

not associated with prolonged survival. Previous studies have shown an approximately 3 times higher incidence of *EGFR* mutations in East Asians than in Caucasians.^{7,9-12,16,17,19,21,28-30} FISH-positive results do not appear to contribute significantly to the response to gefitinib or to survival in populations with high percentages of *EGFR* mutations.

The incidence of L858R in our study seemed low compared with the incidence of exon 19 deletion. Previous studies have demonstrated that the incidence of deletion mutations in exon 19 is almost the same as the incidence of point mutations in exon 21.^{7,9-12,16,17,19,21,28-30} Because the direct sequencing method usually was used to detect *EGFR* mutations, it is unlikely that the low frequency of the L858R mutation was caused by assay-related, false-negative findings. Our results of the incidence of L858R mutation and exon 19 deletion mutations may also produce some distortion with regard to the analysis of gene copy numbers because the number of patients with high gene copy numbers has been observed to be higher in those with deletion mutations in exon 19 than with point mutations in exon 21. Further analyses in much larger groups of patients will be necessary to clarify the frequency of the 2 most common mutations.

Takano et al. demonstrated an association between increased *EGFR* copy numbers measured by quantitative PCR (qPCR) and both higher a response rate and longer TTP.¹⁹ Dziadziszko et al. reported that *EGFR* messenger RNA (mRNA) expression in tumor samples measured by qPCR was a predictive biomarker for response to gefitinib and longer progression-free survival. Those investigators also demonstrated that *EGFR* mRNA expression measured by qPCR was correlated significantly with FISH-positive results.³¹ It is possible that qPCR may enable us to make a more reliable distinction between specific and nonspecific amplification of the *EGFR* gene.¹³ We plan to compare *EGFR* gene copy numbers in corresponding samples measured with qPCR to confirm our results. We classified all patients into a FISH-positive group and a FISH-negative group according to the scoring system published by Cappuzzo et al. *EGFR* gene copy numbers also may vary according to ethnicity, similar to the differences in *EGFR* mutation frequency. The definition of FISH-positive results may need to be modified to use it as a predictor of gefitinib efficacy in Japanese patients with NSCLC.

In conclusion, the results of the current study suggest that the presence of *EGFR* mutations detected in biopsy specimens is an independent and significant predictor of response to gefitinib and survival in Japanese patients with advanced NSCLC. However, the

role of *EGFR* gene amplification was not identified as a predictor of gefitinib efficacy in Japanese patients. Precise measurements are needed, and the validity of the classification must be confirmed in a prospective study.

REFERENCES

1. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. *Crit Rev Oncol Hematol*. 1995;19:183-1232.
2. Ranson M, Hammond EA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. *J Clin Oncol*. 2002;20:2240-2250.
3. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (the IDEAL 1 trial) [corrected]. *J Clin Oncol*. 2003;21:2237-2246.
4. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. *JAMA*. 2003;290:2149-2158.
5. Parra HHS, Cavina R, Lutteri E, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib (Iressa, ZD1839) in non-small-cell lung cancer. *Br J Cancer*. 2004;91:208-212.
6. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. *J Natl Cancer Inst*. 2004;96:1133-1141.
7. Han SW, Hwang PG, Chung DH, et al. Epidermal growth factor receptor (EGFR) downstream molecules as response predictive markers for gefitinib (Iressa, ZD1839) in chemotherapy-resistant non-small cell lung cancer. *Int J Cancer*. 2005;113:109-115.
8. Ono M, Hirata A, Kometani T, et al. Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. *Mol Cancer Ther*. 2004;3:465-472.
9. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. *N Engl J Med*. 2004;350:2129-2139.
10. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. *Science*. 2004;304:1497-1500.
11. Pao W, Miller V, Zakowski M, et al. EGFR receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. *Proc Natl Acad Sci USA*. 2004;101:13306-13311.
12. Huang S-E, Liu H-P, Li I-H, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. *Clin Cancer Res*. 2004;10:8195-8203.

13. Bell DW, Lynch TJ, Haserlat SM, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. *J Clin Oncol*. 2005;23:8081-8092.
14. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. *J Clin Oncol*. 2003;21:3798-3807.
15. Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. *J Clin Oncol*. 2005;23:6829-6837.
16. Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. *Cancer Res*. 2004;64:8919-8923.
17. Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. *J Clin Oncol*. 2005;23:857-865.
18. Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. *J Natl Cancer Inst*. 2005;97:643-655.
19. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. *J Clin Oncol*. 2005;23:2513-2520.
20. Oken MM, Creech RH, Torney DC, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. *Am J Clin Oncol*. 1982;649-655.
21. Kim K-S, Jeong J-Y, Kim Y-C, et al. Predictors of the response to gefitinib in refractory non-small cell lung cancer. *Clin Cancer Res*. 2005;11:2244-2251.
22. Kimura H, Kasahara K, Shibata K, et al. EGFR mutation of tumor and serum in gefitinib-treated patients with chemotherapy-naïve non-small cell lung cancer. *J Thorac Oncol*. 2006;1:260-267.
23. Jackman DM, Yeap BY, Sequist LV, et al. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib. *Clin Cancer Res*. 2006;12:3908-3914.
24. Riely GJ, Pao W, Pham D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. *Clin Cancer Res*. 2006;12(3 pt 1):839-844.
25. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). *Lancet*. 2005;366:1527-1537.
26. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. *J Clin Oncol*. 2006;24:5034-542.
27. Han SW, Kim TY, Jeon YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. *Clin Cancer Res*. 2006;12:2538-2544.
28. Shigematsu H, Liu L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. *J Natl Cancer Inst*. 2005;97:339-346.
29. Tokuno M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. *Clin Cancer Res*. 2005;11:1167-1173.
30. Yang SII, Mechanic LE, Yang P, et al. Mutations in the tyrosine kinase domain of the epidermal growth factor receptor in non-small cell lung cancer. *Clin Cancer Res*. 2005;11:2106-2110.
31. Dziadziuszko R, Witta SE, Cappuzzo F, et al. Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. *Clin Cancer Res*. 2006;12:3078-3084.

Review Article

Current Trends and Controversies over Pre-operative Chemotherapy for Women with Operable Breast Cancer

Chikako Shimizu, Masashi Ando, Tsutomu Kouno, Noriyuki Katsumata and Yasuhiro Fujiwara

Division of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan

Received June 24, 2006; accepted September 18, 2006; published online January 3, 2007

The multi-disciplinary approach, including surgery, chemotherapy, endocrine therapy and radiation therapy, has become the standard treatment for primary breast cancer patients. The indication of pre-operative chemotherapy has been extended to women with potentially operable breast cancer based on the results of large randomized studies and has become an attractive option that extends the chance of breast conservation. The clinical and pathological responses to pre-operative chemotherapy correlates with long-term outcome. The anthracycline-containing regimen is now considered the standard. Sequential administration of non-cross-resistant drugs, namely taxanes, improves local tumor response but its long-term benefit has been controversial. Prediction of response to pre-operative chemotherapy still remains a challenge. Identification of useful predictive markers and development of molecular-targeted drugs is the key to individualized therapy in the future.

Key words: pre-operative chemotherapy -- breast cancer -- advantage -- response -- long-term outcome -- prediction

INTRODUCTION

The multi-disciplinary approach, including surgery, chemotherapy, endocrine therapy and radiation therapy, has become the standard treatment for primary breast cancer patients with a high risk of recurrence. Although mortality from breast cancer is decreasing in western countries thanks mainly to early detection of the disease by mammography screening and wide usage of post-operative adjuvant systemic therapy (1), its incidence and mortality are steadily increasing in the rest of the world, including Japan (2).

When it first emerged in late 1970s, the use of pre-operative (primary) chemotherapy had been primarily limited to women with inoperable locally advanced breast cancer to enable optimal local therapy (3-5). Later on, large randomized trials proved that pre-operative chemotherapy has at least the same survival benefit as the post-operative chemotherapy (6), and its indication has been extended to women with potentially operable breast cancer.

However, with long-term survivors increasing by systemic therapy in early breast cancer, the 'survivorship' or importance of quality of life after primary therapy has recently

come into the limelight. Whether an attempt at breast conservation can be made at the time of definitive surgery is one of the important issues discussed among patients and physicians. Pre-operative chemotherapy is an attractive option for those who have large tumors but a strong interest in breast conserving surgery.

In this review, we describe available evidence and discuss current controversies and future prospects of pre-operative chemotherapy, taking account of its two major clinical roles; eradication of micrometastasis and increased chance of breast conservation.

RATIONALE OF PRE-OPERATIVE CHEMOTHERAPY

Biologic rationale for pre-operative adjuvant chemotherapy was derived from the pre-clinical studies in animal models. It had been known that growth kinetics of metastatic tumors change after surgical removal of the primary lesion (7). The greatest effect of chemotherapy was observed when it was administered prior to operation (8, 9). These observations led to a hypothesis that early systemic chemotherapy prior to surgery might further reduce the risk of metastasis.

The landmark trial in a clinical setting was the National Surgical Adjuvant Breast and Bowel Project (NSABP)

For reprints and all correspondence: Yasuhiro Fujiwara, Division of Breast and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan. E-mail: yfujiw@ncc.go.jp

B-18 trial, which showed pre-operative chemotherapy for operable breast cancer by doxorubicin 60 mg/m² and cyclophosphamide 600 mg/m² (AC) was at least as effective as post-operative adjuvant chemotherapy with the same regimen in terms of disease-free and overall survival (10). The results were consistent over a longer follow-up period (6) and the result of another large randomized trial conducted in Europe was also confirmatory (11). A recent meta-analysis of pre-operative and post-operative chemotherapy (partly including T4 disease) indicated that pre-operative chemotherapy was equivalent to post-operative therapy in terms of survival and disease progression (12).

Thus the available clinical data has not demonstrated a convincing difference in long-term outcome as hypothesized in pre-clinical studies. However, a higher proportion of women were able to undergo breast conservation surgery. In addition, because the extent of clinical and pathological responses to pre-operative chemotherapy correlates with survival (10), improved tumor response in this setting is expected to improve the overall outcome.

