaches (2513), pears (1330), persimmons (1038), kiwi fruits (1606), melons (2127), watermelons (1218), raisins (365), canned fruits (480), 100% fruit juice (512), other fruit juice (421)
Non-alcoholic, energy-containing beverages	Cocoa (993), lactic and bacteria beverages (278), soft drinks (528), nutritional supplement drinks (1679)
Other foods	Ketchup (432), non-oil salad dressing (1305), soy sauce (400), curry and roux in stew (182), corn soup (514), Chinese soup (514), nutritional supplement bars (525), artificial sweeteners (2568), table salt (11 (/100 g)), salt used during cooking (11 (/100 g))

^{*} Foods not listed above (six alcoholic beverages, four non-alcoholic and non-caloric beverages, drinking water, noodle soup, water for miso soup) were not used for the calculation of diet costs.

†1 Japanese yen = 0.007 Euros = 0.008 US dollars in April 2006.

(e.g. trimming and peeling of vegetables and fruits, removal of bones and skin from fish). Monetary cost of dietary energy (Japanese yen 1000 kcal⁻¹) was calculated by dividing the estimated daily cost of the diet (Japanese yen day⁻¹) by the daily energy intake (kcal day⁻¹) and multiplying by 1000. The monetary cost of dietary energy of each food is listed in Table 1.

BMI

Body weight and height were self-reported as part of the DHQ. BMI was calculated as weight (kg) divided by the square of height (m).

Other variables

Residential areas, reported in the 12-page lifestyle questionnaire, were grouped into six regions (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chugoku and Shikoku; Kyushu) based on blocks used in the National Nutrition Survey in Japan¹² and hereafter referred to as

'residential block'. The residential areas were also grouped into three categories according to population size (city with population ≥1 million; city with population <1 million; town and village) and hereafter referred to as 'size of residential area'. The lifestyle questionnaire also assessed living status (living alone; living with family; living with others), current smoking (yes; no) and whether currently trying to lose weight (yes; no).

Subjects additionally reported in the questionnaire the time they usually got up and went to bed, which was used to calculate sleeping hours, and the frequency and duration of high- and moderate-intensity activities, walking and sedentary activities. Each activity was assigned a metabolic equivalent task (MET) value from a previously published table, namely 0.9 for sleeping, 7.0 for high-intensity activity, 5.0 for moderate-intensity activity, 3.3 for walking and 1.5 for sedentary activity was multiplied by its MET value, and all MET-hour products were summed to give a total MET-hour score for the day,

which essentially corresponded to the number of kilocalories per kilogram of body weight expended by the individual during the day. The standard value of basal metabolic rate for Japanese people was also expressed as the number of kilocalories per kilogram of body weight expended by an individual during the day. Physical activity level was then calculated by dividing the total MET-hour score by the standard value of basal metabolic rate for Japanese women aged 18–29 years²⁰. Current alcohol drinking (yes; no), current dietary supplement use (yes; no) and rate of eating (very slow; relatively slow; medium; relatively fast; very fast) were assessed using the DHQ.

Underreporting of energy intake

Underreporting of energy intake is an ongoing controversy in studies using self-report instruments to collect dietary information 21,22. To estimate the prevalence of energy underreporting in this population, the ratio of reported energy intake to basal metabolic rate (estimated according to a published equation for Japanese women aged 18-29 years using reported body weight²⁰) was computed. Using the Goldberg cut-off method²¹ recently re-evaluated by Black²³, a ratio of 1.09 was calculated as the lower cut-off point for reasonable habitual energy intake. Persons with ratios of energy intake to basal metabolic rate <1.09 were considered by this technique to be energy underreporters (n = 666; 17%). Results in all subjects and those obtained after exclusion of energy underreporters did not differ materially. Therefore, we only present the analyses of all subjects.

