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predicted three-dimensional structural model of the MLHI NH,-
terminal domain by 2 homology modeling method to map variants in
the predicted structure (Fig. 44-C). Most of the variants predicted
to be around the ATP-binding pocket were DME negative in at least
one of the yeast assays or MMR— (Fig 4B). In particular, variants
mutated in residues thought to be critical for ATP binding, such as
M35R, N38D, S44F, G67R, 168N, C77R, F80V, T82], K84L, R100P, and
[107R, affected both DME and in vitro MMR activity
{Fig. 4C). Unlike the NH,-terminal ATPase domain, sequence identity
among the COOH-terminal domains of MutL homologues is not high
enough to construct three-dimensional structure by homology
modeling; however, the detailed analysis of secondary structure
predictions and sequence alignments indicates that the structures of
the COOH-terminal domains of Mutl. homologues are similar (Fig.
4D; refs. 11, 35). Missense variants were classified by the assays and
mapped on a COOH-terminal domain alignment of four MutL
homologues, showing that variants in the COOH-terminal domain
were found more frequently in the internal subdomain, especially
within and around the aC helix, than in the external subdomain and
functionally inactive variants were distributed through the whole
region of the COOH terminus (Fig. 4D).

Relations between MLH1 functions and clinical features. To
investigate the relationship between the functional phenotype in
the assays and clinical phenotypes previously reported in the
databases or papers, at first, in vitro MMR activities were compared
between AC+ variants and AC~ variants, considering the total
number of families reported for each variant. The AC+ group
showed significantly lower in vitro MMR activities than AC— group
(P < 0.01; Fig. 54). Second, the MLH1 protein expression levels in
HCT116 cells were compared between AC+ and AC— groups. The
significant difference of the protein level was not shown between
the two groups (P = 0.68; Fig. 5B). These results suggested that
there is correlation between MMR defects and a strong family
history but no correlation between the MLH1 protein instability
and a strong family history.

Discussion

In this study, we evaluated the functional significance of 101
MILH]I variants by yeast-based assay and in vitro assay to provide
useful information for understanding of pathogenicity. This
functional characterization of a large number of variants allowed
us to compare the property of two assays and to analyze the
structural basis of functional deficiency.

We showed that the yeast assay distinguished the majority of
variations that retained or lost the in vitro MMR activity. These data
confirmed the accuracy and usefulness of the yeast assay as a simple
method having an advantage to analyze a large number of variations
without laborious steps. The three kinds of reporter systems
identified some variants showing different DME phenotype among
yeast assays (DME1+ or DME2+), although the majority (75 of 101,
74.3%) of the MLHI variants showed consistent DME (DME— or
DME3+). These discrepant variations showing DME1+ or DME2+
were supposed to be functionally subtle because these difference
could be explained by the distinct thresholds of the reporter genes
(LacZ, GFP, or ADEZ2), the target nucleotide repeats (mono- or di-),
and/or the location of the repeats (a plasmid or a chromosome).
This is supported by our finding that the average values of the
in vitro MMR activities depended on the degree of the DME (from
DME~ to DME3+; Fig. 34). Thus, a combination of the three yeast
assays has the ability to evaluate functionally subtle variants as well
as the in vitro MMR assay. Among variants showing discrepant
results between the yeast assays and in vitro MMR assay, variants
showing both DME3+ in the yeast assays and MMR~ in the in vitro
MMR assay (DME3+/MMR—) should be estimated to be pathogenic
because MMR deficiency should link directly with carcinogenesis by
causing genome instability regardless of the DME in yeast. DME—/
MMR+ variants are difficult to be interpreted but possibly defect
some unknown function in human cells, because the phenotype of
these variants in yeast cells are quite different from that of a wild-
type. We consider that DMEl+ or DME2+ variants can also lose
some function partially for the same reason.
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Other functional analyses examining a part of 101 variants agree
with our functional evaluation (2-5, 7). For example, 34 MLHI
variants were recently analyzed for four distinct functional
properties containing in vitro MMR assay, protein expression,
protein localization, and interaction with PMS2, and were evaluated
for their pathogenicity by integrating all of the results (8). Among
20 variants assayed in common with this study, the in vitro MMR
activities were low (<48.7% activity) in their 12 pathogenic variants,
and high (>60.7%) in their eight nonpathogenic variants. DME
phenotype in this study also corresponded with their interpretation
in 16 of 20 variants. The consistencies in the functionally known
MLH1 variants supported reliability of the functional evaluation for
the newly analyzed variations in this study.

Our final purpose of analyzing the large number of MLHI
variants is to establish a database for understanding the
pathogenicity of the gene alterations. One of the major problems
in using our data for clinical purpose is that the appropriate cutoff

value is difficult to set up, because we cannot estimate how
intermediate or subtle functional defects contribute to the
pathogenesis in HNPCC. However, the information on common
polymerphisms found in the normal populations can be useful to
consider the tolerable level predicted to be functionally proficient.
The most common polymorphism is 1219V, which was reported
from various countries, although the allele frequency is varied from
3% to 36% (24, 38, 39). According to our data, 1219V retained ~ 60%
of MMR activity and DME3+. The other seven putative poly-
morphisms retained also >60% MMR activity, the seven of the eight
showed DME3+ except H718Y showing DME2+. Therefore, we
currently propose that both DME3+ and 60% of MMR activity is the
reasonable cutoff value to estimate the variations not associated
with pathogenicity in HNPCC. Then, 50 MLH1 variations with more
than this MMR activity are categorized into MMR+ ones, and 35
DME3+/MMR+ variants are thought to be functionally proficient.
The D132H also retains DME3+/MMR+, which is a polymorphism
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among Israeli populations not associated with HNPCC but the
sporadic colorectal cancer predisposition (23). Thus, we cannot
exclude the possibility that even the variations showing DME3+/
MMR+ might be involved in the sporadic carcinogenesis.

Another critical problem is that amino acid substitutions in
MLH]1 affected both protein expression levels and functions. Our
data showed that there was just a slight correlation between MLH1
protein levels and in vitro MMR activities (Fig. 2C). Therefore, we
predict that there are at least two mechanisms inactivating MLH1
function by amino acid substitutions, the shortage of MLH1 protein

by protein instability, and functional inactivation by structural
alteration. This suggested that the cutoff values are required in
both functional level and protein level for overall evaluation.
Recent studies have indicated that the immunohistochemical
analysis of MMR proteins is one of the most efficient and sensitive
screening method to detect abnormalities in MMR proteins
(40, 41). In our data, in vitro MMR activities were impaired without
reducing MLH1 protein levels in some MLHI missense variants.
This observation suggested that these pathogenic variants can be
detected positively by immunohistochemistry, although we cannot
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Figure 4. Relationships between putative MLH1 protein structures and functions. A to C, model of the three-dimensional structure of the MLH1 NH,-terminal domain
and maps of the MLH1 variants. A, ribbon diagram of the E. colif MutL NH,-terminal domain (left) and an MLH1 NH,-terminal domain simulated by homology modeling
(right). B and C, the modet of the whole of the MLH1 NH,-terminal domain and the model of the ATPase domain, respectively. Colored balls or bars, amino acid
residues examined in this study and the functional information from yeast assays and in vitro MMR assay. Red, pink, and flesh color, DME—, DME1+/2+, and
DME 3+ phenotypes, respectively. Green, light green, and yellow, higher (275% of wild-type), average (50-75%), and (<50% of wild-type) lower in vitro MMR activity,
respectively. Blue balls or bars, ADPnP. D, sequence alignment and secondary structure of the COOH-terminal domains of MutL homologues. Arrows and bars,
B-sheet and a-helix, respectively. Regular lines, internal subdomain; dotted orange lines, external subdomain. Colored dots, locations of MLH1 variants, representing
the functional phenotype, as in (8) and (C).
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Figure 5. Relationships between the functions and clinical features of MLHT
variants. A, box-and-whisker plot of in vifro MMR activity of MLH1 variants from
families fulfilling the Amsterdam criteria (AC+) or not {AC-). 8, box-and-whisker
plot of the protein expression levels of the AC+ or AC— varnants. Line inside
the box, median. Upper and lower limits of the box, 75th and 25th percentiles,
respectively. Vertical bars above and befow the box, 90th and 10th percentiles,
respectively. M, mean of data points. **, P < 0.01 by two-sided Mann-Whitney
U test.