ADVANTAGE OF PRE-OPERATIVE CHEMOTHERAPY

The advantage of pre-operative therapy is that one can subjectively evaluate the response to systemic therapy *in vivo*. Both clinical and pathological responses have been associated with prolonged disease-free and overall survival (6, 8) and they are used as the primary endpoint in clinical trials. Unlike post-operative adjuvant chemotherapy, one can avoid or minimize the unnecessary toxicities from cytotoxic agents by changing treatment strategy when the tumor is not responding to a certain regimen.

Pre-operative chemotherapy is an attractive option for women who wish to reduce the extent of local surgery. Clinical trials provide evidences that 28–89% of women can undergo breast conserving surgery when they might not be otherwise qualified (12).

Because breasts are located on the body surface, one can easily obtain the tumor cells or tissue by either fine needle aspiration or core needle biopsy with minimal invasions. As one can also evaluate the response to systemic therapy in a subjective manner and because patients are usually chemotherapy naïve, a pre-operative setting can be an ideal *in vivo* laboratory for biomarker studies using tumor specimens.

DISADVANTAGE OF PRE-OPERATIVE CHEMOTHERAPY

The overall response rate of pre-operative chemotherapy is 75% on average (range 49–100%), whereas fewer than 5% of the patients with operable breast cancer progress during pre-operative chemotherapy and some more do not even show major responses (13). For such patients with progression, the delay of local treatment may be of disadvantage

at least in terms of local control. Pre-operative chemotherapy is also associated with significantly increased risk of loco-regional disease recurrence (12).

Another potential disadvantage of pre-operative chemotherapy is the loss of initial histological information such as tumor size, nodal status and biologic markers. According to the current guidelines, application of post-operative chemotherapy is to be decided by weighing the baseline risk, endocrine responsiveness and estimated risk reduction and harm of the treatment (14). Risk of recurrence is estimated based on the clinical and pathological information obtained from surgical specimens. In a pre-operative setting the information on tumor size and nodal status will inevitably be imprecise and intra-tumor heterogeneity of histologic type, histologic grade and biomarker expression cannot be taken into account. It may potentially put patients into danger of over- or under-treatment. Currently, core-needle biopsy is mandatory prior to pre-operative chemotherapy to obtain as much pre-treatment histopathological information as possible.

TREATMENT REGIMENS

Using clinical or pathological responses as surrogate endpoints of overall survival, optimal systemic therapies have been investigated in pre-operative settings in patients with early breast cancer. The general consensus reached is that an anthracycline-containing doublet (doxorubicin or epirubicin with cyclophosphamide) or triplet (doxorubicin or epirubicin with cyclophosphamide and 5-fluorouracil) should be used as the initial chemotherapy strategy for pre-operative chemotherapy (15, 16).

The sequential use of non-cross-resistant agents is likely to augment the response of pre-operative chemotherapy (17, 18), among which taxanes are the most investigated drug. Overall, results of randomized trials indicate that the incorporation of taxane increases the rate of pathological complete response (pCR) by 6–16% compared to anthracycline/cyclophosphamide-based regimens (19, 20). Smith et al. randomized patients who achieved clinical response to the initial four cycles of cyclophosphamide/vinorelbine/doxorubicin/prednisone (CVAP) therapy to receive further four cycles of CVAP or four cycles of docetaxel (Aberdeen trial) (21). The sequential use of docetaxel resulted in enhanced clinical and pathological responses even in anthracycline-sensitive tumors. In NSABP-B27 trial, the addition of four cycles of docetaxel after pre-operative AC increased the clinical complete response rate (40% versus 63%), clinical overall response rate (86% versus 91%) and the pCR rate (14% versus 26%) compared with pre-operative AC therapy alone (20). However, the addition of taxane in pre-operative or post-operative setting after AC did not improve the long-term outcome in this trial (22).

Treatments incorporating molecular-targeting drugs are of interest. Trastuzumab is effective for patients with advanced

breast cancer over expressing HER2 (23). In adjuvant settings, at least one year of trastuzumab given sequentially or concomitantly with chemotherapy significantly improves disease-free and overall survival (24, 25). Moreover a short course (9 weeks) of trastuzumab administered concomitantly with docetaxel or vinorelbine seems to be effective in HER2-positive subset of patients in adjuvant settings (26).

For pre-operative settings, there are a limited number of phase II studies reporting the use of trastuzumab (25, 27, 28). The only randomized trial reported was by Buzdar et al., who compared neoadjuvant chemotherapy for HER2-positive, operable breast cancer with or without administration of trastuzumab (29). This study was closed by the recommendation of Data and Safety Monitoring Board of the institution according to early-stopping rule, because pCR rate, the primary endpoint, was strikingly superior in the chemotherapy plus trastuzumab arm (given simultaneously for 24 weeks) compared with the chemotherapy-alone arm (65% versus 26%, $p = 0.016$). We still need to confirm if this significant difference in pathological response will be translated into prolonged overall survival by long-term follow-up and also the cardiac safety of trastuzumab in combination with chemotherapy should be assessed.

CONTROVERSIES OVER PRE-OPERATIVE CHEMOTHERAPY

EVALUATION OF RESIDUAL TUMOR FOR OPTIMAL SURGERY

Optimal imaging modality has not been established to definitely localize the remaining tumor. Usually, serial imaging studies are performed before and after pre-operative chemotherapy. Magnetic resonance imaging or computerized-tomography scanning may supplement conventional breast imaging studies by mammography and ultrasonography (30–33).

The use of functional imaging techniques such as fluorine-18 fluorodeoxyglucose positron emission tomography ($[^{18}\text{F}]\text{-FDG PET}$) is of interest for the evaluation of therapeutic response to systemic therapy in breast cancer. The change in $[^{18}\text{F}]\text{-FDG}$ uptake reflects the alteration in cellular glycolysis. Some relatively small studies reported that $[^{18}\text{F}]\text{-FDG PET}$ after a single pulse of chemotherapy predicted pCR or minimal residual disease with a sensitivity of 85–100% and a specificity of 74–85% (34–36). FDG-PET is promising for clinical application in future to detect non-responding tumor to avoid unnecessary toxicities from cytotoxic therapy.

FEASIBILITY OF SENTINEL LYMPH-NODE BIOPSY (SNB) IN PATIENTS TREATED WITH PRE-OPERATIVE CHEMOTHERAPY

Axillary staging by SNB may allow omission of axillary dissection in sentinel-node negative patients without compromising the long-term outcome (37). However the optimal

timing and feasibility of SNB in the setting of pre-operative chemotherapy have not been established.

Identification rate of SNB following pre-operative chemotherapy are reported to be 84–93% and 78–93%, in single-institution series and multi-center studies (38), respectively. High false-negative rates up to 25–33% have been reported for several small single institution studies (39, 40), but in multi-institutional studies using radiocolloid with or without blue dye, false-negative rates range between 5 and 13% (38), which are similar to those observed when it was carried out before systemic chemotherapy.

There still remain concerns about the use of SNB following chemotherapy in patients with clinically positive axilla (41). SNB after chemotherapy possesses a potential to maximize the benefit of axillary downstaging by pre-operative systemic treatment, in other words, avoidance of complications related to axillary dissection and decision-making of adding further chemotherapy.

ALTERATION OF BIOLOGICAL MARKERS

The changes in the expression of hormone receptors and HER2 protein during pre-operative chemotherapy may influence the clinical decision of adjuvant hormonal and trastuzumab therapy. In studies using immunohistochemistry, the administration of pre-operative chemotherapy did not alter the expression patterns of HER2 and hormone receptors (42–45).

However, a study was conducted to compare gene expression profile of pre-treatment biopsy specimens with those in tumors remaining after doxorubicin-containing pre-operative chemotherapy using DNA array. There were differences in the gene expression profile in tumors that showed a response, but not in tumors that did not respond to therapy (46). Biological and clinical implications of the change of gene expression profile in responding tumors need further elucidation.

DEFINITION OF PATHOLOGICAL RESPONSE

Primary systemic treatment is increasingly recognized as the best model for the quick development of new treatment strategies in early breast cancer. pCR after pre-operative chemotherapy has been chosen as the primary endpoint of clinical trials, because it is validated as the surrogate marker of improved outcome (47, 48). However, diverse definitions of pathological response are used by different investigators (10, 47, 49–53). Some of these grading systems allow inclusion of residual ductal carcinoma *in situ* (DCIS) without invasive component in the definition of pCR. However, there is no confirmatory data to justify the concept that there is no difference in prognosis between patients with no invasive or *in situ* disease and those with residual DCIS. Jones et al. investigated whether the prognosis for patients with residual DCIS is the same as that for patients with no residual tumor cells, but could not demonstrate significant

prognostic difference (54). However, this study was statistically underpowered to draw any conclusions.

Ideally, response to chemotherapy should be measured as a continuous variable. No system satisfies the need of accurate pathologic evaluation for the majority of patients who achieve partial or minor response to pre-operative chemotherapy. Rajan et al. proposed that the product of residual tumor size and cellularity might be a more clinically relevant indicator of tumor response than assessing tumor size alone (55). Though it is an interesting proposal, the method needs to be validated in correlation with long-term outcome.

OUTCOME AFTER PRE-OPERATIVE CHEMOTHERAPY AND SURGERY

Several studies have attempted to find more accurate predictors for survival after pre-operative chemotherapy than pCR in the primary tumor. This is because substantial risk of systemic recurrence still remains even if pCR is achieved, whereas substantial patients have excellent prognosis even if pCR is not achieved. If the long-term risk is high, they will be the candidates for clinical trials to determine whether additional aggressive therapy will be of benefit. If a good prognosis is expected even without good response to pre-operative therapy, aggressive chemotherapy might be overtreatment in pre-operative setting.