Statistical analysis

All statistical analyses were performed using SAS statistical software, version 8.2 (SAS Institute Inc.). We calculated both crude and multivariate-adjusted means of dietary intake and BMI by quintile categories of monetary cost of dietary energy. Confounding variables included in the multivariate models were residential block (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chugoku and Shikoku; Kyushu), size of residential area (city with population ≥1 million; city with population <1 million; town and village), living status (living with family; living alone; living with others), current smoking (yes; no), current alcohol drinking (yes; no), current dietary supplement use (yes; no), currently trying to lose weight (yes; no), rate of eating (very slow; relatively slow; medium; relatively fast; very fast), and physical activity level (continuous) and energy intake (kcal day⁻¹, continuous) for variables except for energy intake. For analyses on BMI, intakes of protein (% of energy, continuous), fat (% of energy, continuous) and dietary fibre (g 1000 kcal⁻¹, continuous) were further included as confounding factors. Linear trends with increasing levels of monetary cost of dietary energy were tested by assigning to each participant the median value for the category and modelling this value as a continuous variable. All reported *P*-values are two-tailed and were considered statistically significant at the <0.05 level.

Results

Subject characteristics are shown in Table 2. Women in the higher quintiles of monetary cost of dietary energy tended to live in areas with larger populations, live with family, use alcohol and dietary supplements, be slow eaters and trying to lose weight. Women in the higher quintiles of monetary cost of dietary energy had higher mean values of body weight, BMI and physical activity level. Major contributors to total dietary cost were fish and shellfish (16%), meat (16%), vegetables (16%), confectioneries (12%) and rice (9%) (Table 3). Women in the higher quintiles of monetary cost of dietary energy had lower mean values of diet cost for cereals (except noodles). Mean costs of all other foods were higher in women in the higher quintiles of monetary cost of dietary energy.

Table 4 shows the association between monetary cost of dietary energy and dietary intake. Increasing monetary cost of dietary energy was associated with both favourable and unfavourable dietary intake patterns. At the food level, monetary cost of dietary energy was positively associated with consumption of vegetables, fruits, fish and shellfish, pulses, potatoes and dairy products, but also associated positively with intakes of fat and oil, meat and energy-containing beverages, and negatively with intakes of cereals (rice, bread and noodles) (all P for trend <0.01). At the nutrient level, monetary cost of dietary energy was directly associated with intakes of protein, dietary fibre and key vitamins (such as vitamins A, D, E, C, thiamin and riboflavin) and minerals (such as potassium, iron, calcium and magnesium), while monetary cost of dietary energy was associated positively with intakes of fat, saturated fatty acids, cholesterol and sodium, and negatively with carbohydrate intake (all P for trend <0.0001). Monetary cost of dietary energy was positively associated with both energy intake and edible weight consumed (both P for trend <0.0001), but the magnitude of differences between quintiles was larger in edible weight consumed than in energy intake. As a result, monetary cost of dietary energy was negatively associated with energy density (P for trend <0.0001). Adjustment for possible confounding factors did not materially change the associations between monetary cost of dietary energy and dietary intakes (data not shown) except for noodles (P for trend = 0.88), confectioneries (P for trend = 0.0076; negative relationship) and dairy products (P for trend = 0.07).

Table 5 shows the association between monetary cost of dietary energy and BMI. Monetary cost of dietary energy was quite weakly but significantly negatively associated with BMI in both crude (model 1: P for trend = 0.0224) and multivariate (model 2: P for trend = 0.0197) analyses.

Table 2 Subject characteristics according to quintile category of monetary cost of dietary energy*