directly link the protein amount of transient expression in cell
lines with the endogenous protein level in tumors of the
corresponding mutation carrier. Among the 50 variants with
MMR-—, 20 (40%]) retained >75% of the MLH1 expression level of a
wild-type. We speculate that these 20 variants (E23D, I25F, P28L,
G54E, N64S, F80V, T821, K84E, E102D, E102K, S193P, G244V, D304V,
H329P. Q542L, 1565F, L574F, P640T, and R7555) will be the
candidate pathogenic variants with difficulty in clear detection
as loss of protein expression by immunohistochemistry. Among
them, three variants, P281., F80V, and P648l.. actually have been
shown to retain their protein levels by immunohistochemical
analyses (8, 37). Functional assays are especially useful for these
variants because the abnormality will not be detected by immmuno-
histochemistry until subsequent sequence analysis and functional
assays.

Several lines of biochemical investigations have shown that the
heterodimerization with counterpart proteins such as PMS2 and
conformational change by ATP binding are important in the MLH1
function (1, 3, 7-10). Mapping 101 MLH] variants on MLH1 cDNA
indicated that the majority of functionally defective MLHI variants
(showing DME~, DME1+, or DME2+ and/or MMR—) were located
within two functional domains, the NH,-terminal ATPase and the
COOH-terminal PMS2-interactive domains. In particular, almost alt
variants involved in the ATP-binding pocket were functionally
defective (Fig. 4B and C}. The homologous structure of the
NH,-terminal E. coli MutL provided molecular basis for functional
defects of human MLH! missense variants (9, 10). P28L, M35R,
and $44F can disrupt ATP binding and hydrolysis; G67R, 168N,
[107R, T117M, and TI17R degraded ATP binding pocket;
and other variants (A128P, V185G, R226L, G244D, and V326A)
can alter or destabilize the overall protein folding. Our functional
assay showed that 13 out of these 14 variants were functionally
defective and supported the functional prediction based on the
protein structure. In contrast, some variants probably do not
change the protein structure because the changes are conservative
(I125F, A29S, S44A, [68V, V213M, and 1219L; refs. 9, 10). Recent study
resolved crystal structure of COOH-terminal MutL and identified

dimerization interface (11). The alignment and homology modeling
show that L653R, R654L, and R659P resided on the equivalent to
the dimmer interface of MutL, which is the putative interface of
MLH1 with PMS2. T662P is equivalent site of MutL critical for
binding with DNA (Fig. 42). The homology modeling provides the
structural basis of functional deficiency for some variants, although
the functionally deficient variations of MLH! distributed through
the whole COOH terminus.

The previous studies have shown that MSH6 mutations cause a
partial MMR deficiency and related with atypical HNPCC families
(42). This suggests the possibility that intermediate functional
deficiency is associated with the atypical HNPCC kindred with
weak family history or late onset. Based on this hypothesis, one of
the methods to validate our functional assay is investigating the
relationship between functional evaluations with clinical feature
such as family history. The median MMR activity was significantly
lower among the AC+ families (38.9%) than the AC— families
(65.1%), whereas the median level of relative protein expression
has no significant difference between these two groups (Fig. 5).
Therefore, AC status has correlation with our functional data at
least stronger than with protein level. Functions in the assays well
correlated with clinical features, whereas it can be said that the
Amsterdam criteria links with functions well and is a very useful
clinical diagnostic criteria. Our functional data have consistency
with previous functional assays in a majority of the 45 functionally
known variants, including some variants evaluated for pathoge-
nicity by both cosegregation study and functional assay. Precise
family information was described even in the limited number
among some of the variants newly analyzed in this study. For
example, S193P was detected in three affected members and two
other members among 12 individuals in an AC+ family (24). This
variant showed DME~/MMR— in our assays and then indicated
to be pathogenic from both family history and functional assay.
R687W was found in three affected members but not two healthy
members in the AC+ family, suggesting that this variant is likely
pathogenic (20). However, our functional data indicated DME— but
relatively high MMR activity (57.2%) even below 60% (defined to be
MMR-- in this study). Yeast assay detected pathogenicity of this
variant more clearly than MMR in this case. Although L607H was
found in one family member with colon cancer but not in two
healthy members in the family, this colon cancer did not show any
microsatellite instability, low staining by immunohistochemistry
(29), or functional defect in our assay. Then, pathogenicity of this
variant is supposed to be in question but functional data correlates
with microsatellite instability and immunohistochemical results.
Thus, in the several cases in which detailed clinical information is
available, the functional phenotype well correlated with clinical
features for families carrying the corresponding variants. Based on
this, it may be expected that the pathogenicity can be well
predicted by the functional phenotype in the assay for many of the
other variants, especially those showing clear phenotype such as
DME~/MMR- and DME3+/MMR+. However, we have to accumu-
late more data on clinical and functional characteristics and
evaluate accurate sensitivity and specificity of functional data for
predicting pathogenicity, to use for practical purposes in clinics, for
example, to decide whether surveillance of a mutation noncarrier
should be continued.

In this study, we analyzed functional significances of 56 MLHI
variants that have never been evaluated in any functional assay.
Without functional analyses, pathogenicity of missense variants are
estimated usually based on amino acid property, conservation
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among species, or computed prediction like SIFT as a recent way.
The SIFT has a good accuracy for the functional prediction;
however, ~20% of variants could fail to be predicted. A similar
tendency has been observed in another analysis (8) and in other
proteins such as p53 tumor-suppressor protein (data not shown).
Therefore, it is still desirable to carry out biochemical assays to
predict the pathogenicity for variants newly reported if available.

In summary, we examined a large number of MLHI variants
using both yeast and in vitro functional assays and characterized
the functional alterations of the variants. We confirmed that the
majority of functionally inactive variants were located in the
NH,-terminal and COOH-terminal domains, especially around
the ATP-binding pocket and the region responsible for hetero-
dimerization with other MutL homologues. The results corre-
sponded well with observations by the structural analysis of E. coli
Mutl. crystals. The study described here should be useful for

evaluating cancer risks in individuals or families carrying MLHI
variants and may provide clues for better understanding MLH1
functions.
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{n order {o review gene alterations associated with drug responses in vitro to identify candi-
date genes for predictive chemosensitivity testing, we selected from literature genes {ulfilling
at least one of the following criteria for the definition of ‘in vifro chemosensitivity associated
gene’: (i) alterations of the gene can be identified in human solid tumor cell lines exhibiting
drug-induced resistance; (ii) transfection of the gene induces drug resistance; (iii) down-
regulation of the gene increases the drug sensitivity. We then performed Medline searches
for papers on the association between gene alterations of the selected genes and chemosen-
sitivity of cancer cell lines, using the name of the gene as a keyword. A total of 80 genes
were identified, which were categorized according to the protein encoded by them as follows:
transporters (n = 15}, drug targets {(n = 8}, target-associated proteins (n = 7), intracelluiar
detoxifiers (n = 7), DNA repair proteins {n= 10), DNA damage recognition proteins (n = 2),
cell cycle regulators (n = 6), mitogenic and survival signal regulators (nn = 7}, transcription
factors (n = 4), cell adhesion-medialed drug resistance protein {n = 1), and apoptosis regula-
tors {(n = 13). The association between the gene alterations and chemosensitivity of cancer
cell lines was evaluated in 50 studies for 35 genes. The genes for which the association
above was shown in two or more studies were those encoding the major vauit protein, thymi-
dylate synthetase, glutathione S-transierase pi, metallothionein, tumor suppressor p53, and
bel-2. We conclude that a total of 80 in vitro chemosensitivity associated genes identified in
the literature are potential candidates for clinical predictive chemosensitivity testing.