In the report of retrospective studies from Royal Marsden Hospital and M. D. Anderson Cancer Center, pathologically negative axillary lymph nodes after pre-operative chemotherapy, not pCR in the primary tumor, remained the independent prognostic factor for disease-free survival and overall survival in multivariate analysis adjusted for other prognostic factors (56–58).

It was revealed by a retrospective multivariate analysis of the clinicopathological factors of the 226 patients who had pCR after pre-operative chemotherapy that pre-operative clinical stage IIIB, IIIC, and inflammatory breast cancer, axillary lymph nodes more than 10, and pre-menopausal status were the independent prognostic factors of distant metastasis (59). In another study, only histological grading had an independent prognostic impact on disease-free and overall survival after adjustment for pCR to pre-operative chemotherapy containing doxorubicin (60). Carey et al. found that American Joint Committee on Cancer Tumor-Node-Metastasis staging after pre-operative chemotherapy was useful in prediction of distant disease-free survival and overall survival (61).

Rouzier et al. constructed nomograms combining clinical variables associated with pCR that might accurately predict pCR and distant disease-free survival (62). This was confirmed in an independent dataset within the study. The nomogram included size of residual tumor and the number of metastatic nodes at the time of surgery, histologic grade, estrogen receptor (ER) status and histologic type. On the other hand, biologic markers such as expression of HER2 (63), EGFR (64), p53 (65) or MDR1 gene (66) in tumor specimen before pre-operative chemotherapy, reduction of

expression in topoisomerase II- α (70) or MLH1 (71) after pre-operative chemotherapy are suggested to predict long-term outcome. Although it is not known whether these markers would add to or replace the nomogram, development of more accurate and comprehensive tools for prediction of prognosis is awaited.

PREDICTION OF RESPONSE TO PRE-OPERATIVE CHEMOTHERAPY

The pre-operative setting is ideal to explore molecular predictors of response to therapy. Various clinical and pathologic variables have been studied. Among them, ER status, histologic grade and smaller tumor size seem to be associated with the response to pre-operative chemotherapy (47, 69).

In previous retrospective studies, clinical and pathological responses to pre-operative chemotherapy appear to be lower in invasive lobular carcinoma (ILC) as compared to invasive ductal carcinoma (IDC), and patients with ILC were more likely to receive mastectomy after initial attempt for breast conservation (70–73). However, low pCR rates in ILC have not been translated into survival disadvantage (70–72). These data suggest that different approach should be taken in the clinical management of patients with ILC.

In a biomarker study, ER expression, absence of HER2 and a decrease in Ki67 correlated with good clinical responses subsequent to a pre-operative chemoendocrine therapy (74). Among other biomarkers, bcl-2 and p53 have been studied. bcl-2 has been shown to protect cells from apoptosis induced by chemotherapeutic drugs (75). Although high expression of bcl-2 has been hypothesized to play a role in resistance to chemotherapy, it is still controversial. In one study, higher bcl-2 expression at diagnosis was predictive of pCR in univariate analysis but it did not retain its impact in multivariate analysis (76), while other studies did not find any correlation between bcl-2 expression and the response (77, 78).

p53 is also a potential predictive marker. Active p53 promotes apoptosis in growth-arrested cells whereas loss of p53 function has been reported to enhance cellular resistance to various chemotherapeutics (79). In a clinical setting, in patients treated with single agent epirubicin, mutant p53 was a significant predictor for poor clinical response, but the association was weaker in patients treated with cyclophosphamide/methotrexate/5FU with or without tamoxifen (65). Another study demonstrated that a tumor expressing wild-type p53 was related to resistance to single agent doxorubicin therapy in multivariate analysis (80). TP53 gene mutation and over expression of p53 were related to epirubicin-containing chemotherapy, but response to paclitaxel seemed to be related to p53-negative tumors (81).

Tumor response and toxicities are different among individual patients. Pharmacogenomic studies aim to elucidate the genetic bases for inter-individual differences and to enable individualization of care. DNA microarray is one of the modern high-throughput biotechnologies that allow

researchers to analyze expression of multiple genes in concert and relate the findings to clinical parameters. In breast cancer, several groups have reported preliminary results suggesting that the gene expression profile of the primary tumor may predict the tumor's response to pre-operative chemotherapy (82-86). One major limitation of microarray studies is overfitting of the predictor: the number of mRNA transcripts far exceed the number of samples (87, 88). The accuracy of the predictive model is low in independent data set (89). More rigorous and critical evidence is necessary before multi-gene predictors can be accepted as a useful and reliable tool in clinical practice.

PRE-OPERATIVE ENDOCRINE THERAPY

The relative benefit of chemotherapy is less in endocrine-responsive disease as compared with endocrine non-responsive disease (1) and recent consensus of the clinical community lays emphasis on the endocrine responsiveness in decision-making of adjuvant systemic therapy (14). Pre-operative endocrine therapy is an attractive alternative for endocrine-responsive disease, because it is easy to perform and can also avoid acute and late side effects caused by cytotoxic chemotherapy, but pre-operative endocrine therapy has not been accepted as the standard therapy because of the slow rate of response (90). We need more accurate measures to select the patients who are most likely to respond to endocrine therapy without compromising the potential benefit of chemotherapy.

APPLICATION TO MOLECULAR-TARGETED THERAPY

Molecular-targeted drugs are anticipated to individualize the therapeutic strategy based on the biology of the tumor. To date, the presence of a target still does not satisfactorily guarantee a response to therapy, but efforts are being made to elucidate the key components of the molecular pathways targeted by a specific agent.

Moshin et al. reported a pre-operative study of trastuzumab as a single agent in HER2-positive locally advanced breast cancer (91). They administered trastuzumab as a single agent for the first 3 weeks, followed by a combination of trastuzumab and docetaxel. Of note, partial response was observed in eight among 35 patients after only 3 weeks of trastuzumab. The accompanying biomarker study suggested that the main mechanism of action of trastuzumab is inhibition of the PI3K/Akt pathway, which results in an increase of apoptosis (79). The clinical role of single-agent trastuzumab in HER2-positive tumors has not been determined, but it is attractive if we can select the responders to trastuzumab as this is usually less toxic than cytotoxic chemotherapy.

A report by Polychronis et al. is unique in respect of testing the efficacy of combination of targeted therapy based on biology-derived hypothesis (92). It was a double-blind placebo controlled phase II randomized trial of pre-operative gefitinib versus gefitinib versus anastrozole in

post-menopausal patients with ER- and EGFR-positive primary breast cancer. The tumors of patients assigned to combination therapy had a greater reduction of Ki67 labeling index than those assigned to gefitinib alone. Although the number of patients in this study was so small that we do not yet know whether reduction in proliferation will be translated into clinical benefit, we foresee a future of individualized therapy.

FUTURE DIRECTIONS

Pre-operative chemotherapy has become the standard of care in management of primary breast cancer. However, we should be aware that a substantial portion of patients may be over-treated by pre-operative chemotherapy because of inaccurate pre-treatment staging. In NSABP-B27 study, addition of docetaxel was beneficial in terms of disease-free survival not in complete responders or non-responders but only in partial responders in a subset analysis according to clinical response after AC. Who needs additional systemic therapy? Who can avoid systemic therapy?

Development of endocrine therapy and trastuzumab has opened the door to important therapeutic advance of 'molecular-targeted therapy'. Transcriptional profiling has revealed that expression levels of these targets, i.e. ER and HER2, are the major genetic determinants of the biology of the disease (93). Thus, we can foresee the future of systemic therapy individualized with endocrine responsiveness and involvement of HER2 signaling pathway. However, to date, the predictive value of screening test for molecular targets remains unsatisfactory.

Identification of clinically useful, prognostic and predictive molecular markers is highly anticipated to optimize therapeutic regimens. The current probability-based therapeutic strategy, 'empiric treatment' so to speak, might give way to biology-based, individualized strategy, 'marker-based treatment', when additional biologic markers are identified that make 'targeted therapy' more targeted and effective. Pharmacogenomic researches that accompany pre-operative therapy might help better understand the biology of breast cancer and thus promote the development of new therapeutic strategies.

Conflict of interest statement

None declared.

References

1. Early Breast Cancer Trialists' Collaborative Group. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomized trials. *Lancet* 2005;365:1687-717.
2. Parkin DM, Fernandez LM. Use of statistics to assess the global burden of breast cancer. *Breast J* 2006;12(Suppl 1):S70-S80.
3. De Lena M, Zucali R, Viganotti G, Valagussa P, Bonadonna G. Combined chemotherapy-radiotherapy approach in locally advanced (T3b-T4) breast cancer. *Cancer Chemother Pharmacol* 1978;1:53-9.