		Quintile	Quintile category of monetary cost of dietary energy (Japanese yen $1000\mathrm{kcal}^{-1}$)+	cost of dietary energy	(Japanese yen 1000k	cal ⁻¹)†	
	Total (n = 3931)	1st $(n = 786)$ (219–400)	2nd $(n = 786)$ $(401-445)$	3rd $(n = 786)$ $(446-486)$	4th $(n = 787)$ (487–537)	5th $(n = 786)$ (538–1389)	ď
Monetary cost of dietary energy (Japanese ven 1000 kcal ⁻¹)	472 ± 89	360 ± 32	424 ± 13	466 ± 11	511 ± 15	601 ± 74	<0.0001
Median monetary cost of dietary energy (Japanese ven 1000 kcal ⁻¹)	466	366	424	466	511	580	
Age (vears)	18.1+0.3	18.1 + 0.4	181+03	181+03	181+03	181+03	0.30
Body height (cm)	+	158.0 + 5.3	157.9 + 5.4	157.7 + 5.4	157.9 + 5.3	158.0 + 5.3	0.86
Body weight (kg)	52.3 + 7.7	52.5 + 7.7	52.7 + 8.0	52.0 + 7.3	524+78	519+76	0.05
Body mass index (kg m ⁻²)	21.0 ± 2.8	21.1 ± 2.9	21.1 ± 2.8	20.9 + 2.7	21.0 + 3.0	20.8 + 2.7	0.05
Physical activity level	1.45 ± 0.16	1.43 ± 0.14	1.44 ± 0.16	1.45 ± 0.17	1.45 ± 0.14	1.46 ± 0.16	<0.0001
Hokkaido and Tobokii	206 (10)	04 (11)	101/10	(O) 35		74 (0)	0.92
Kanto	1351 (34)	04 (11)	250 (33)	02 (8)	(6) 60	74 (9)	
Hokuriku and Tokai	544 (14)	123 (16)	117 (15)	99 (13)			
Kinki		136 (17)		172 (22)	171 (22)		
Chugoku and Shikoku	424 (11)	111 (14)		86 (11)		75 (10)	
Kyushu	446 (11)	86 (11)	71 (9)	84 (11)			
Size of residential area							0.01
City with population ≥1 million	782 (20)	132 (17)	146 (19)	160 (20)	163 (21)	181 (23)	
City with population <1 million	2550 (65)	534 (68)	513 (65)	520 (66)	483 (61)	500 (64)	
Town and village	599 (15)	120 (15)	127 (16)	107 (14)	140 (18)	105 (13)	
Living status							< 0.0001
Living with family	3484 (89)	(22)		726 (92)		743 (95)	
Living alone	365 (9)			47 (6)	56 (7)	32 (4)	
Living with others	82 (2)	24 (3)	21 (3)	13 (2)	13 (2)	11 (1)	
Current smoking							0.26
No	3873 (99)	773 (98)		(66) 922			
Yes	58 (1)	13 (2)	15 (2)	10 (1)	11 (1)	9 (1)	
Current alcohol drinking							0.007
ON :	3178 (81)	654 (83)	644 (82)	636 (81)		616 (78)	
Yes	753 (19)	132 (17)	142 (18)	150 (19)	159 (20)	170 (22)	
Current dietary supplement use							<0.0001
No	3206 (82)	(98) 229	668 (85)	629 (80)	625 (79)	(22)	
Yes	725 (18)	109 (14)	118 (15)	157 (20)	162 (21)	178 (23)	
Currently trying to lose weight							< 0.0001
No	2511 (64)	558 (71)	524 (67)	499 (63)	476 (60)	453 (58)	
Yes	1420 (36)	228 (29)	262 (33)	287 (37)	311 (40)	333 (42)	
Rate of eating							<0.0001
Very slow	241 (6)	36 (5)	33 (4)	43 (5)	(6) 29	62 (8)	
Relatively slow	1077 (27)	197 (25)	194 (25)	226 (29)	222 (28)	239 (30)	
Medium	1149 (29)	245 (31)	251 (32)	220 (28)	210 (27)	223 (28)	
Relatively fast	1303 (33)	263 (33)	279 (36)	264 (34)	262 (33)	234 (30)	
Very fast	161 (4)	45 (6)	29 (4)	33 (4)	26 (3)	28 (4)	
							Į

Table 3 Total dietary cost according to quintile category of monetary cost of dietary energy*