drug resistance - solid tumar

Key words: chematherapy sensitivirg

INTRODUCTION

surgery for the primary twmor. Systemic chemotherapy
against malignant tumors remains of limited efficacy in spite

Malignant neoplastic discases remain one of the leading
causes of death around the world despite extensive basic
rescarch and clinical trials. Advanced solid tumors, which
account for most malignast tumors. still remain essentially
incwrable. For example, 80% of patients with non-smali ccli
lung cancer have distant metastases cither at the time of the
initial diagnosis itsell or at the time of recurrence after

For reprints and alf correspondenee: uo Sckine, Divisien of lntemat
AMedieme and Therwic Oncology, National Cancer Center Hospetad,
Usekjjt S-1-1, Chue-ko, Tekve HR-G045 ) Lipan Bl ssekinesgncs gogp
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of the development in the recent past of several new
chemotherapeutic agents: thereforve, patients with distant
metastases rarely live for long (1),

Tumor response to chemotherapy varies from paticnt
1o patient. and clinical objective response rates to standard
chemotherapeutic regimens have been reported fo be in the
vange of 20 40% for most common solid tumors, Thus. if
would be af great benefit it became possible to preched
chemosensilivity of various tumors cven prier to therapy.
DNALRNA and protein-bascd chomosensitvity lesls have
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330 In vitro chemosensitivity associated genes

been performed in an attempt to predict the clinical drug
response, but the precise gene alicrations that might be
predictive of the chemosensilivity of the tumers are still
unknown. cre we aimed to review the gene alterations that
may be associaled with the drug response in vitro (in vitro
chemosensitivity associated genes) in order 1o identily candi-
date genes for predictive chemosensitivity testing in the
clinical setting. The association between these gene altera-
- tions and clinical chemesensitivity in lung cancer patients
has been reported elsewhere (2).

METHODS

In vitro chemosensitivity associated genes were identified
from the medical literature as described previously (2).
Bricfly. we conducted a Medline search for papers on (umor
drug resistance published between 2001 and 2003, This
scarch yiclded 112 papers, including several review arlicles.
Manual search of these papers led (o identification of 134
genes or gene [amilies that were potentially invelved in drug
resistance based on their function. We conducted a second
Medline search for in vitro studies of the 134 genes or gene
families using the name of the gene as a keyword. Genes

Table I. Traospoviers and in vive evidence of association with chemosensitivity

that fullilied at fcast one of the following criteria for the defi-
rition of in vitro chemoscnsitivity associated gene were
sclected from the 134 genes: (i) alterations of the gene can
be identified in a human solid tumor cell lines exhibiting
drug-induced resistance: (3i) transfection of the gene induces
drug resistance: (iii) down-regalation of the gene or of the
protein encaded by it increases the drug sensitvity. For this
last calcgory, we included studies in which the gene
expression or function was suppressed by antisense RNA,
hammerhead ribozyme, or antibody against the gene product.
Finally. a Medline scarch for papers on the association
between gene alterations and chemosensitivity of solid tumor
ccll lines was performed using the name of the gene as a
keyword. Papers in which the association was evaluated
in 20 or more cell Tines were included in this study.
The name of cach gene was standardized according to the
Human Gene Nomenclature Database of National Center for
Biotechnology Information (NCBI).

RESULTS

Of the 134 genes or gene families. gene allerations were
found in cells exhibiting drug-induced resistance. transfec-
tion of the gene increased or decreased the drug resistance,

Gene Alterations Sensitivity of Drugs Assaciation with " Referenee no,
svinbod in DIRC C chemosensitivity (eamcer.
UC's DCs drug) ‘

ABCA2 ¥ 5 Tstramustine |
ABCB1 ¥ R S BOX. PTX. VOR, VBI Yes (g, DOX) 2 11

No (hing, DOX) 12
AR R PIX 13
FBCCE T { R S CPEDOX, ETP. MTX. VOR Yes (hung, CDDP.DOX) 1.0 21

No thing. PTX) 22
ABCC2 [ R 5 CODPDOXCMTUNL VOR No thmg. DOX) I® 2123 25
ABCC NG, U R ETPOMTX Yes thog, DOX)y 2128 28
Aecs NCLU NC.OR AN No tlung, DOX) 12, 25,29 31
ABCCS NCLUUG NC DONMIT Yes (hmg., ¥ 12 25 51 34
ABCG2 M. R DOX. NI MIN.SN3STOP 35 43
ane U NC DOX Yes thiain, CDDP. DOX) Aq A7

Yes thung. DOX) 16
ATPEA Ui ope 48
A1 U R Chop 4% K2
SHO2DA) U St No INCE-panei
SLOIRA) S SDFUR No ANCE-pancds 83054

MIEN YVes (INClopanely 888N

NLCHOAL D S

Aberabtngs i dn

and dowe-regulating celle (DO NCno change: RL resistants S sensitive

rbhuced resistinee celis (DERC): D, downeregtlated: Momuated: NC, ne change: U, speregadated. Seasinvity of sparegudating ool (UCss
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Table 2. Dug targets. the associated proteins, and i vitro evidence of asseciation wilh chemosensitivily

~t

Gene Allerations Sensitivity of rugs Associution with Reference ne.
symbatl in DIRC T e chemosensitivity
UCs s tameer. drug)

e .M PTX 59 63
rend ¥ S PTX Yes (NCl-pancl. M X) 59. 61063 66
ena IEC. M R PN 64, 67. 6%
TYMS U R S S-FU Yes frenal cell. S-FL) 69 7

No (NCT-pancl, 3-8 KN

Yes tlung. DOXY 1]
1op| M R* rr 76 R4
1oria MDD E1P, DOX No thung. DOX)} 1), 82 91
1021 1 ETP 86,87
DR M, U R” MTX 92 96
MAPA S PIrx g7
MAPT s PTX YR
STHNT U R PIXN 99 10H
NIFS3 R R FIP PN 101, 102
HSPAS R P [DR]
PIMDIA R CODEDOX, VB [DE]

FIMS

M4

§-FU

1S

Atterations i drug-induced resistance cefls (DIRC): DU dewn-regutaled: TEC, iseform expression change: M. mutated: UL up-regudated. Sensitivity of

up-reg

ating cells (UCs) and dewn-regutating celts (DCs: R w

stant: S, sensitve. Dings: CONRP, cisplating (P,

cloposide: MTXL methotresate: PEX. paclitaxel: VB vinblastine: S-FUL S-Muoreurcil.
?OQver-expression of the mutant gene.

and down-regulation of the gene altered the drug sensitivity
for 45, 87 and 32 genes, respectively, and a fotal of 80 genes
fullitfed (he criteria for the deflinition of an “in vitro chemo-
sensitivity associated gence’. The genes were calegorized

Table 3. Intracellular detoxifiors and i vitra cvidence o assoculion with chemoescensiivigy

wmoeteeant: DOX, doxerubiein E1P.

according to the protein encaded by them as foliows: trans-
porters (n = 15 Table 1}, drug targets (n = 8. Table 2},
farget-associated proteins (n =7, Table 2), intraccilular
detoxifiers (u = 7. Table 3). DNA vepair protemns (n = 10,
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Table 4. DNA damage recognition and sepass proleins and o viirg evidence of association with chemosensitivity

Gene Allerations Sensitivity of Prgs Assoacintion wilh Reference
symbnl in DIRC e — chemosensitivily no.
LCs NCs {eancer. drug)

HAIGB) U - cope 136
HAGB2 S conDr 137
FRCC) 4 R S cppp 138 140
RVIZ] G R cone No (NCl-pancl} 141 143
xXrp [ cppy Yes (INCl-panch) 142 144
MSi2 1, NC (@i 145, 146
M1in 1. NC «hbp 145 147
PMS2 13, NC P 146, 147
APEXI R 131.M [ER
MOEMT R S CPAGLACKNL Yes tiung, DOXY 19,149 152
BROAY i S R PTX 183 153
GLOY R POX 136

Alcrations in drug-induced resistauce cells (DIRCE D, down-reguiated: NCno change: U, up-regalated. Sensitivity of up-regulating cetls (UGCs) and
down-regulating cells (DCsk R, resistintc S, sensitive. Drugs: ACNUL 1-(d-amino-2-methyl-S-pyrimidingl e thyl 3+ 2-chlorocthy - 3-nitrosoure; B1LM,
bleomyetn: CHDP, cisplatin: DOX. doxorabicin: PTX. poclitixel.