4. Schick P, Goodstein J, Moor J, Butler J, Senter KL. Preoperative chemotherapy followed by mastectomy for locally advanced breast cancer. *J Surg Oncol* 1983;22:278-82.
5. Sorace RA, Bagley CS, Lichten AS, Danforth DN Jr, Wesley MW, Young RC, et al. The management of nonmetastatic locally advanced breast cancer using primary induction chemotherapy with hormonal synchronization followed by radiation therapy with or without debulking surgery. *World J Surg* 1985; 9:775-85.
6. Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B. Preoperative chemotherapy in patients with operable breast cancer. Nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. *J Natl Cancer Inst Monogr* 2001;30:96-102.
7. Gunduz N, Fisher B, Saffer EA. Effect of surgical removal on the growth and kinetics of residual tumor. *Cancer Res* 1979;39:3861-3865.
8. Fisher B, Gunduz N, Saffer EA. Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. *Cancer Res* 1983;43:1488-92.
9. Straus MJ, Sege V, Choi SC. The effect of surgery and pretreatment or post-treatment adjuvant chemotherapy on primary tumor growth in an animal model. *J Surg Oncol* 1975;7:497-512.
10. Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. *J Clin Oncol* 1998;16:2672-85.
11. Van der Hage JA, van de Velde CJH, Julien JP, Tubiana-Hulin M, Vandervelden C, Duchateau L. Preoperative chemotherapy in primary operable breast cancer: results from the European Organization for Research and Treatment of Cancer Trial 10902. *J Clin Oncol* 2001;19:4224-37.
12. Mavri D, Pavlidis N, Ioannidis JP. Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis. *J Natl Cancer Inst* 2005;97:188-97.
13. Anderson ED, Forrest AP, Hawkins RA, Anderson TJ, Leonard RC, Chetty U. Primary systemic therapy for operable breast cancer. *Br J Cancer* 1991;63:561-6.
14. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Thurlimann B, Senn HL, et al. Meeting highlights: International expert consensus on the primary therapy of early breast cancer 2005. *Ann Oncol* 2005;16:1569-83.
15. Schwartz GE, Hortobagyi GN. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26-28, 2003, Philadelphia, Pennsylvania. *Cancer* 2004;100:2512-32.
16. Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, et al. International expert panel of the use of primary (preoperative) systemic treatment on operable breast cancer: review and recommendations. *J Clin Oncol* 2003;21:2600-8.
17. Thomas E, Holmes FA, Smith TL, Buzdar AU, Fry DK, Fraschini G, et al. The use of alternate, non-cross-resistant adjuvant chemotherapy on the basis of pathologic response to a neoadjuvant doxorubicin-based regimen in women with operable breast cancer: long-term results from a prospective randomized trial. *J Clin Oncol* 2004;22:2294-2302.
18. Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, et al. The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. *J Clin Oncol* 2003;21:4165-74.
19. Trudeau M, Sinclair SE, Clemons M. Breast Cancer Disease Site Group. Neoadjuvant taxanes in the treatment of non-metastatic breast cancer: a systematic review. *Cancer Treat Rev* 2005;31:283-302.
20. Esteva LG, Gradyshar WJ. Evidence-based use of neoadjuvant taxane in operable and inoperable cancer. *Clin Cancer Res* 2004;10:3249-61.
21. Smith IC, Heys SD, Hutechon AW, Miller ID, Payne S, Gilbert FJ, et al. Neoadjuvant chemotherapy in breast cancer: significantly enhanced response with docetaxel. *J Clin Oncol* 2002;20:1456-66.
22. Bear HD, Anderson S, Smith RE, Geyer CE, Mamounas EP, Paik S, et al. Sequential preoperative or postoperative docetaxel added to preoperative doxorubicin plus cyclophosphamide for operable breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-27. *J Clin Oncol*. 2006 (e-published ahead of print on 10 April 2006).
23. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajajamone A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpress HER2. *N Engl J Med* 2001;344:783.
24. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. *N Engl J Med* 2005;353:1673-84.
25. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch AD, Unruh M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. *N Engl J Med* 2005;353:1629-72.
26. Joensuu H, Kellokumpu-Lehtinen P, Bono P, Alanko T, Kataja V, Asola R, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. *N Engl J Med* 2006;354:809-20.
27. Burstein HH, Harris LN, Gelman R, Lester SC, Nunes RA, Kaelin CM, et al. Preoperative therapy with trastuzumab and paclitaxel followed by sequential adjuvant doxorubicin and cyclophosphamide for HER2 overexpression Stage II or III breast cancer: a pilot study. *J Clin Oncol* 2001;21:46-53.
28. Hurley J, Doliny P, Reis I, Silva O, Gomez-Fernandez C, Velez P, et al. Docetaxel, cisplatin, and trastuzumab as primary systemic therapy for human epidermal growth factor receptor 2-positive locally advanced breast cancer. *J Clin Oncol* 2006;24:2019-27.
29. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL, et al. Significantly higher pathological complete remission rate following neoadjuvant therapy with trastuzumab, paclitaxel, and anthracycline-containing chemotherapy: initial results of a randomized trial in operable breast cancer with HER2 positive disease. *J Clin Oncol* 2005;23:3676-85.
30. Yeh E, Slanetz P, Kopans DB, Georgian-Smith D, Moy L, Halpern E, et al. Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. *Am J Roentgenol* 2005;184:868-77.
31. Balu-Maestro C, Chapellier C, Bleuse A, Chanaderre P, Chauvel C, Largillier R. Imaging in evaluation of response to neoadjuvant breast cancer treatment benefits of MRI. *Breast Cancer Res Treat* 2002;72:145-52.
32. Moyses B, Haegele P, Rodier JF, Lehmann S, Petet T, Velten M, et al. Assessment of response by breast helical computed tomography to neoadjuvant chemotherapy in large inflammatory breast cancer. *Clin Breast Cancer* 2002;2:304-310.
33. Akashi-Tanaka S, Fukutomi T, Watanabe T, Katsumata N, Nanashima T, Matsuo K, et al. Accuracy of contrast-enhanced computed tomography in the prediction of residual breast cancer after neoadjuvant chemotherapy. *Int J Cancer* 2001; 20:66-73.
34. Smith IC, Welch AE, Hutechon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using [¹⁸F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. *J Clin Oncol* 2000; 18:1676-88.
35. Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D, et al. Positron emission tomography using [¹⁸F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. *J Clin Oncol* 2000;20:1689-1695.
36. Kim SJ, Kim SK, Lee ES, Ro J, Kang S. Predictive value of [¹⁸F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. *Ann Oncol* 2004;15:1352-7.
37. Veronesi U, Paganielli G, Viale G, Luini A, Zurrada S, Galimberti V, et al. A randomised comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. *N Engl J Med* 2003;349:546-53.
38. Mamounas EP, Brown A, Anderson S, Smith R, Julian T, Miller B, et al. Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. *J Clin Oncol* 2005;23:2694-702.
39. Naxer KS, Anderson BO, Byrd DR, Dunnwald LK, Early JF, Mankoff DA, et al. Increased false negative sentinel node biopsy rates after preoperative chemotherapy for invasive breast carcinoma. *Cancer* 2000;89:2187-94.
40. Fernandez A, Cortes M, Benito E, Azpeitia D, Prieto L, Moreno A, et al. Gamma probe sentinel node localization and biopsy in breast cancer patients treated with a neoadjuvant chemotherapy scheme. *Nucl Med Commun* 2001;22:361-366.
41. Jones JL, Zabieke K, Christian RL, Gadd MA, Hughes KS, Lesnikoski BA, et al. A comparison of sentinel node biopsy before and after neoadjuvant chemotherapy: timing is important. *Am J Surg* 2005;190:517-520.
42. Bottini A, Berruti A, Bersiga A, Brunelli A, Brizzi MP, Marco BD, et al. Effect of neoadjuvant chemotherapy on Ki67 labelling index, c-erbB-2 expression and steroid hormone receptor status in human breast tumours. *Anticancer Res* 1996;16:3105-10.
43. Schneider J, Lucas R, Sanchez J, Ruibal A, Tejerina A, Martin M. Modulation of molecular marker expression by induction chemotherapy

in locally advanced breast cancer: correlation with the response to therapy and the expression of MDR1 and LRP. *Anticancer Res* 2000;20:4373-7.