		Quintile c	Quintile category of monetary cost of dietary energy (Japanese yen 1000 kcal-1)+	cost of dietary energy	y (Japanese yen 100	0 kcal 1)+	
	Total (n = 3931)	1st $(n = 786)$ (219–400)	2nd $(n = 786)$ (401–445)	3rd (n = 786) (446–486)	4th (n = 787) (487–537)	5th (n = 786) (538–1389)	P for trend
Total cost (Japanese yenday ⁻¹) Cost of each food (Japanese venday ⁻¹)	871 ± 328	586 ± 171	744 ± 191	867 ± 218	978 ± 266	1178 ± 387	<0.0001
Rice	69 ± 31	85 ± 39	72 ± 28	69 ± 27	62 ± 24	58 ± 27	<0.0001
Bread	33 ± 28	34 ± 30	35 ± 31	35 ± 27	35 ± 28	28 ± 23	<0.0001
Noodles	22 ± 20	21 ± 22	23 ± 20	24 ± 21	23 ± 21	22 ± 19	0.33
Potatoes	19 ± 16	12 ± 9	17 ± 12	20 ± 18	22 ± 14	24 ± 21	<0.0001
Confectioneries	104 ± 70	81 ± 55	97 ± 64	110 ± 72	118 ± 79	112 ± 73	<0.0001
Fat and oil	22 ± 14	17 ± 14	20 ± 13	22 ± 12	24 ± 14	25 ± 15	<0.0001
Pulses	25 ± 21	17 ± 17	21 ± 18	25 ± 18	28 ± 20	35 ± 26	<0.0001
Fish and shellfish	140 ± 102	66 ± 39	102 ± 48	133 ± 58	162 ± 73	236 ± 152	<0.0001
Meat	139 ± 93	83 ± 46	117 ± 64	143 ± 79	166 ± 93	183 ± 127	<0.0001
Eggs	12 ± 10	+1	12 ± 10	13 ± 10	13 ± 10	13 ± 11	<0.0001
Dairy products	73 ± 63	51 ± 40	68 ± 52	76 ± 57	80 ± 59	90 ± 92	<0.0001
Vegetables	140 ± 99	68 ± 39	101 ± 50	126 ± 54	160 ± 75	243 ± 137	< 0.0001
Fruits	47 ± 46	23 ± 23	36 ± 32	44 ± 35	55 ± 45	77 ± 65	<0.0001
Non-alcoholic, energy-containing beverages	18 ±32	13 ± 27	16 ± 29	18 ± 32	20 ± 32	21 ± 38	<0.0001

*Values are mean ± standard deviation. +1 Japanese yen = 0.007 Euros = 0.008 US dollars in April 2006.

#Tests for linear trend used the median value in each quintile as a continuous variable in linear regression

This negative relationship remained statistically significant after further adjustment for macronutrient and dietary fibre intakes (model 3: P for trend = 0.0301).

Discussion

To date, no information has appeared on the association between dietary costs and diet quality in Japanese populations, among whom rice is a major staple food and whose proportion of energy intake derived from fat is relatively low compared with Western people. In this study of young Japanese women, increasing monetary cost of dietary energy was associated with both favourable and unfavourable dietary intake patterns. Additionally, monetary cost of dietary energy was quite weakly inversely associated with BMI after controlling for possible confounders.

We found that higher monetary cost of dietary energy was associated with higher consumption of not only 'healthy' foods such as vegetables, fruits, fish and shellfish, and pulses, but also 'unhealthy' foods such as fat and oil, meat and energy-containing beverages. Increasing monetary cost of dietary energy was also associated with decreased intake of cereals, particularly rice. These findings are not consistent with previous Western studies. Diets high in fruits and vegetables and low in fats and sweets were associated with higher diet costs in French adults7. A study of UK women found that high adherence to a healthy dietary pattern was associated with higher monetary costs⁶. For Japanese people, cereals (particularly rice) are staple foods and are consumed at almost every meal, accompanied by a main and several side dishes consisting of mainly fish and shellfish, meat, egg, vegetables and pulses. Cereals are relatively inexpensive compared with the component foods of main and side dishes in Japan, as shown in Table 1. It might be suggested that persons with limited money available for foods mainly consume cereals (mainly rice) with a poor amount or variety of main and side dishes, while persons with affordable money for foods increase the amount or variety of main and side dishes with decreasing consumption of cereals (mainly rice). This hypothesis might be supported by the decreasing consumption of rice and increasing consumption of other foods such as meat, vegetables, fish and shellfish, and pulses24 with the observed increase of Gross National Product²⁵ in Japan from 1955 to 2000.

For nutrients, a dietary survey of French adults found that higher diet costs were associated with more nutrient-dense diets⁹. High-fat diets were less expensive than low-fat diets in Danish children⁵ and French adults⁷. These findings in Western populations are again inconsistent with our observations. We found that while higher monetary cost of dietary energy was associated with favourable nutrient intake patterns (higher consumption

Table 4 Dietary intake according to quintile category of monetary cost of dietary energy*