Table 4), DNA damage recognilion profeins (n = 2, wo or more stadics were those encoding the major vault
Table 4), cell eycle regulators (# = 6. Table §), mitogenic proteindlung resistance-related protein (A1) (Table 1), thy-

and survival signal regulators (= 7, Table 6}, transcription midylate  synthetase (7YA/S) (Table 2).  gluathione
faclors (n = 4. Table 6). cell adhesion-mediated drug resist- S-transferase pi (GSTP1). metallothionein (A7) (Table 3),
ance protein (1 = 1, Table 6). and apoplosis regulators (1 == tumor suppressor protein p33 (TP33). and B-cell CLL/
13, Table 7). lymphoma 2 (BCL2) (Table 7).
The assaciation befween the gene alterations and in vitro
chemosensilivily was evaluated in one study for 25 genes, in ey s .
Iwo studics for seven genes. in three studics for (wo genes, DISCUSSION
and in live studies for one gene. and in a tolal of 30 studics CWe idensified a total of 80 in vitre chemaosensitivily
for 35 genes (Table 8). Significant association was found  associated genes. These genes have been the subject of
between chemosensitivity and alterations of genes encoding  congiderable rescarch, and of pumerous scientific publi-

tansporters, drng largets and intracellular detoxifiers  cations. In addition, we may also have to expect the exist-
(Table 8). Genes for which such association was shown in ence of many other genes associated with chemosensitivity

Table 8. Ceil evele regulators ad or vitre evidence of association with chemosensitivity

Ciene Alterations Sensitivity of Drugs Associalion with Reference no.
symhol in DIRC e chemosensitivity {eaneer,
UiCs PCs dug)
RBI . R DOXN Yes thg, DOX) 1S7 159
No gung, CDDPDOXY H

ML 8 MM PTN Yes any. CDDIY teb 16}
CDANEA L R.S S CDDP.BCNELPIX - - S
CONNDI RS S CODP.MIXLUPIN No tlung. 1XOX) 172 176
CDRR2A SR CHDP, SFUCPTNLTOR Yoo thrain. 5-F10) 17

R DOX [N

CHOANTB

cobls (DU RoOresistant, N,
2 FOP topoteca 8211

AMeratiens o drug-induecid resistance codts (DIRCY T uparegudated. Sersitivity o upereguiating cetls tUCs) and downeregmlabin
sepsitive, Dings: BONEL carmustme: CODPL cisphtn: DOX. doxentbicin: MMC, mifemyein Co MTX methotiexate: PN pachita
SRl
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‘Fuble 6. Mitogenic and survival signal regulators, fntegring, trmseriptien faciers and i vitrs evideaee of asseciation with chemosensitivity

Gene Alentions

symbol

i IR

Sensitivity of

Pigs

Association with
chemosengiivity
{cancer. drug}

Reference no

Uls 1Cs
ERBB2 R.ONC S CRDP.PTX Yes {lung, BOX) 122, 186 191
FEGIR R DOXN Ne (lung. CDDP, DOX, PEX) 10, 22, 112,192
KR4S82 R* “nRnRe 193
TIR.4S R, NC Ara-C. DOX. PTXN No (fung. DOX} 10, 193 197
AN R DOX 193
AR NCUR S CHDBP. DON.PEX 199 20
ARKT2 R S ohbpe 2060, 202
11(a13) S ETPPIX 203,204
JUN R (@313 134 No (nng. DOX) 10, 205
IR PAY 9 R S ooy Ne thimg. DOX) 10,206 208
ANC NG SR RS NC ChDP. DAOX No (hung. DON) 10,209 216
NFRBY (i S SFUDOXCETP 207 222

Allerations in drug-induced yesistance codls HRCE KC o change: UL pperegulated. Sensitivity ol up-regulating cedts (UCs) and down-
(D) NC a0 change: R resistant: S sensitive. Drugss Ara-CL -beta-D-arabirofiuranosylevtosine: CRDP. cisplating DOX, doxarabicing ETP, eleposide:
S-finoreuricil.

*Up-regutated with mutated Keor

PTX. pachitax

S

Fi,

e .

Table 7. Apoptosss regmdaters and in vitee evidence of association with chemosensityvity

regnlating cells

Giene Allerations Sensilivity of Drugs Association with Reference no.
syimbol in DIRC o chemosensitivity
UCs DO (cancer, dug)
P33 8R* R. S CRHY. BOX Yes (hrain) 233..229
Yes (NCl-panel ) 230
KNo (breast, DOXY 23
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No (hmg, PFNy 22
MDA SOR 8 CHDP.DOX, PTX 169,223 238
rPes R Cpoe. eI 239, 244
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Table 8. Gene categories and assoctstion with in vitro chemosensitivify

Citegory No. of Total no. No. of studics

genes of dudics showing association
{%0)

Transporter 15 i3 FEAARC]

Drug targel 8 L R (]

Target associuted ? 0 odn

protein

ntracellular detoxilicr 7 6 6 L))

DNA repair n 3 267y

DNA domage 2 i 0

recognition profen

Celt eyele [ s 3 (60)

Mitogenic signai p 3 L3h

Survival signal 2 0 UR{]

Transcription factor 4 3 0(0)

Cetl I 0 0t

adhesjon-mediated

Apoptosis 13 12 S04

Totat L 50 22 ¢k

but not sclected in the current sludy. because they bave
never caught the scientific eye for some reasons. Thus, the
results of this study may be significantly influenced by
publication bias. Nonetheless, we do believe thal these genes
have been selected reasonably carefully. and that they may
be helplul for establishing a clinical predictive chemosensi-
tivity tesl.

While (he association between alteraons of the 80 genes
and the chemosensitivity of various cell Jines was cevaluated
in 50 stodies, significant association was obscrved in only 22
(44%) (Table 8). The cellular functions of a gene vary among
cel) types and experimental conditions. The evaluation of the
gene functions, however, was conducted under only limiled
cellular contexts in these studies, as expected. Thus, for
example, the conditions ol a gene transfection experiment
may differ from those of an experiment to evaluate the che-
mosensitivity for many cell lines. The gene functions may nol
necessarily be examined under all possible conditions, but the
evaluation must be conducted under conditions similar to
those in the ¢linical scuting in order to develop elinical che-
maosensitivity testing using these genes.

The other possibility for the poor correlation to in vifro
chemaosensitivity may be that more than one gene alterations
arc involved in the chomosensitivity of tumors. This may be
discussed from the standpoint of the signal fransduction
pathway and from the cellular standpoint. Fromy the stand-
point of the signal transduction pathway, more than one gene

may be mvolved in the reaction 1o a eytotoxic agent. One of

the best examples is cooperation of 7P33 with another

189

member of the pS3 family. p73 (77773). in the response to
both DNA damage and chemosensitivity (3,4). From the cel-
lular standpoint. several pathways may work additively,
antagonistically, or complementally in determining the che-
mosensitivity of the cell. This can be understood well from
the context of induction and inhibition of apoplosis being
controlled by pro-apoptotic and anti-apoptotic pathways.
Thus. it would he important to study several pathways at the
same time, or 1o evaluate the net effect of the involvement
of various pathways.