44. Arens N, Bleij U, Hildenbrand R. HER2/neu, p53, Ki67, and hormone receptors do not change during neoadjuvant chemotherapy in breast cancer. *Virchows Arch* 2005;446:489-96.
45. Taucher S, Rudas M, Mader RM, Gnant M, Sporn E, Dubaky P, et al. Influence of neoadjuvant therapy with epirubicin and docetaxel on the expression of HER2/neu in patients with breast cancer. *Breast Cancer Res Treat* 2003;82:207-13.
46. Hannemann J, Oosterkamp HM, Bosch CAJ, Velds A, Wessels LF, et al. Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. *J Clin Oncol* 2005;23:3331-42.
47. Kuerer HM, Newman LA, Buzdar AU, Ames FC, Hunt KK, Dhingra K, et al. Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. *J Clin Oncol* 1999;17:460-9.
48. Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, et al. Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. *J Clin Oncol* 2006;24:1037-44.
49. Chevallier R, Roche H, Olivier JP, Chollet P, Hurelou P. Pilot study of intensive chemotherapy (8FEC-HD) results in high histologic response rate. *Am J Clin Oncol* 1993;16:223-8.
50. Sataloff DM, Manson BA, Prestipino AJ, Seinige UL, Leiber CP, Baloch Z. Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome. *J Am Coll Surg* 1998;180:297-306.
51. Hankoop AH, van Diest PJ, de Jong JS, Linn SC, Giaccone G, Hoekman K, et al. Prognostic role of clinical, pathological and biological characteristics in patients with locally advanced breast cancer. *Br J Cancer* 1998;77:621-6.
52. Ogston KN, Miller ID, Payne S, Hutchison AW, Sarkar TK, Smith I, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: significance and survival. *Breast* 2003;12:320-7.
53. Karosumi M, Akiyama F, Iwase T, Motomura K, Okazaki M, Tsuda H. Histopathological criteria for assessment of therapeutic response in breast cancer. *Breast Cancer* 2001;8:1-2.
54. Jones RL, Lakhani SR, Ring AE, Ashley S, Walsh G, Smith IE. Pathological complete response and residual DCIS following neoadjuvant chemotherapy for breast carcinoma. *Br J Cancer* 2006;94:558-62.
55. Rajan R, Poniecka A, Smith TL, Yang Y, Frye D, Pusztai L, et al. Change in tumor cellularity of breast carcinoma after neoadjuvant chemotherapy as a variable in the pathologic assessment of response. *Cancer* 2004;100:1365-73.
56. Merie F, Mirza NQ, Buzdar AU, Hunt KK, Ames FC, Ross MI, et al. Prognostic implications of pathological lymph node status after preoperative chemotherapy for operable T3N0M0 breast cancer. *Ann Surg Oncol* 2000;7:435-40.
57. Hennessy BT, Hortobagyi GN, Rouzier R, Kuerer H, Sneath N, Buzdar AU, et al. Outcome after pathologic complete eradication of cytologically proven breast cancer axillary node metastases following primary chemotherapy. *J Clin Oncol* 2005;23:9304-11.
58. Ellis P, Smith I, Ashley S, Walsh G, Ebbs S, Baum M, et al. Clinical prognostic and predictive factors for primary chemotherapy in operable breast cancer. *J Clin Oncol* 1998;16:107-14.
59. Gonzalez-Angulo AM, McGuire SE, Buchholz TA, Tucker SL, Kuerer HM, Rouzier R, et al. Factors predictive of distant metastasis in patients with breast cancer who have a pathologic complete response after neoadjuvant chemotherapy. *J Clin Oncol* 2005;23:7098-104.
60. Schneeweiss A, Katrechko J, Sinn HP, Unnebrink K, Rudlowski C, Geberth M, et al. Only grading has independent impact on breast cancer survival after adjustment for pathological response to preoperative chemotherapy. *Anticancer Drugs* 2004;15:127-35.
61. Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, et al. American Joint Committee on Cancer Tumor-Node-Metastasis Stage after neoadjuvant chemotherapy and breast cancer outcome. *J Natl Cancer Inst* 2005;97:1137-42.
62. Rouzier R, Pusztai L, Delaloge S, Gonzalez-Angulo AM, Andre F, Hess KR, et al. Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer. *J Clin Oncol* 2005;23:8331-9.
63. Vagras-Roig LM, Gago FE, Tello O, Martin de Civetta MT, Ciocca DR, c-erbB-2 (HER-2/neu) protein and drug resistance in breast cancer treated with induction chemotherapy. *Int J Cancer* 1999;84:129-34.
64. Buchholz TA, Tu X, Ang KK, Esteva FJ, Kuerer HM, Pusztai L, et al. Epidermal growth factor receptor expression correlates with poor survival in patients who have breast carcinoma treated with doxorubicin-based neoadjuvant chemotherapy. *Cancer* 2005;104:676-81.
65. Bonnefoi H, Diebold-Berger S, Therasse P, Hamilton A, van de Vijver M, MacGrogan G, et al. Locally advanced/inflammatory breast cancer treated with intensive epirubicin-based neoadjuvant chemotherapy: are there molecular markers in the primary tumour that predict for 5-year clinical outcome? *Ann Oncol* 2003;14:406-13.
66. Chevillard S, Lebeau J, Pouliart P, de Toma C, Beldjord C, Asselain B, et al. Biological and clinical significance of concurrent p53-gene alterations, MDR1-gene expression, and S-phase fraction analyses in breast cancer patients treated with primary chemotherapy or radiotherapy. *Clin Cancer Res* 1997;3:2471-8.
67. Tinari N, Lattanzio R, Natoli C, Cianchetti E, Angelucci D, Ricervuto E, et al. Changes of topoisomerase II-alpha expression in breast tumors after neoadjuvant chemotherapy predicts relapse-free survival. *Clin Cancer Res* 2006;12:1501-6.
68. Mackay IJ, Cameron D, Rahilly M, Mackean MJ, Paul J, Kaye SB, et al. Reduced MLH3 expression in breast tumors after primary chemotherapy predicts disease-free survival. *J Clin Oncol* 2000;18:87-93.
69. Amat S, Penault-Llorca F, Cure H, Le Bouedec G, Achard JL, van Praagh I, et al. Scarff-Bloom-Richardson (SBR) grading: a pleitropic marker of chemosensitivity in invasive ductal breast carcinomas treated by neoadjuvant chemotherapy. *Int J Oncol* 2002;20:791-6.
70. Mathieu MC, Rouzier R, Llombart-Cussac A, Sideris L, Loscutoff S, Travagli JP, et al. The poor responsiveness of infiltrating lobular breast carcinomas to neoadjuvant chemotherapy can be explained by their biological profile. *Eur J Cancer* 2004;40:342-51.
71. Tubiatura-Hulin M, Stevens D, Lasyry S, Guinebretiere JM, Boutin L, Cohen-Solal C, et al. Response to neoadjuvant chemotherapy in lobular and ductal carcinomas: a retrospective study on 860 patients from one institution. *Ann Oncol* 2006;17:1228-33.
72. Cristofanilli M, Gonzalez-Angulo A, Sneath N, Kau SW, Broglio K, Theriault RL, et al. Invasive lobular carcinoma classic type: Response to primary chemotherapy and survival outcomes. *J Clin Oncol* 2005;23:41-8.
73. Coequey VE, Blondeel PN, Depypere LL, Praet MM, Sheehan VR, Silva OE, et al. Different responses to preoperative chemotherapy for invasive lobular and invasive ductal carcinoma. *Eur J Surg Oncol* 2003;29:361-7.
74. Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, et al. Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. *J Clin Oncol* 1999;17:3058-63.
75. Reed JC. Bcl-2 and the regulation of programmed cell death. *J Cell Biol* 1994;124:1-6.
76. Schneeweiss A, Katrechko J, Sinn HP, Unnebrink K, Rudlowski C, Geberth M, et al. Only grading has independent impact on breast cancer survival after adjustment for pathologic response to preoperative chemotherapy. *Anticancer Drugs* 2004;15:127-35.
77. Bottini A, Burruiti A, Bersiga A, Brizzi MP, Brunelli A, Giorzigno G, et al. P53 but not bcl-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. *Clin Cancer Res* 2000;6:2751-8.
78. Van Slooten IJ, Claes PC, van Dierendonck C, Duval V, Pallud C, Mandard AM, et al. Expression of bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. *Br J Cancer* 1996;74:78-85.
79. Lowe SW, Riley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. *Cell* 1997;74:957-67.
80. Aas T, Geisler S, Eide GE, Haugen DF, Vaaghaug JE, Bassoe AM, et al. Predictive value of tumour cell proliferation in locally advanced breast cancer treated with neoadjuvant chemotherapy. *Eur J Cancer* 2003;39:438-46.

81. Kandioler-Exkersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. *Clin Cancer Res* 2000;6:50-6.
82. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Elledge R, et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. *Lancet* 2003;362:362-9.
83. Ayers M, Symmans WF, Stee J, Demokosh AI, Clark E, Hess K, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. *J Clin Oncol* 2004;22:2284-93.
84. Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Gutierrez MC, Tham YL, et al. Patterns of resistance and incomplete response to docetaxel by gene expression profiling in breast cancer patients. *J Clin Oncol* 2005;23:69-77.
85. Fulgueira MA, Carraro DM, Bretani H, Patrao DF, Barbosa EM, Netto MM, et al. Gene expression profile associated with response to doxorubicin-based therapy in breast cancer. *Clin Cancer Res* 2005;11:7434-43.
86. Iwao-Koizumi K, Matoba R, Ueno N, Kini SJ, Ando A, Miyoshi Y, et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. *J Clin Oncol* 2005;23:422-31.
87. Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. *J Natl Cancer Inst* 2003;95:14-8.
88. Ellis M, Ballma K. Trawling for genes that predict response to breast cancer adjuvant therapy. *J Clin Oncol* 2004;22:2267-9.
89. Reid JF, Lusa L, De Cecco L, Coradini D, Veronesi S, Daidone MG, et al. Limits of predictive models using microarray data for breast cancer clinical outcome. *J Natl Cancer Inst* 2005;97:927-30.
90. Wong ZW, Ellis MJ. First-line endocrine treatment of breast cancer: aromatase inhibitor of antiestrogen? *Br J Cancer* 2004;90:20-5.
91. Mohshin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP, et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. *J Clin Oncol* 2005; 23:2460-8.
92. Polychronos A, Siannett HD, Hadjimina D, Singhal H, Mansi JL, Shivapatham D, et al. Preoperative gefitinib versus gefitinib and anastrozole in postmenopausal patients with oestrogen-receptor positive and epidermal-growth-factor-receptor positive primary breast cancer: a double-blind placebo-controlled phase II randomized trial. *Lancet Oncol* 2005;6:383-91.
93. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc Natl Acad Sci* 2001;98:10969-10874.

CHEST®

Official publication of the American College of Chest Physicians

CHEST
ONLINE

Daytime Hypercapnia in Obstructive Sleep Apnea Syndrome

Naoko Kawata, Koichiro Tatsumi, Jiro Terada, Yuji Tada, Nobuhiro Tanabe, Yuichi Takiguchi and Takayuki Kuriyama

Chest 2007;132:1832-1838;
DOI 10.1378/chest.07-0673

The online version of this article, along with updated information and services can be found online on the World Wide Web at:
<http://chestjournal.org/cgi/content/abstract/132/6/1832>

CHEST is the official journal of the American College of Chest Physicians. It has been published monthly since 1935. Copyright 2007 by the American College of Chest Physicians, 3300 Dundee Road, Northbrook IL 60062. All rights reserved. No part of this article or PDF may be reproduced or distributed without the prior written permission of the copyright holder (<http://www.chestjournal.org/misc/reprints.shtml>). ISSN: 0012-3692.

A M E R I C A N C O L L E G E O F
 C H E S T
P H Y S I C I A N S®

Downloaded from chestjournal.org on December 13, 2007
Copyright © 2007 by American College of Chest Physicians

Daytime Hypercapnia in Obstructive Sleep Apnea Syndrome*

Naoko Kawata, MD; Koichiro Tatsumi, MD, FCCP; Jiro Terada, MD; Yuji Tada, MD; Nobuhiro Tanabe, MD, FCCP; Yuichi Takiguchi, MD, FCCP; and Takayuki Kuriyama, MD, FCCP

Background: The pathogenesis of daytime hypercapnia ($\text{Paco}_2 \geq 45 \text{ mm Hg}$) may be directly linked to the existence of obstructive sleep apnea syndrome (OSAS) *per se*, although only some patients with OSAS exhibit daytime hypercapnia.

Objective: To investigate the prevalence of daytime hypercapnia in patients with OSAS; the association of daytime hypercapnia and obesity, obstructive airflow limitation, restrictive lung impairment, and severity of sleep apnea; and the response to continuous positive airway pressure (CPAP) therapy in a subset of subjects.

Methods: The study involved 1,227 patients with OSAS who visited a sleep clinic and were examined using polysomnography. As for the response to CPAP therapy, the patients were considered good responders if their daytime Paco_2 decreased $\geq 5 \text{ mm Hg}$ and poor responders if it decreased $< 5 \text{ mm Hg}$.