		Quintile c	ategory of monetary	Quintile category of monetary cost of dietary energy (Japanese yen 1000kcal-1)+	(Japanese yen 100	0 kcal ⁻¹)†	
	Total $(n = 3931)$	1st $(n = 786)$ (219–400)	2nd (n = 786) (401–445)	3rd (n = 786) (446–486)	4th (n = 787) (487–537)	5th (n = 786) (538–1389)	P for trend‡
Food intake (g 1000 kcal ⁻¹)							
Rice	159 ± 70	212 ± 79	171 ± 64	154 ± 58	136 ± 56	121 ± 52	<0.0001
Bread	26 ± 20	32 ± 26	29 ± 22	26 ± 18	25 ± 17	20 ± 16	<0.0001
Noodles	37 ± 33	38 ± 38	38 ± 33	38 ± 32	36 ± 29	34 ± 30	0.0024
Potatoes	16 ± 11	11+8	14 ± 8	16 ± 10	18 ± 11	21 ± 15	<0.0001
Confectioneries	39 ± 18	38 ± 21	40 ± 19	41 ± 18	41 ± 17	38 ± 16	0.94
Fat and oil	13 ± 7	12 + 8	13±7	13 + 6	14 + 6	14 ± 6	<0.0001
Pulses	25 ± 18	19 ± 16	23 ± 18	24 ± 16	26 ± 17	32 ± 19	<0.0001
Fish and shellfish	30 ± 18	17 ± 9	24 ± 10	29 ± 11	34 ± 13	47 ± 23	<0.0001
Meat	34 ± 17	24 ± 12	31 ± 14	34 ± 15	39 ± 17	41 ± 20	<0.0001
Eggs	18 ± 14	17 ± 15	19 ± 15	19 ± 13	18 ± 13	18 ± 13	0.87
Dairy products	84 ± 71	75 ± 76	85 ± 74	86 ± 70	83 ± 66	88 + 68	0.0025
Vegetables	127 ± 82	72 ± 35	99 ± 46	115 ± 48	142 ± 66	207 ± 113	<0.0001
Fruits	50 ± 51	+1	44 ± 53	47 ± 41	56 ± 51	69 ± 59	<0.0001
Non-alcoholic, energy-containing beverages Nutrient intake	33 ± 53	28 ± 41	31 ± 44	35 ± 57	27 ± 54	36 ± 64	0.0003
Protein (% of energy)	13.3 ± 2.1	11.5 ± 1.6	12.6 ± 1.5	13.2 ± 1.5	13.8 ± 1.6	+1	<0.0001
Fat (% of energy)	30.0 ± 5.9	26.3 ± 6.3	29.4 ± 5.4	30.6 ± 5.2	31.8 ± 5.2	+1	<0.0001
Saturated fatty acid (% of energy)	8.0 ± 2.1	7.0 ± 2.1	7.9 + 1.9	8.3 ± 2.0	8.6 ± 1.9	+1	< 0.0001
Carbohydrate (% of energy)	55.2 ± 6.8	60.1 ± 6.8	56.4 ± 5.8	54.8 ± 5.6	53.1 ± 5.7	51.8 ± 6.7	<0.0001
Total dietary fibre (g 1000 kcal ⁻¹)	6.5 ± 2.0	5.3 ± 1.3	5.8 ± 1.3	6.2 ± 1.5	6.7 ± 1.7	8.1 ± 2.7	< 0.0001
Cholesterol (mg 1000 kcal ⁻¹)	165 ± 64	140 ± 67	160 ± 63	167 ± 59	173 ± 56	183 ± 65	< 0.0001
Sodium (mg 1000 kcal ⁻¹)	2093 ± 547	1805 ± 515	1989 ± 495	2059 ± 452	2202 ± 505	2410 ± 565	< 0.0001
Potassium (mg 1000 kcal ⁻¹)	1099 ± 302	838 ± 174	987 ± 184	1069 ± 185	1179 ± 219	1421 ± 345	<0.0001
Calcium (mg 1000 kcal 1)	273 ± 102	222 ± 93	257 ± 92	271 ± 89	284 ± 90	332 ± 112	<0.0001
Magnesium (mg 1000 kcal-1)	118 ± 29	99 ± 23	109 ± 23	117 ± 25	123 ± 23	142 ± 32	<0.0001
Iron (mg 1000 kcal-1)	3.7 ± 0.9	3.1 ± 0.7	3.4 ± 0.7	3.7 ± 0.6	3.9 ± 0.7	4.5 ± 1.0	<0.0001
Vitamin A (µg 1000 kcal ⁻¹)	260 ± 169	174 ± 114	220 ± 104	249 ± 113	280 ± 124	377 ± 259	<0.0001
Vitamin D (mg 1000 kcal-')	3.6 ± 2.0	2.3 ± 1.3	3.0 ± 1.6	3.5 ± 1.5	3.9 ± 1.6	5.2 ± 2.6	<0.0001
Vitamin E (mg 1000 kcal ⁻¹)	5.4 ± 1.3	4.3 ± 1.1	5.0 ± 1.0	5.3 ± 0.9	5.8 ± 1.1	6.5 ± 1.3	<0.0001
Thiamin (mg 1000 kcal ⁻¹)	0.4 ± 0.1	0.3 ± 0.1	0.4 ± 0.1	0.4 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	<0.0001
Riboflavin (mg 1000 kcal ⁻¹)	0.7 ± 0.2	0.6 ± 0.2	0.6 ± 0.2	0.7 ± 0.2	0.7 ± 0.2	0.8 ± 0.2	<0.0001
Vitamin C (mg 1000 kcal-1)	47 ± 22	+1	39 ± 16	44 ± 15	52 ± 18	67 ± 27	<0.0001
Energy intake (kcal day 1)	1822 ± 504	+1	1753 ± 445	1859 ± 464	1912 ± 511	1960 ± 577	<0.0001
Edible weight consumed (g day 1)	1439 ± 461		1330 ± 358	1440 ± 385	1526 ± 430	1719 ± 552	<0.0001
Energy density (kcalg ')	1.29 ± 0.22	1.40 ± 0.24	1.33 ± 0.21	1.30 ± 0.21	1.26 ± 0.19	1.16 ± 0.20	<0.0001