Complex factors influencing the celiular chemosensitivily
may bc operative on a tumor in vivo. in such a way that
the tumaor may exhibit highly heterogencous gene aliera-
tions: that the tumor cells may interact with various host
cells, including immune cells, libroblasts and vascular
endathehial cells: and that the differences in the distance
between cach tumor cell and bload vessels may affect the
exposure level of tumor cells to a drug. No systemalic
approach has been developed 1o include this complex inter-
play of factors in the stwdy of cellular chemosensitivity,
although studics an cell adhesion-mediated drug resistance
may be partly helpfud.

Amoung the six genes or which the association was shown
in two or more in vitro studies, four encode classical drug
resistance proteins which are known Lo inhibit the drug
{arget interaction. These proteins are relatively specific for
the drug as well as the cell type: e.g. TYMS is eritical for
S-Nuorouracil seansitivity. Thus. 7YA/S is a geod candidate
{for chemosensitivily testing in palients with colorectal
cancer who are treated with S-fuorouracil (Table 2). WP is
invalved in the transpart of doxorubicin, therefore, it would

a

be of inlerest to examine the association between the
expression of 471°P and the drag response in patients wilh
breast cancer: the association of VP with chemoscensitivity
has been evalualed only for brain tumor and lung cancer cell
lines. to date (Table 1), However. the remaining (wo of the
$ix genes, 7753 and BCL2,
and therefore may be relatively cell-type specific. Since all
the three in vigro studies using breast cancer cell lines failed
o show any associations between alicrations of these genes
and the chemaosensitivity. the association should be evaluated
in other tumor types in the clinical setting (Table 7).

The receatly developed ¢DNA microartay technique
allows analysis of the mRNA expression of more than
20000 genes at once, and as many as 100 - 400 genes have
been statistically shows as potentail chemosensitjvity-related
genes in various studies (5 7). The 80 genes in the current
study were seleeted theoretically based on their known func-
lons. and their contribution to i vitro chemosensitivity was

are associated with apoptosis,

shown in the experiments. Thus, 10 would be of inlerest 1o
evaluate the expression profiles of these genes by ¢cDNA
microamay analysis, even if the difference in expression
between sensitive and resistant cell lines doex not reach stat-
istical sigmficance,

s conclusion. 80 in virro chemosensitivily associated
genex were identificd from a review of the Hierature, which



may be considered 1o be future candidates for clinical predic-
tive chemosensiivity (esling.
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Abstract

Purpose The phenotypic effects of UGTIA7 and UGTIA9
genetic polymorphisms on the in vivo pharmacokinetics of
irinotecan were examined.

Methods Eighty-four Japanese patients with cancer who
received irinotecan-based chemotherapy were enrolled.
Polymorphisms present in UGTIA7 (T to G transversion at
~57 and UGTIA7%2 to *9), UGTIAZ (9 or 10 repeat of T at
—118 [—118(T)9 or 10] and UGTIA9*2 to *5), and
UGTIAI (UGTIA1*6, UGTIAI*27, and UGTIAI*28)
were analyzed for all patients. Pharmacokinetics of irino-
tecan were examined in 52 patients.

Results The most frequent haplotype (haplotype 1, 56.7%,
95% CI 53.1-60.4) consisted of polymorphisms related to
normal catalytic or transcriptional activity [T at —57 and */
of UGT1A7, —118(1)10 of UGTIA9, and UGT1Al*1]. The
second most frequent haplotype (haplotype II, 15.0%, 95%
CI 12.4-18.3) consisted of polymorphisms related to
reduced catalytic or transcriptional activity [—577 > G and
*3 of UGTIA7 and —118(T)9 of UGTIA9 linked to
UGTIAI*6). The AUCgy 3/AUCgy 35 ratios .in three
patients homozygous for haplotype II were significantly
higher than those in 20 patients with I/I. diplotype
(P =0.011). Neither of these patients had UGTIA1*28.
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Conclusion Genetic linkage of UGTIA7 and UGTIA9
polymorphisms to UGTIAI*6, related to reduced catalytic
and transcriptional activities of UGTsS, is associated with
the decreased glucuronosyltransferase activity for SN-38 in
Japanese patients with cancer.

Keywords Irinotecan - SN-38 - Polymorphism -
UGTIA7 - UGTIA9 - UGTIAI*6

Introduction

Irinotecan is a camptothecin analogue with high-antitumor
efficacy that acts by inhibiting topoisomerase . Irinotecan
is a prodrug metabolized to its active metabolite SN-38,
which is further conjugated by hepatic UDP-glucuronosyl-
transferase (UGT) 1Al, to yield the more polar, .inactive
SN-38 glucuronide (SN-38G) [1]. A (TA)7 within the pro-
moter of the human UGTIAI gene (UGT1A1*28) has been
associated with reduced glucuronidation capacity as well as
with irinotecan-related dose-limiting toxicity, most com-
monly diarrhea and neutropenia {2-4].

Although UGT1A7 and UGT1A9 also participate in the
glucuronidation of SN-38 in vitro [5-7], the in vivo roles of
these UGTs remain poorly understood as compared with
that of UGT1Al. UGT1A7 and UGT1A9, as well as
UGT1ALl are encoded by a single UGTIA gene located on
chromosome 2q37. UGT1A7 is expressed exclusively in
the oropharynx, esophagus, stomach, and pancreas [8~12],
but is absent in the liver [13]. In contrast, UGT1A9 is
expressed in the liver, kidney, small intestine, colon, and
reproductive organs such as the testis and ovary [8-10].

Functionally sigpificant genetic polymorphisms have
been described for UGTIA7 and UGTIA9 [6, 14, 15].
UGTIA7#3, *4, *5, *8, and *9 and UGTIA9*3 and *5
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reduce catalytic activity for SN-38 {6, 14, 15]. Polymor-
phisms affecting transcriptional activity have also been
identified [16, 17). Lankisch et al. [16] have shown thata T’
to G transversion at —57 (—57T > G), located in the puta-
tive TATA box of the UGTIA7 gene, is related to a reduc-
tion in promoter activity to 30%. The 9 repeat of T allele at
—118 [—118(T)9], resulting in lower transcriptional activ-
ity than —118(7)10, has been found in the 5’-flanking
region of the UGTIA9 gene [17]. Clinically, Carlini et al.
{18] have shown that UGTIA7*3/*3 is significantly associ-
ated with a good antitumor response to irinotecan and lack
of severe gastrointestinal toxicity in patients with meta-
static colorectal cancer. Furthermore, they have proposed
that homozygosity for the presence of —118(7)9 sites in
the UGTIA9 gene is significantly related to enhanced
response and reduced toxicity. These results have sug-
gested that UGT genotypes causing low catalytic or tran-
scriptional activity are associated with better responses
irinotecan. This hypothesis is consistent with the notion
that low-catalytic activities or expression levels of UGTs
might increase plasma concentrations of SN-38, enhancing
the clinical response to irinotecan. However, the increased
plasma concentrations of SN-38 seen in patients with UGT
gene polymorphisms seem unlikely to relate to the reduced
toxicity.

To gain better insight into the in vivo roles of UGT1A7
and UGT1A9 in SN-38 glucuronidation, we studied the
relation between genotypes of UGTIA7 and UGTIAY and
the pbarmacokinetics of irinotecan. First, we examined
genetic polymorphisms present in UGTIA7, UGTI1A9, and
UGTIAI in 84 Japanese patients with cancer who received
irinotecan-based chemotherapy. We then studied the rela-
tion between the genotype and the pharmacokinetics of iri-
notecan in 52 of these patients.

Patients and methods
Materials

Irinotecan, SN-38, and SN-38G were kindly supplied by
Yakult Honsha (Tokyo, Japan). All chemicals and solvents
were of the highest grade commercially available.