Results: Fourteen percent (168 of 1,227 patients) exhibited daytime hypercapnia. These patients had significantly higher body mass index (BMI) and apnea-hypopnea index (AHI) values compared with normocapnic patients, while percentage of predicted vital capacity (%VC) and FEV_1/FVC ratio did not differ between the two groups. Logistic regression analysis showed that only AHI was a predictor of daytime hypercapnia ($p < 0.0001$), while BMI ($p = 0.051$) and %VC ($p = 0.062$) were borderline predictors of daytime hypercapnia. Daytime hypercapnia was corrected in some patients (51%, 19 of 37 patients) with severe OSAS after 3 months of CPAP therapy.

Conclusion: The pathogenesis of daytime hypercapnia may be directly linked to sleep apnea in a subgroup of patients with OSAS. (CHEST 2007; 132:1832-1838)

Key words: continuous positive airway pressure; hypercapnia; hypoventilation; obesity; sleep apnea

Abbreviations: AHI = apnea-hypopnea index; BMI = body mass index; CPAP = continuous positive airway pressure; $\text{FEV}_1\%$ = FEV_1/FVC ratio; OSA = obstructive sleep apnea; OSAS = obstructive sleep apnea syndrome; OHS = obesity hypoventilation syndrome; $\text{P}(\text{A}-\text{a})\text{O}_2$ = alveolar-arterial oxygen pressure difference; SaO_2 = arterial oxygen saturation; %VC = percentage of predicted vital capacity

Obstructive sleep apnea (OSA) is characterized by intermittent closure of the pharyngeal airway during sleep, resulting in episodic hypoxemia and sleep disruption. To date, no single pathophysiologic mechanism has been identified. It is possible that the cause of OSA is multifactorial. Some patients with OSAS exhibit daytime hypercapnia. The prevalence of daytime hypercapnia in these patients varies from 11 to 43% according to previous reports.¹⁻⁵ Mechanical impairment of the respiratory system due to obesity^{5,6} and COPD^{3,4} are known causes of daytime hypercapnia in patients with OSAS. It is generally accepted that there is no direct

association of OSAS with hypercapnia.⁷ However, in these patients daytime Paco_2 may be an end product of complex factors including severity of sleep apnea; obesity; daytime PaO_2 ; chemosensitivity; respiratory

For editorial comment see page 1729

mechanics, including chronic airflow limitation; respiratory muscle strength; metabolic rate; daytime symptoms of sleepiness; endocrine modulation; cardiac function; face, nose, and cranial bony structure (cephalometry); and others. Thus, daytime hypercapnia may exist without obesity and/or airflow limitation.

The hypothesis of the present study was that the levels of daytime Paco_2 in patients with OSAS are partly influenced by the degree of OSAS, as expressed by the apnea-hypopnea index (AHI). Since continuous positive airway pressure (CPAP) therapy can reverse CO_2 retention in some patients with hypercapnic OSAS,⁸ the pathogenesis of daytime hypercapnia may be directly linked to the existence of OSAS *per se*, although only some patients with OSAS exhibit daytime hypercapnia.

The prevalence of OSAS in Asian countries has recently been reported⁹⁻¹¹; however, no such epidemiologic studies have been performed in Japan. Obesity appears to be a common and important risk factor for sleep-disordered breathing in previous studies done in Western countries. However, the evaluation of daytime hypercapnia in patients with OSAS has been limited in Asian countries.¹² Ethnic differences between Asian and Western populations might influence the pathogenesis of OSAS, which might limit the relevance of this study, but at the same time emphasize the heterogeneity of OSAS. Therefore, the aim of the present study was first to assess the prevalence of daytime hypercapnia in a large group of patients who visited a sleep clinic; then to evaluate a possible association between daytime hypercapnia and obesity, obstructive airflow limitation, restrictive lung impairment, and severity of sleep apnea; and finally to examine the response to CPAP therapy in a subgroup of patients.

MATERIALS AND METHODS

Subjects

The subjects of this study were 1,407 consecutive patients with clinical symptoms of sleep apnea who sought treatment from January 2002 to December 2005 and were examined using

*From the Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Dr. Tatsumi is supported by a Grant-in-Aid for Scientific Research (C)(16590735) from the Japanese Ministry of Education, Science, Sports, and Culture, and grants from the Japanese Ministry of Health, Labor, and Welfare awarded to the Respiratory Failure Research Group and the Research Group of Sleep Apnea Syndrome as a Risk Factor of Cardiovascular Diseases (18233101). Dr. Kuriyama is supported by a grant to the Respiratory Failure Research Group from the Japanese Ministry of Health, Labor, and Welfare.

The authors have no conflicts of interest to disclose.

Manuscript received March 22, 2007; revision accepted June 25, 2007.

Reproduction of this article is prohibited without written permission from the American College of Chest Physicians (www.chestjournal.org/misc/reprints.shtml).

Correspondence to: Koichiro Tatsumi, MD, Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; e-mail: tatsumi@faculty.chiba-u.jp

DOI: 10.1378/chest.07-0673

polysomnography. The patients were recruited from the sleep clinic where they had been referred for further investigation regarding snoring or possible OSAS. Presenting symptoms were either snoring or daytime sleepiness or both. The subjects were all Japanese.

Patients who exhibited Cheyne-Stokes breathing with central sleep apnea ($n = 4$), those receiving cardiac drugs (digitalis and β -blockers) due to heart failure ($n = 2$), and patients with restrictive diseases such as kyphoscoliosis ($n = 2$) and diffuse interstitial fibrosis ($n = 2$) were excluded from this study. OSAS was established on the basis of clinical and polysomnographic criteria. AHI was calculated as the sum of sleep-disordered breathing events. In addition to clinical symptoms, an AHI ≥ 5 events per hour was also used as a selection criterion of OSAS. The patients ($n = 1,399$) were distributed into two groups according to AHI (AHI $\geq 5/\text{h}$, $n = 1,227$; AHI $< 5/\text{h}$, $n = 172$). Patients with hypercapnic OSAS who satisfied the criteria of obesity hypoventilation syndrome (OHS) were included in this study if their body mass index (BMI) was $\geq 30 \text{ kg/m}^2$, which indicated obesity.

Pulmonary function tests were performed to determine vital capacity, FEV₁, and FVC using a standard spirometer (Fudac-60; Fukuda Denshi; Tokyo, Japan). Arterial blood was drawn with the patient resting in the supine position between 9:00 AM and 10:00 AM the morning after the sleep study to measure PaO_2 and PaCO_2 during room air breathing in a blood gas analyzer (Model ABL555; Radiometer; Tokyo, Japan). The supine position was selected when arterial blood was obtained because polysomnography was started with the patient in that position. Hypercapnia was defined as $\text{PaCO}_2 \geq 45 \text{ mm Hg}$, and normocapnia was defined as $\text{PaCO}_2 < 45 \text{ mm Hg}$. The ideal alveolar gas equation was used to calculate alveolar Po_2 so that the alveolar-arterial oxygen pressure difference (P(A-a)O_2) could be calculated. The study protocol was approved by the Research Ethics Committee of Chiba University School of Medicine, and all patients gave their informed consent prior to the study.

Polysomnography

Overnight polysomnography (P Series or E Series Polygrapher; Compumedics; Melbourne, Australia) was performed between 9:00 PM and 6:00 AM. Polysomnography consisted of continuous polygraphic recording from surface leads for EEG; electrooculography; electromyography; ECG; thermistors for nasal and oral airflow; thoracic and abdominal impedance belts for respiratory effort; pulse oximetry for oxyhemoglobin level; tracheal microphone for snoring; and sensor for the position during sleep. Respiratory events were basically scored according to American Academy of Sleep Medicine criteria: apnea was defined as complete cessation of airflow lasting $\geq 10 \text{ s}$; hypopnea was defined as a $\geq 50\%$ reduction of airflow from baseline for 10 s that was associated with an oxygen desaturation $> 3\%$ or an arousal. Polysomnograms were staged manually according to standard criteria.¹³⁻¹⁵ Severity of OSAS was determined based on the AHI, and lowest and average values of arterial oxygen saturation (SaO_2) during sleep.

CPAP Treatment

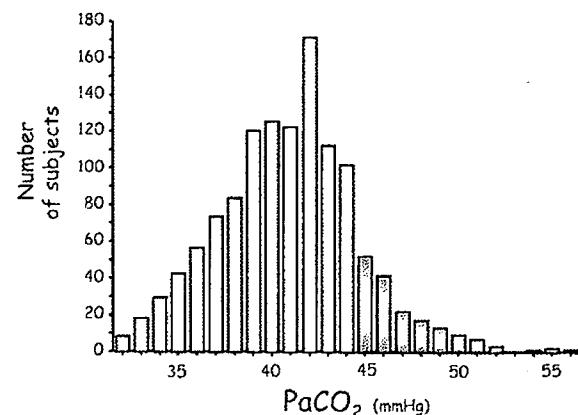
Arterial blood gas analysis was re-evaluated 3 months after the initiation of CPAP therapy (AutoSet; ResMed; Sydney, Australia). The subjects were consecutive hypercapnic OSAS patients ($n = 55$) examined using polysomnography from January to December 2005 with AHI values $> 40/\text{h}$. Thirty-seven patients could tolerate CPAP treatment and were successfully treated for 3 months with CPAP. CPAP tolerance was considered adequate when the system counter indicated that the patient was using the

device for at least 4 h at night during at least 70% of the follow-up nights. Nonadherence to CPAP therapy was observed in 18 patients.