*Values are mean ± standard deviation.

†1 Japanese yen = 0.007 Euros = 0.008 US dollars in April 2008.

‡ Tests for linear trend used the median value in each quintile as a continuous variable in linear regression. Adjustment for possible confounding variables, including physical activity level (continuous), residential block (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chiugoku and Shikoku; Kyushu), size of residential area (city with ≥1 million; city with <1 million; town and village), living status (living with hamily: living alone; living and not gress, no), current dischold drinking (yes; no), and rate of eating (very slow; neditive); living alone; relatively fast; very fast) and energy intake for variables except for energy intake (kcalday ¹, continuous), did not change the results materially with the exception of noodles (P for trend = 0.07).

Table 5 Body mass index according to quintile category of monetary cost of dietary energy (n = 3931)*

	Quintile cat	egory of monetary of	ost of dietary energ	gy (Japanese yen 1	000 kcal ⁻¹)†	
	1st (n = 786) (219–400)	2nd (n = 786) (401–445)	3rd (n = 786) (446–486)	4th (n = 787) (487–537)	5th (n = 786) (538–1389)	P for trend‡
Body mass index (kg m ⁻²)						
Model 1§	21.0 ± 0.1	21.1 ± 0.1	20.9 ± 0.1	21.0 ± 0.1	20.8 ± 0.1	0.0224
Model 2¶	21.1 ± 0.1	21.1 ± 0.1	20.9 ± 0.1	21.0 ± 0.1	20.8 ± 0.1	0.0197
Model 3	21.1 ± 0.1	21.1 ± 0.1	20.9 ± 0.1	21.0 ± 0.1	20.7 ± 0.1	0.0301

^{*} Values are mean ± standard error.

of protein, dietary fibre and key vitamins and minerals), there was also a positive association for dietary fat (and saturated fat and cholesterol) and sodium and a negative association for carbohydrate. The higher fat and lower carbohydrate intake with increasing monetary cost of dietary energy seemed to be due largely to decreasing consumption of cereals (particularly rice). Higher intake of sodium might be due to higher intakes of vegetables, meat, fish and shellfish, and pulses, because in Japan these foods are usually accompanied by seasonings of salty taste, such as salt, soy sauce, miso and dressings; actually, intakes of these foods were positively correlated with sodium intake in the present study (Pearson correlation coefficient = 0.13-0.43; median = 0.33).