Patients

The study group comprised 84 Japanese patients (males/
females, 52/32) with cancer (50 colons, 18 stomachs, seven
ovaries, seven lungs, and two others) who received irino-
tecan monotherapy or various regimens of irinotecan-based
combined chemotherapy from November 2004 through
June 2006. A subset of the patients in the present study was
included in the previous study [19]. The median age of the
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patients was 62 years (35-85). All patients gave informed
consent in writing for their peripheral blood samples and
medical information to be used for research. The study pro-
toco! was approved by the Institutional Review Board of
Saitama Medical School.

Treatments

For monotherapy, irinotecan was given weekly at a dose of
100 mg/m? for the first 3 weeks of a 4-week cycle, or every
2 weeks at a dose of 150 mg/mZ. In combination with fiuo-
rouracil and leucovorin (IFL regimen), 100 mg/m? of irino-
tecan was administered weekly for the first 4 weeks of a
6-week cycle. In the FOLFIRI regimen, irinotecan was
administered at 2-week intervals at doses of 150 or 180 mg/
m?. In combination with cisplatin (IP regimen), irinotecan
was given at a dose of 50-70 mg/m? on day 1 of a 4-week
cycle and at the same dose on day 15. For each of these reg-
imens, irinotecan (50-180 mg/mz) was infused over the
course of 90 min.

Genotyping

Genomic DNA was extracted from 200 pl of peripheral
blood, which had been stored at —80°C until analysis, with
the use of a QlAamp Blood Kit (QIAGEN GmbH, Hilden,
Germany).

UGTIAI

Two polymorphisms (G71R [#6] and P229Q [*27]) were
analyzed by the polymerase chain reaction-restriction frag-
ment length polymorphism method (PCR-RFLP) described
by Ando etal. [2]. The TATA box polymorphism (TA)7
(*28) was determined by the direct sequencing method
described by Ando et al. [2].

UGTIA7

The UGTIA7 promoter sequence was amplified by PCR,
and sequence analysis was performed to determine
—57T> G as described by Lankisch et al. [16], with minor
modifications. Briefly, the reaction mixture consisted of
2.5 mM MgCI2 and 1.25 v of AmpliTaq Gold polymerase
in a final volume of 50 pl.

Genotype of exon 1 was determined by direct sequenc-
ing of a PCR product that spans all of the polymorphic sites
(N129K and R131K [*2], N129K, R131K and W208R
[*3], W208R [*4], G115S [*5], E139D [*6], N129K,
R131K and E139D [*7], N129K, R131K, E139D, and
WI108R [*8] and G115S, N129K, and R131K [*9]) as
described by Carlini et al. (18], with minor modifications.
Briefly, the reaction mixture consisted of 2.5 mM MgCl2
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and 1.25 u of AmpliTaq Gold polymerase in a final volume
of 50 .

UGTIA9

Five polymorphisms (—118(7)9 or 10 {based on assigning
the A in the translation start codon as +1] [18], C3Y [#2],
M33T [*3], Y242X [*4], and D256N [*5]) were evaluated
by direct DNA sequencing of a PCR amplicon spanning all
of the polymorphic sites as described by Carlini et al. [18],
with minor modifications. Briefly, the reaction mixture con-
sisted of 2.5 mM MgCI2 and 1.25u of AmpliTaq Gold
polymerase in a final volume of 50 pl.

Statistical analysis

Allele and genotype frequencies for each polymorphic
allele in the UGTIA7, UGT1A9, and UGTIAI genes were
determined by using SNPAlyze 5.0 (Dynacom, Yokohama,
Japan). The significance of deviations from Hardy—Wein-
berg equilibrium was tested with the program SNPAlyze
5.0. Linkage disequilibrium analysis to make pairwise
two-dimensional map of correlation coefficient #* and
Lewontin’s coefficient D’ among single nucleotide poly-
morphisms, haplotype and diplotype configurations (com-
binations of haplotypes) analyses were also performed by
an expectation-maximization-based algorithm using SNP-
Alyze 5.0. Polymorphisms not in Hardy—-Weinberg equilib-
rium were excluded from the haplotype analysis.

The statistical significance of differences in the ratio
of the AUC for SN-38 to that for SN-38G (AUCgy;s/
AUCgy.3¢) was assessed with the Mann-Whitney U-test.
This and other statistical analyses were performed with
SPSS for Windows, version 12.0J (SPSS Japan Inc., Tokyo
Japan). Differences were considered statistically significant
when the two-tailed P-value was less than 0.05.

Pharmacokinetic analysis

Pharmacokinetic analysis was performed in 52 subjects of
this study. Blood samples for pharmacokinetic analysis
were obtained during the first cycle of treatment. If neces-
sary, blood samples were obtained during subsequent
cycles of treatment to analyze pharmacokinetics. The blood
samples were taken from the arm opposite the infusion site
at the beginning of irinotecan infusion and 0, 0.25,0.5, 1, 2,
4, 8, and 24 h after the end of the infusion. The samples
were immediately centrifuged, and the plasma was stored at
—80°C until analysis.

Total (lactone and carboxylate) plasma concentrations of
irinotecan, SN-38, and SN-38G were analyzed by reverse-
phase high-performance liquid chromatography (HPLC) as
described by Araki et al. [19}. The lower limit of quantifica-
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tion for irinotecan was 5 ng/ml (7.4 nM), and those for SN-
38 and SN-38G were 0.5 ng/mil (1.2 and 0.88 nM). The
intraassay and interassay coefficients of varation for irino-
tecan and the metabolites were less than 10%.

The area under the time-versus-concentration curve
(AUC, pM h) from the beginning of the infusion to the time
of obtaining the last blood sample was calculated by the lin-
ear trapezoidal rule, using a computer program (WinNonlin
version 4.01 software, Pharsight Corporation, Mountain
View, Calif).

Resalts

Polymorphisms in UGTIA7, UGTIA9, and UGTIAI
in Japanese patients with cancer

The genotypes of UGTIA7, UGTIA9, and UGTIAI were
determined in the 84 patients. The allele frequencies of the
—57T> G allele of UGTIA7 and the —118(T)9 allele of
UGTIA9, associated with reduced transcriptional activity,
were 23.0 and 38.1%, respectively. The allele frequency of
these polymorphisms in Japanese was reported to be 22,
and 34-40%, respectively [17, 20]. The frequency of
UGT1A7%3, related to the reduced catalytic activity, and
UGTIA7*2 were 29.2 and 11.9%, respectively. Previous
studies demonstrated that the frequencies of UGTIA7*3
and UGTIA7*2 in Japanese were about 25 and 15%,
respectively {21, 22]. The allele frequencies of UGTIAI*6
and UGTIA1*28 were 22.6 and 9.5%, respectively. The
reported frequencies were 15.1 and 13.3%, respectively
[23]. All allele frequencies, except for those of
UGTIAI*%27 (0.6%) and UGTIA9*5 (0.6%), were in
Hardy-Weinberg equilibrium (P> 0.05). There was no
patient harboring UGTIA7*4-*9 and UGT1A9%2-%4.
Diplotypes or genotypes of UGTIA7, UGTIAY, and
UGTIAI found in the patients are shown in Table 1. The
frequencies of homozygosity for —57T> G of UGTIA7
and of UGT1A7%3/%3 were both 7.1%, and that of homozy-
gosity for —118(1)9 of UGTIA9 was 10.7%. The frequen-
cies of UGT1A1*6/%6 and UGT1A1%6/%28 were both 4.8%.