Statistical Analysis

The results are expressed as mean \pm SE. All clinical parameters are summarized by descriptive statistics. The Mann-Whitney U test was used to compare age, BMI, pulmonary functions, and sleep parameters between two groups of patients. Proportions were compared using the χ^2 test. Linear regression analysis was performed to examine the association between two parameters. The patients were distributed into five groups according to BMI (18.5 to 25 kg/m², 25 to 30 kg/m², 30 to 35 kg/m², 35 to 40 kg/m², and > 40 kg/m²), percentage of predicted vital capacity (%VC) (70%, 70 to 80%, 80 to 90%, 90 to 100%, and $> 100\%$); FEV₁/FVC ratio (FEV₁%) ($\leq 60\%$, 60 to 70%, 70 to 80%, 80 to 90%, and $> 90\%$); and AHI (5 to 15/h, 15 to 30/h, 30 to 45/h, 45 to 60/h, and $> 60\text{h}$). Groups 1 to 4 were defined according to AHI levels. Levels of BMI were classified according to World Health Organization criteria.¹⁵ Analysis of variance was used to compare levels among the groups. This was followed by a *post hoc* Bonferroni multiple-comparison test. Logistic regression analysis was applied to predict daytime hypercapnia using the category classification of BMI, %VC, FEV₁%, and AHI as potential predictors. AHI was a parameter for the degree of sleep apnea, BMI for obesity, %VC for obesity-related impairment of lung function, and FEV₁% for obstructive impairment of lung function; *p* values < 0.05 were considered statistically significant.

RESULTS


Patients With OSAS vs Without OSAS

The male to female ratio in patients with OSAS was approximately 8, while it was approximately 3 in non-OSAS patients (*p* < 0.01 , χ^2 test). Mean age was higher in the OSAS group. FEV₁% and PaO₂ values were lower, while BMI and P(A-a)O₂ values were higher in the OSAS group. Paco₂ values were not statistically different between two groups (Table 1).

Table 1—Characteristics of Patients With OSAS vs Without OSAS*

Variables	AHI $\geq 5\text{h}$ (n = 1,227)	AHI $< 5\text{h}$ (n = 172)	<i>p</i> Value
Men/women, No.	1,091/136	130/42	< 0.01
Age, yr	49.9 \pm 0.8	45.3 \pm 1.1	< 0.01
%VC	100.7 \pm 0.5	100.2 \pm 1.5	NS
FEV ₁ %, %	82.3 \pm 0.2	84.5 \pm 0.5	< 0.01
PaO ₂ , mm Hg	80.8 \pm 0.3	87.5 \pm 0.7	< 0.01
Paco ₂ , mm Hg	41.3 \pm 0.1	40.5 \pm 0.2	NS
P(A-a)O ₂ , mm Hg	11.1 \pm 0.7	17.6 \pm 0.3	< 0.01
AHI, events/h	42.0 \pm 0.8	2.2 \pm 0.1	< 0.01
Lowest SaO ₂ , %	74.5 \pm 0.3	85.4 \pm 0.4	< 0.01
Average SaO ₂ , %	90.9 \pm 0.2	96.5 \pm 0.1	< 0.01
BMI, kg/m ²	28.6 \pm 0.2	25.0 \pm 0.4	< 0.01

*Data are presented as mean \pm SE unless otherwise indicated. NS = not significant.

FIGURE 1. Distribution of patients according to Paco₂. Open and closed bar show patients without and with hypercapnia, respectively.

Patients With Hypercapnia vs Normocapnia

Fourteen percent (168 of 1,227 patients) of those with OSAS showed daytime hypercapnia (Paco₂ ≥ 45 mm Hg) [Fig 1]. Fourteen percent of men and 8% of women (no significant difference in gender) exhibited daytime hypercapnia. %VC was slightly lower in hypercapnic patients compared with normocapnic patients, while FEV₁% was similar between the two groups. PaO₂ was significantly lower in hypercapnic patients. P(A-a)O₂ values were similar between the two groups. BMI and AHI were significantly higher in hypercapnic patients (Table 2).

Predictive Factors for Daytime Hypercapnia

Age and gender distribution differed between the OSAS group and the non-OSAS group (Table 1). However, no gender difference in Paco₂ levels was observed in either group. In addition, no significant

Table 2—Characteristics of Patients With Hypercapnia vs Normocapnia*

Variables	Paco ₂ < 45 mm Hg (n = 1,059)	Paco ₂ ≥ 45 mm Hg (n = 168)	<i>p</i> Value
Men/women, No.	935/124	156/12	NS
Age, yr	50.0 \pm 0.4	49.3 \pm 1.0	NS
%VC	100.8 \pm 0.5	97.5 \pm 1.5	< 0.05
FEV ₁ /FVC, %	82.9 \pm 0.2	82.5 \pm 0.5	NS
PaO ₂ , mm Hg	81.9 \pm 0.3	73.9 \pm 0.8	< 0.01
Paco ₂ , mm Hg	40.4 \pm 0.1	47.4 \pm 0.2	< 0.01
P(A-a)O ₂ , mm Hg	17.7 \pm 0.4	16.9 \pm 0.7	NS
AHI, events/h	39.3 \pm 0.8	58.8 \pm 2.0	< 0.01
Lowest SaO ₂ , %	75.6 \pm 0.3	67.5 \pm 1.0	< 0.01
Average SaO ₂ , %	91.5 \pm 0.2	86.9 \pm 0.6	< 0.01
BMI, kg/m ²	28.2 \pm 0.2	31.1 \pm 0.6	< 0.01

*Data are presented as mean \pm SE unless otherwise indicated. See Table 1 for expansion of abbreviation.

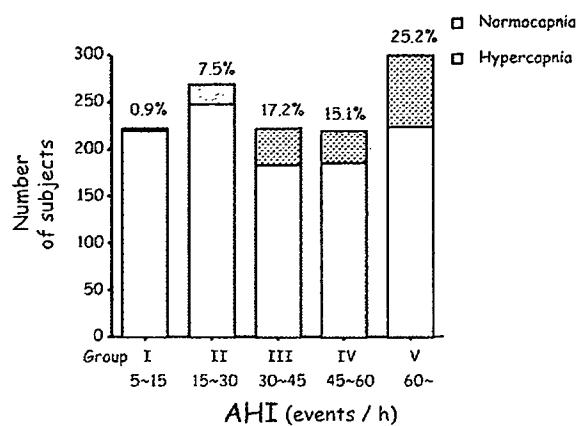


FIGURE 2. Prevalence of daytime hypercapnia in patients with OSAS distributed according to AHI.

correlation was observed between age and Paco_2 levels in patients with OSAS.

Hypoxemia (PaO_2) is a predictive factor for daytime hypercapnia when alveolar hypoventilation is the main cause of hypercapnia. In the present population, alveolar PO_2 was a definite predictive factor for hypercapnia because P(A-a)O_2 values were similar in the two groups. Therefore, the predictive values of BMI, $\text{FEV}_1\%$, %VC, and/or AHI for daytime hypercapnia were examined. Univariate analysis showed that Paco_2 significantly correlated with AHI, BMI, and %VC, while Paco_2 did not correlate with $\text{FEV}_1\%$. The prevalence of daytime hypercapnia differed according to BMI, %VC, and AHI (Fig 2) but not according to $\text{FEV}_1\%$. The logistic regression analysis for prediction of daytime hypercapnia showed that only AHI values were predictors for the presence of daytime hypercapnia, while BMI and %VC were borderline predictors and $\text{FEV}_1\%$ was not a predictor (Table 3).

Table 3—Univariate Analysis of Paco_2 Values and Multivariate Analysis of Potential Predictors of Daytime Hypercapnia ($\text{Paco}_2 \geq 45 \text{ mm Hg}$)*

Variables	Univariate		Multivariate	
	r Value	p Value	p Value	Relative Risk (95% CI)
AHI, events/h	0.21	< 0.0001	< 0.0001	
5 to 15				1.00
15 to 30				4.72 (1.59-14.01)
30 to 45				11.74 (4.05-35.77)
45 to 60				10.27 (3.53-29.56)
> 60				16.26 (5.69-46.4)
BMI	0.16	< 0.0001	0.051	
%VC	-0.06	0.03	0.062	
FEV ₁ %	0.03	0.38	0.558	

*CI = confidence interval.

Because only AHI values were predictive for the presence of daytime hypercapnia, anthropometric, blood gas, and sleep study data were analyzed in patients with OSAS distributed according to AHI (Table 4). Paco_2 in group 5 was the highest ($p < 0.05$) among the five groups. Paco_2 in group 4 was significantly higher than that in group 1 (Fig 3). BMI in group 5 was the highest ($p < 0.05$) among the five groups. BMI in group 4 was significantly ($p < 0.05$) higher than that in groups 1 and 2, and BMI in group 3 was significantly ($p < 0.05$) higher than that in group 1 (Fig 4).

In the present study, we used logistic regression analysis to predict daytime hypercapnia. However, when we used multiple regression analysis, the results were similar to those obtained using AHI as the only statistically significant variable to predict hypercapnia.

Responses of Paco_2 to CPAP Therapy

Based on the response of Paco_2 to CPAP therapy, patients were distributed into good responders ($n = 19$) showing a decrease of Paco_2 by 5 mm Hg; poor responders ($n = 18$) showing a decrease of < 5 mm Hg after 3 months on CPAP therapy; and nonadherents ($n = 18$) [Table 5]. Sex distribution, age, pulmonary function (%VC, $\text{FEV}_1\%$), arterial blood gas analyses (PaO_2 , Paco_2), and AHI did not differ significantly between good and poor responders. BMI was lower in good responders than in poor responders. The degree of sleep desaturation was more severe in poor responders than in good responders. BMI decreased significantly after 3 months of CPAP therapy in good and poor responders ($p < 0.05$). Nonadherents to CPAP therapy were older, not obese, and had milder degree of hypercapnia and sleep apnea (Table 5).

DISCUSSION

The present study showed that 13.7% (168 of 1,227 patients) of a relative large group of patients with OSAS examined using polysomnography had daytime hypercapnia. Patients with daytime hypercapnia had significantly higher BMI and AHI, and lower PaO_2 and %VC values compared with normocapnic patients, while $\text{FEV}_1\%$ did not differ between the two groups. Logistic regression analysis showed that only AHI was a predictor of daytime hypercapnia, although this index was not independent of BMI. Obesity partly contributed to the presence of daytime hypercapnia in our patients, suggesting that BMI acts as a modifier. In some patients with OSAS, daytime hypercapnia responded to CPAP therapy for 3 months. These data suggest that the pathogenesis of daytime hypercapnia might be directly linked to OSAS *per se* in a subset of patients with OSAS.