Our finding that monetary cost of dietary energy is inversely associated with dietary energy density reflects the results of a number of other studies. Two French studies also found that energy-dense diets are associated with lower diet costs^{8,9}. Dietary energy density is largely determined by the water content of foods²⁶; unlike packaged energy-dense foods, which are dry and tend to have a stable shelf life (including cereals, confectioneries, and fat and oil)8, transport, storage and wastage costs are all higher for perishable fresh produce (i.e. energy-dilute foods such as fish and shellfish, vegetables and fruit). Thus, the generally observed inverse association between energy cost and energy density can be explained by the fact that, on an energy content basis, energy-dense foods are clearly less costly than energy-dilute foods8. However, although energy density and energy intake have previously constantly been shown to be positively linked, both in experimental and epidemiological studies in Western countries²⁷, a higher energy intake was associated with a lower energy density because energy intake was positively but energy density was negatively associated with monetary cost of dietary energy in the present study. This seemed to be due to the phenomenon that monetary cost of dietary energy was positively associated with both energy intake and edible weight consumed, and

the magnitude of differences between quintiles was larger in edible weight consumed than in energy intake. This important point of disagreement between Western and Japanese studies needs to be addressed in future studies.

A Spanish study reported an association between the higher monetary costs of healthy dietary patterns and lower BMI10. Although higher monetary cost of dietary energy was not necessarily associated with healthier dietary intake patterns, there was a significant independent negative relationship between monetary cost of dietary energy and BMI in the present study. However, although the association was statistically significant, the magnitude of differences in BMI between quintiles of monetary cost of dietary energy was quite low. Additionally, our subjects were lean compared with Western populations and their BMI values have been reported, not measured, although a high correlation of BMI calculated from self-reported body weight and height with that calculated from measured values has been shown^{28,29}, which suggests that BMI calculated from self-reported body weight and height is a reliable measure, at least for use in correlation analysis. Furthermore, although we tried to adjust for a wide range of potential confounding factors, monetary cost of dietary energy might be a surrogate of factors associated with BMI which we did not measure in the present study (e.g. socio-economic level of families), as having or using money is unlikely directly related to BMI. Thus, the public health relevance of this finding is highly uncertain.

A number of methodological limitations of this study should be mentioned. First, in the absence of actual food expenditure data, food prices were derived from the National Retail Price Survey and websites of nationally distributed supermarket and fast-food restaurant chains. As this procedure gives only an approximation of actual diet costs, the results of the present study should be interpreted with caution. We note, however, that a similar methodology has been used in all previous observational studies^{5–10}

^{†1} Japanese yen = 0.007 Euros = 0.008 US dollars in April 2006.

[‡]Tests for linear trend used the median value in each quintile as a continuous variable in linear regression.

[§]Crude model.
¶Adjusted for physical activity level (continuous), residential block (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chugoku and Shikoku; Kyushu), size of residential area (city with ≥1 million; city with <1 million; town and village), living status (living with family; living alone; living with others), current smoking (yes; no), current alcohol drinking (yes; no), current dietary supplement use (yes; no), currently trying to lose weight (yes; no), rate of eating (very slow; relatively slow; medium; relatively fast; very fast) and energy intake (kcal day⁻¹, continuous).

Adjusted for variables used in the model 2 and intakes of protein (% of energy, continuous), fat (% of energy, continuous) and dietary fibre (g 1000 kcal⁻¹, continuous).

Second, although we used a validated DHQ^{13–15}, the underreporting of dietary intake remains a serious concern³⁰. To minimise the influence of dietary underreporting, we used energy-adjusted values. Studies have consistently shown that underreporting is more prevalent among people with higher BMI^{30,31}, and that energy-dense, nutrient-dilute and low-cost foods such as fat and oils, sugar and confectioneries are more likely to be selectively underreported^{30,32}. However, as mentioned above, exclusion of energy underreporters identified by the Goldberg cut-off method^{21,23} did not change the results materially, which may support the robustness of the findings in the present study.

Several intervention studies in the USA reported nutrient-dense diets that were not more expensive than lowerquality diets^{33–35}. These intervention studies provided individual instruction on how to identify nutritious lowcost foods, how and where to make food purchases, and how to store and prepare the foods, possibly facilitating the consumption of a healthier diet at lower cost. However, the observational nature of the present study did not allow us to investigate directly the cost of dietary change following nutritional intervention.