Linkage disequilibrium analysis

The result of the linkage disequilibrium analysis is shown
in Fig. 1. We found that —118(1)9 of UGTIA9 was highly
linked with UGTIA7 variants to cause N129K and R131K
(# =088, D" =1). =57T> G of UGTIA7 gene was linked
with UGTIA7%3 (F*=0.7, D' =0.93). UGTIAI*6 was
linked with UGTIA7*3 (*=0.55, D'=0.88) and
—57T> G of UGTIA7 (r2 =048,D’ =1).  and D’-values
seen between UGTIAI*6 and —118(1)9 of UGTIAY were
0.29 and 0.79, respectively.
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Table 1 Diplotypes or genotypes of the UGTIA7, UGTIAY, and
UGT1A! genes found in Japanese patients with cancer

Gene Genotype or Number Frequency
diplotype (%)
UGT1A7 -577IT 48 57.1
-577IG 30 35.8
-57 GIG 6 7.1
*/+] 26 31.0
*[/%2 14 16.7
*2/%2 1 12
/%3 33 39.2
*2/%3 4 438
*3/%3 6 71
UGTIA9 —118(1) 9/9 9 10.7
—118(7) 9/10 46 54.8
—118(T) 10/10 29 345
*/* 83 98.8
*[/*5 1 1.2
UGTIA! *J/*° 38 45.1
*1/%28 12° 14.3
*6/%28 4 48
*[/%6 26 31.0
*6/*6 4 48

The number of patients was 84
% UGT1A1*1 was defined as the allele not possessing *28, *6, and *27
b The *28 and *27 were assumed to exist on the same allele [2, 22}

Haplotype structures of UGTIA1, UGTIA7, and UGT1A9

Since UGTIAI#*27 and UGTIA9*5 were not in Hardy-
Weinberg equilibrium (P < 0.05), these loci were excluded
from haplotype analysis. Sai et al. [22] have found that

UGTIAI*6 and UGTIAI*28 do not exist on the same
allele. Therefore, we performed haplotype analysis with the
UGTIAI*1, UGTIA1%*6, and UGTIA1*28 alleles.

Fifteen haplotypes estimated are shown in Table 2. The
most frequent haplotype (haplotype 1, 56.7%, 95% CI 53.1-
60.4) consisted of polymorphisms related to normal cata-
Iytic or transcriptional activity. The second most frequent
haplotype (haplotype 11, 15.0%, 95% CI 12.4-18.3) con-
sisted of polymorphisms related to reduced catalytic or
transcriptional activity (—~577> G and *3 of UGTIA7,
~118(T)9 of UGTIAY, and UGTIA1*6). In addition to the
linkage disequilibrium analysis, these findings supported
the genetic linkage among UGTIA7 and UGTIA9 polymor-
phisms and UGTIA1%6.

Relations between reduced glucuronidation capacity for
SN-38 and haplotype structures of UGTIA1, UGTIA7,
and UGTIA9

Pharmacokinetic analysis of irinotecan and its metabolites
SN-38 and SN-38G was performed in 52 subjects. Their
characteristics are summarized in Table 3. The distribution
of AUCgy.1g/AUCgy 33 ratios is shown in Fig. 2. The
median of the AUCgy 33/AUCgy 356 ratios was 0.5. Diplo-
type configurations in the UGTIA7, UGTIA9, and UGTIAI
genes were estimated by the haplotype analysis with the all
of 84 Japanese patients with cancer. The diplotype configu-
rations for 52 patients with pharmacokinetic data are shown
in Table 4. The number of patient(s) showing AUCgy.35/
AUCgy 33 ratio(s) higher than 1.0 and the ratio(s) are also
described in the Table 4. Three patients were homozygous
for haplotype II. The AUCgy 35/ AUCqy 33 ratios observed
in these patients were 1.40, 1.10, and 1.11, respectively.
The patient showing the 1.40 of AUCgy 3g/AUCgN.386

UGTIA9 UGTIA7 UGTIAI
-118(Tw -S1T>G N129K R131K W208R (TAy G7IR
UGTIA9  -118(Tw 0.7877
-STT>G 0.3598 0.4696 0.7363
N129K 04783
UGTIA7
RI3IK 04783
W208R 04806 05341
(TAy? 0.1169 0.0697 0.0988 0.0988 0.0729
UGTIAl
G7IR 02947 04754 0A194 04194 0.0308

Fig. 1 Linkage disequilibrium analysis for UGTIA7, UGTIA9 and
UGTIAI single nucleotide polymorphisms 72 (lower red) and D’
(upper blue) values are shown in each square. *-values; open squares,
0-0.25; pink squares, 0.25-0.5; red squares, 0.5-1.0: D’-values;
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open squares, 0-0.6; light blue squares, 0.6-0.8; dark blue squares,
0.8-1.0. UGTIA7*2 causes N129K and R131K. UGTIA7*3 causes
N129K, R131K, and W208R
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Table 2 Haplotype structures

of the UGTIA?, UGTIAS9, and Haplotype UGTIA7 UGTIA9 UGTIAI Frequency (%) (95%CI)
UGTIAl genes in Japanese —-57 Exonl —118(T)% or 10
patients with cancer
I T ¥/ 10 *] 56.7 (53.0-60.4)
I G *3 9 *6 15.0 (12.4-18.3)
I T 2 9 *] 8.64 (6.67-10.8)
v G *3 9 28 5.05 (3.31-6.73)
\Y T *3 9 * 3.31 (2.04-4.80)
VI T */ 10 28 2.18 (1.09-3.59)
vl G *3 10 *% 1.87 (0.827-2.93)
vin G *3 9 *] 1.85 (0.924-3.05)
X T 2 9 *28 1.45 (0.563--2.58)
X T *3 9 *28 0.834 (0.338-1.75)
_ X1 G 2 9 *6 0.684 (0.318-1.46)
UGTIAI*27 and UGTIA9*%S X1l T *3 9 * 0.624 (0.306-1.27)
were not included in this X1 T *2 9 *6 0.613 (0.302-1.24)
analysis because these loci Xiv T *3 10 * 0.595 (0.298-1.19)
were not in Hardy-Weinberg XV G ) 10 % 0.510 (0.108-1.16)

equilibrium

Table 3 Demographic characteristics of patients participating in the
pharmacokinetic study

Number
Age (year)" 62 (42-85) 52
Sex Male 32
Female 20
Performance status 0 33
1 17
2 2
Creatinine (mg/dl)® 0.66 (0.42-1.15) 52
Total bilirubin (mg/dl)* 0.5 (0.2-1.1) 52
Tumor type Colon 27
Stomach 14
Ovarian 4
Others 7
Type and dose of Monotherapy 12
irinotecan therapy (mg/m?)" 100 (50-150)
IFL 100 (50-150) 3
FOLFIRI 180 22
(150-180)
IP 80 (60-100) 15
Toxicity Grade 4 neutropenia 5
Grade 3 neutropenia 4
Grade 3 diarrhea 0

 The values are expressed as the median with the range in parentheses

received the same dose of irinotecan in the second cycle of
treatment (FOLFIRI, 180 mg/m?) as the first cycle. The
AUCgN 3g/AUCgy 35 Tatio during the second cycle was
also high (2.73). The relation between the AUCgy.3q/
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AUCgy 336 ratios and diplotype configurations of /I, I/I,
and II/II was examined (Fig. 3). The Kruskal-Wallis test
for these three data sets (three diplotypes) yielded P-value
of 0.027. The AUCgy 13/AUCgy 35 ratios in the three
patients who were homozygous for the haplotype II were .
significantly higher than those in 20 patients with I/I diplo-
type (P=0.011). The diplotype configurations II/II
occurred at frequency of 3.6% in Japanese patients with
cancer (Table 4).

Discussion

Our study showed that genetic linkage of UGTIA7 and
UGTIA9 polymorphisms to UGT1AI*6, related to low cat-
alytic and transcriptional activities of UGTSs, was associated
with the pharmacokinetics of irinotecan and with reduced
glucuronosyltransferase activity for SN-38. Given that
UGT1A7 and UGT1A9 might be involved in the glucuroni-
dation of SN-38 in vivo, the lower glucuronidation capacity
for SN-38 in patients homozygous for haplotype II was
probably caused not only by UGTIA1*6, but also by poly-
morphisms in the UGTIA7 and UGTIA9 gene.