Finally, because our subjects were selected female dietetic students, we may not be able to extrapolate our results to the general Japanese population. To minimise the influence of nutritional education, the present survey was conducted in most institutions within 2 weeks after the course began. As the subjects are likely to have a high level of nutrition knowledge and elevated rates of social desirability concerning diet, health and body weight, they are also likely to report lower body weights (and higher body heights) and lower energy intakes than average. However, mean values of BMI and energy intake in our subjects (21.0 kg m⁻² and 1822 kcal day⁻¹, respectively) were highly comparable with those in a representative sample of Japanese women aged 15–19 years (21.0 kg m⁻² and 1858 kcal day⁻¹, respectively)¹².

In conclusion, monetary cost of dietary energy was associated with not only favourable but also unfavourable aspects of dietary intake among a large group of young Japanese women. Additionally, monetary cost of dietary energy was inversely associated with BMI, although the magnitude was quite low. Because the relationship between dietary cost, nutrient and food intakes and BMI is an important public health topic, our observation in a selected population should be confirmed using more precise evaluation of diet costs or actual food expenditures in a more representative sample of the Japanese population.

Acknowledgements

Sources of funding: This work was supported by grants from the Japanese Ministry of Health, Labour and Welfare.

Conflict of interest declaration: None of the authors has any conflict of interest to declare.

Authorship responsibilities: K.M. was involved in designing the study, data collection and data management, conducted the statistical analyses, and wrote the manuscript. S.S. was responsible for designing the study, data collection and data management, the overall management, and assisted in manuscript preparation. H.O. was involved in the study design. Y.T. assisted in the manuscript preparation. Y.H. was involved in study design, data collection and data management. M.I. was involved in data collection and data management. All of the authors provided suggestions during the preparation of the manuscript and approved the final version submitted for publication.

References

- Shepherd R. Resistance to changes in diet. Proceedings of the Nutrition Society 2002; 61: 267–72.
- 2 Glanz K, Basil M, Maibach E, Goldberg J, Snyder D. Why Americans eat what they do: taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. *Journal of the American Dietetic Association* 1998: 98: 1118–26.
- 3 Lennernas M, Fjellstrom C, Becker W, Giachetti I, Schmitt A, Remaut de Winter A, et al. Influences on food choice perceived to be important by nationally-representative samples of adults in the European Union. European Journal of Clinical Nutrition 1997; 51(Suppl.): S8–15.
- 4 Drewnowski A, Darmon N. The economics of obesity: dietary energy density and energy cost. *American Journal* of *Clinical Nutrition* 2005; 82(Supp.l): 2658–73S.
- 5 Stender S, Skovby F, Haraldsdottir J, Andresen GR, Michaelsen KF, Nielsen BS, et al. Cholesterol-lowering diets may increase the food costs for Danish children. A crosssectional study of food costs for Danish children with and without familial hypercholesterolaemia. European Journal of Clinical Nutrition 1993; 47: 776–86.
- 6 Cade J, Upmeier H, Calvert C, Greenwood D. Costs of a healthy diet: analysis from the UK Women's Cohort Study. Public Health Nutrition 1999; 2: 505–12.
- 7 Drewnowski A, Darmon N, Briend A. Replacing fats and sweets with vegetables and fruits – a question of cost. American Journal of Public Health 2004; 94: 1555–9.
- 8 Darmon N, Briend A, Drewnowski A. Energy-dense diets are associated with lower diet costs: a community study of French adults. Public Health Nutrition 2004; 7: 21–7.
- Andrieu E, Darmon N, Drewnowski A. Low-cost diets: more energy, fewer nutrients. European Journal of Clinical Nutrition 2006; 60: 434–6.
- 10 Schroder H, Marrugat J, Covas MI. High monetary costs of dietary patterns associated with lower body mass index: a population-based study. *International Journal of Obesity* 2006; 30: 1574–9.
- Sasaki S, Takahashi T, Iitoi Y, Iwase Y, Kobayashi M, Ishihara J, et al. Food and nutrient intakes assessed with dietary records for the validation study of a self-administered food frequency questionnaire in JPHC Study Cohort I. Journal of Epidemiology 2003; 13: S23–50.
- 12 Ministry of Health, Labour and Welfare. *The National Nutrition Survey in Japan*, 2002. Tokyo: Ministry of Health, Labour and Welfare, 2004 (in Japanese).
- 13 Sasaki S, Yanagibori R, Amano K. Self-administered diet history questionnaire developed for health education: a relative validation of the test-version by comparison with 3-day diet record in women. *Journal of Epidemiology* 1998; 8: 203–15.