Previous studies have shown that the gene product of
UGTIA7*3 has about 50% lower catalytic activity for
SN-38 than that of UGTIA7*1 {6, 14]. The —57T > G poly-
morphism in the putative TATA box of UGTIA7 reduces
promoter activity to 30% [16]. However, an in vivo role of
UGT1A7 might be less likely, because this enzyme is not
expressed in liver or intestine [8-13]. Yamanaka et al. [17]
have demonstrated that —118(7)9 polymorphism is related
to the 2.6-fold lower transcriptional activity of the UGTIA9
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Fig. 2 Distribution of 16
AUCgp 35/ AUCq 35 ratios. The 14t
median value of the AUCgy 35/ ~-
AUCqgy.33 ratios was 0.5 e 2
8 10}
§,
L~ 8 [
s .l
2
E o
zZ
2
00 0.2
Table 4 Diplotype configurations in UGTIA7, UGTIA9, and

UGTIAI in Japanese patients with cancer

Haplotype®/  All patients Fifty-two patients

haplotype with pharmacokinetic data
n Frequency (%) n

1) 25 297 20(1; 1.39)°

711 14 166 11 (2; 1.16 and 1.24)

/it 10 118 6

v 6 7.1 1

w 4 48 1

1 1 1.2

A1 2 24 1

v 2 24 2

X 3 3.6

VX 1 1.2

411 1 1.2

/X1 1 1.2 1

vXiv 1 1.2

1 3 3.6 3(3; 1.40, 1.10, and 1.11)

17111 2 24 2

wvI 2 24 1 (1; 1.04)

wXv 1 1.2

nwv 1 1.2

/X1 1 1.2 1(1; 1.42)

v/ | 1.2

/vl 1 1.2 1(1;2.16)

vV/VIII i 1.2

Total 84 52

® The haplotype numbers are identical to those shown in Table 2

> Numbers in parenthesis represent the number of patient(s) showing
AUCgy, 35/AUCgy 35 ratio(s) higher than 1.0 and the ratio(s)

gene. On the other hand, the no association between
—118(7)9 polymorphism and UGT1A9 protein level has
been reported [24]. Innocenti et al. [25] have demonstrated
that SN-38 glucuronidation rate was higher in patients het-
erozygous for —118(7)9 than in patients with homozygous
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Fig. 3 Relationship between plots of the AUC for SN-38 versus the
ratio of the AUC for SN-38 and the diplotype configurations. Numbers
of patients for respective diplotype configurations /I, /I, and IVII
were 20, 11, and 3. Lines indicate median-value

—118(7)10. Taking these results into account, an alterna-
tive hypothesis is rose.

(1) UGT1Al has a role in SN-38 glucuronidation in vivo,
whereas UGT1A7 and UGT1A9 do not.

(2) The polymorphisms in the UGTIA7 and UGTIA9 gene
are linked to UGT1AI%*6 because of the close proxim-
ity of these loci (<100 kb) (GeneBank, AF297093).

(3) The reduced glucuronidation capacity for SN-38 in
patients homozygous for haplotype 1I is principally
caused by UGTIAI*6.

If patients homozygous for polymorphism in UGT1A7 and
UGTI1A9 together with UGTIAI*] (e.g., haplotype VIII)
could be identified, it would theoretically be possible to
evaluate the roles of UGT1A7 and UGT1A9 by comparing
the in vivo pharmacokinetics of irinotecan in these patients
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with the pharmacokinetics in patients homozygous for hap-
lotype 1I. However, patients homozygous for haplotype
VIII were not found in the present study. Therefore, from
the results of the present study, it is difficult to assess the
in vivo roles of UGT1A7 and UGT1A9 in SN-38 glucuron-
idation on the basis of the phenotypic effects of haplotype
II. Further studies should need.

In whites, the allele frequencies of —577> G and *3 in
the UGTIA7 gene and of —118(7)9 in the UGTIA9 gene
are higher than those in Japanese (39, 36, and 61%, respec-
tively) {16, 17, 23, 25, 26]. The frequency of UGTIAI*6 in
whites is estimated to be lower than that in Asians, includ-
ing Japanese [2, 25, 27], whereas the frequency of the
UGTIA1%28 allele is higher in whites than in Asians {2,
28]. These findings suggest that the genetic linkages of
these polymorphisms in UGTIA7 and UGTIA9 to
UGTI1AI*6, frequently seen in Japanese patients with can-
cer, probably occur at lower frequencies in whites.

In a patient homozygous for haplotype II showing the
AUCqn 25/ AUCN 356 1atio of 1.40, grade 3 neutropenia
developed during the second cycle of treatment with iri-
notecan, given in the same dose as the first cycle (FOLF-
IRI, 180 mg/m?). The other patient with the diplotype II/II
with the AUCgy.45/AUCq) 356 ratio of 1.11 suffered from
grade 4 neutropenia 10 days after the first cycle of irino-
tecan treatment (monotherapy, 100 mg/mz). Therefore,
the third cycle of irinotecan treatment for the patient was
discontinued. These results might indicate that the config-
uration of diplotype (1I/II) might be important for predict-
ing not only lower SN-38 glucuronidation capacity, but
also the risk of irinotecan-related toxicity in Japanese
patients with cancer.

The diplotype configuration in a patient showing the
highest AUCgy 24/ AUCq 356 Tatio (2.16) consisted of hap-
lotype VII and haplotype IV (Table 4). The structure of
haplotype VII was nearly consistent with that of haplotype
1, except for -118(7)10 of UGTIAY, indicating genetic
linkages of —577 > G and *3 of UGTIA7 to UGTIAI%*6.
The polymorphisms of UGTIA7 and UGTIA9 in haplotype
IV were similar to those seen in haplotype 1I and were
linked to UGTIAI*28. The higher AUCgy 15/AUCgy 336
ratio seen in the patient may be related to this diplotype
configuration. Furthermore, the patient suffered from the
grade 4 neutropenia at the first treatment of irinotecan
(150 mg/m2) with FOLFIRI regimen. Therefore, the dose
of irinotecan was reduced to 100 mg/m? at the second treat-
ment. Although the AUCgyq/AUCy s seen in the
patient at the second treatment was still high (1.56), the
severe toxicity was not observed.

Among nine patients showing AUCg1/AUCsnasg
ratios higher than 1.0, 6 patients did not suffer from irino-
tecan-related sever toxicity. According to our data, dose of
irinotecan was not necessarily correlated to the sever toxic-
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ity in these of nine patients. Factors determining the sensi-
tivity to the irinotecan-related toxicity need to be examined.

Recently, the novel UGT1A9 intronic ¢. 855+ 399C>T
polymorphism has been reported to appear as a predictor of
SN-38 glucuronidation levels in the liver [29]. The most of
the liver samples used in this study were from Caucasian,
and did not include those from Japanese. Therefore, it is of
interest to know the impact of this polymorphism on the iri-
notecan pharmacokinetics in Japanese patients with cancer.

In genotype-pharmacokinetic association analysis, Han
et al. [30] had recently reported that UGTIAI*6/*6 (n = 6),
UGTIA7%3/*3 (n=6), and —118(7)9/9 in the UGTIA9
(n = 11) were associated with significantly lower glucuron-
osyltransferase activity in Korean patients, despite they did
not examine the effects of ~577> G variant in UGTIA7
gene. The results obtained by Han et al. and by us indicated
that the combination of genotypes of UGTIA7, UGTIA9
and UGTIA1 might be important to predict atypical irino-
tecan pharmacokinetics and reduced glucuronosyltransfer-
ase activity in Asian patients with cancer.

In conclusion, our study showed that genetic linkages of
UGTIA7 and UGTIA9 polymorphisms to UGTIAI*6,
related to low catalytic and transcriptional activities of
UGTs, is associated with the pharmacokinetics of irino-
tecan and reduced glucuronosyltransferase activity for
SN-38.
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