Table 4—Anthropometric, Blood Gas, and Sleep Study Data of OSAS Patients Distributed According to AHI*

Variables	Group 1, AHI ≥ 5 to < 15/h (n = 222)	Group 2, AHI ≥ 15 to < 30/h (n = 268)	Group 3, AHI ≥ 30 to < 45/h (n = 221)	Group 4, AHI ≥ 45 to < 60/h (n = 218)	Group 5, AHI ≥ 60/h (n = 298)
Men/women, No.	184/38	229/39	207/14	204/14	267/31
Age, yr	50.6 ± 0.9	50.8 ± 0.8	51.6 ± 0.8	50.9 ± 0.9	46.6 ± 0.7†
%VC, %	107.4 ± 1.1	106.6 ± 1.1	107.4 ± 1.2	106.0 ± 1.3	101.7 ± 1.0†
FEV ₁ %, %	83.5 ± 0.4	82.7 ± 0.4	81.9 ± 0.4	82.6 ± 0.4	83.1 ± 0.3
PaCO ₂ , mm Hg	56.2 ± 0.6	52.5 ± 0.6†	51.8 ± 0.6†	50.1 ± 0.7†	74.8 ± 0.6†
Paco ₂ , mm Hg	40.4 ± 0.2	40.7 ± 0.2	41.2 ± 0.3	41.4 ± 0.3†	42.6 ± 0.2†
P(A-a)O ₂ , mm Hg	13.3 ± 0.6	16.5 ± 0.6†	16.6 ± 0.6†	18.2 ± 0.7†	22.0 ± 0.6†
BMI, kg/m ²	25.5 ± 0.3	27.1 ± 0.3†	27.6 ± 0.3†	28.6 ± 0.4†	32.9 ± 0.4†

*Data are presented as mean ± SE unless otherwise indicated.

†p < 0.05 vs group 1.

The pathogenesis of OSAS and/or hypoventilation (daytime hypercapnia) may differ between Western and Asian populations including Japan because different genetic factors may contribute to the development of these disorders.¹⁶ In the present study, mean AHI in the normocapnic and hypercapnic OSAS groups was 28.2/h and 31.1/h, respectively, which was lower than that found in previous reports¹⁻⁸ from Western countries. In addition, the level of hypercapnia was relatively mild (mean, 47.4 mm Hg) in our cohort, and the proportion of patients with a PaCO₂ ≥ 50 mm Hg was only 13.7% (23 of 168 hypercapnic patients) [Fig 5]. Therefore, it is unclear whether the results of this study could be explored to white patients.

Daytime hypercapnia was corrected in approximately half of our patients treated with CPAP. A limitation of this result was that the patients who tolerated this therapy were not representative of the entire hypercapnic OSAS group because their AHI

and BMI values were higher than those observed in the whole group of hypercapnic patients. Another limitation was that we did not measure the time course of PaCO₂ changes during the usage of auto-CPAP. However, our result was similar to that reported by Rapoport et al⁸ who found that four patients became eucapnic within 2 weeks of CPAP therapy, while four others remained hypercapnic, although the subjects were morbid obese. Rapoport et al⁸ proposed that two separate mechanisms exist for hypercapnia in OSAS. The pathogenetic mechanisms of daytime hypercapnia in patients with OSAS who responded to CPAP therapy may be a balance between ventilation while awake and hypoventilation due to repetitive sleep apnea; thus, the effects of sleep apnea on daytime hypercapnia could be abolished by CPAP therapy. Han et al¹⁷ reported that PaCO₂ had fallen to < 45 mm Hg and hypoxic and hypercapnic chemosensitivity had increased 4 to 6 weeks after CPAP therapy, without body weight

FIGURE 3. PaCO₂ values in patients with OSAS distributed according to AHI. *p < 0.05 vs every other group. †p < 0.05 vs group 1.

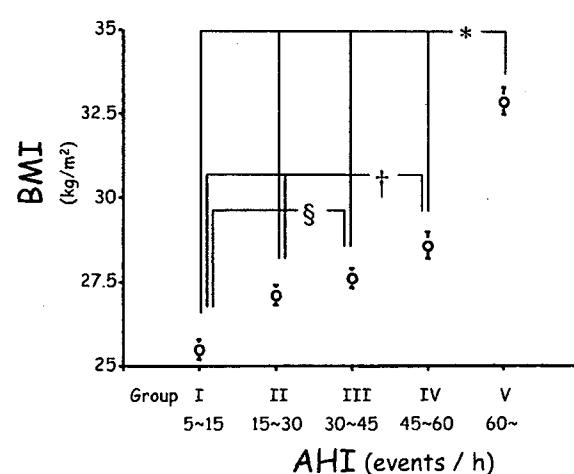


FIGURE 4. BMI in patients with OSAS distributed according to AHI. *p < 0.05 vs every other group. †p < 0.05 vs groups 1 and 2. §p < 0.05 vs group 1.

Table 5—Good Responders, Poor Responders, and Nonadherents to CPAP Therapy*

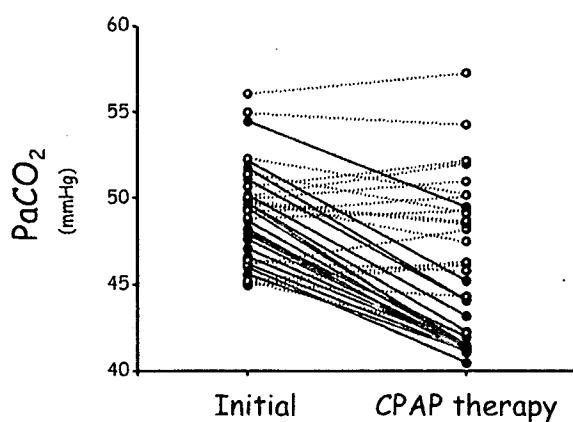
Variables	Good Responders (n = 19)	Poor Responders (n = 18)	Nonadherents (n = 18)
Men/women, No.	19/0	15/3	15/3
Age, yr	44.4 ± 2.4	48.1 ± 3.2	63.8 ± 2.3§
%VC	97.6 ± 4.8	90.9 ± 3.0	94.0 ± 6.1
FEV ₁ /FVC, %	84.3 ± 1.3	86.1 ± 1.4	79.4 ± 1.5§
Pao ₂ , mm Hg	71.0 ± 2.4	65.3 ± 2.7	76.8 ± 1.5§
Paco ₂ , mm Hg	48.8 ± 0.6	49.2 ± 0.8	47.2 ± 0.5§
AHI, events/h	61.6 ± 6.5	63.2 ± 6.9	51.2 ± 1.7§
Lowest SaO ₂ , %	63.6 ± 3.0	53.9 ± 2.9	68.6 ± 2.1§
Average SaO ₂ , %	83.8 ± 1.8	79.1 ± 2.3	90.1 ± 0.7§
BMI before therapy, kg/m ²	32.5 ± 1.1	42.4 ± 2.7†	26.1 ± 1.0§
BMI after therapy, kg/m ²	31.9 ± 1.1	42.0 ± 2.8†‡	26.0 ± 1.1§

*Data are presented as mean ± SE unless otherwise indicated.

†p < 0.05 compared with BMI before CPAP therapy.

‡p < 0.05 compared with good responders.

§p < 0.05 compared with poor responders.


changes, in hypercapnic patients with OSAS (n = 5), suggesting that depressed chemoresponsiveness plays a role independent of obesity in the development of CO₂ retention in some of these patients; and it may be a response to sleep-disordered breathing. In the present study, one possible pathomechanism of hypercapnia in good responders may be upper airway resistance because in this group BMI was slightly lower than in poor responders and upper airway resistance was easily ameliorated after CPAP therapy. However, daytime Paco₂ levels in OSAS patients may be an end product of a complex conglomerate, influenced by factors such as severity of sleep apnea; obesity; daytime Pao₂; chemosensitivity; respiratory mechanics; respiratory muscle

strength; metabolic rate; daytime symptoms of sleepiness; endocrine modulation; cardiac function; and face, nose, and cranial bony structure (cephalometry). Several undefined pathomechanisms of daytime hypercapnia may exist in patients with OSAS, whose Paco₂ did not decrease after CPAP therapy.

Our study did not focus on the causal relationship between OSAS and OHS. It has been reported that OHS can occur without significant OSAS¹⁸ (*i.e.*, OHS patients could exhibit nocturnal hypoventilation unrelated to upper airway obstruction).⁸ Forty-three percent (73 of 168 patients) of our hypercapnic patients with OSAS satisfied the criteria of OHS, when obesity was defined as BMI ≥ 30 kg/m². In other words, more than half of hypercapnic patients with OSAS were not obese based on Western criteria. In addition, nocturnal desaturation in our hypercapnic patients with OSAS was mostly due to upper airway obstruction, partly because the degrees of daytime hypercapnia and obesity were mild compared with those of previous reports from Western countries.¹⁻⁵ There may exist some ethnic differences regarding the characteristics of OHS between Japan and Western countries. In the present study, logistic regression analysis showed that BMI could be a predictor of daytime hypercapnia (p = 0.051), suggesting that obesity may have partly contributed to the presence of daytime hypercapnia in our patients. Therefore, the predictive value of AHI may not be independent of BMI; rather, BMI could be a modifier.

Our data showed that chronic airflow limitation was not a prerequisite for the presence of daytime hypercapnia.⁶ We did not intend to exclude any patient suspected of COPD in our study, and no patients showed an FEV₁% < 60%. Only 3.5% of the patients with hypercapnia (6 of 168 patients) had mild obstructive airflow limitation (FEV₁% ≥ 60% to < 70%). Overlap syndrome (the association of OSAS with COPD)¹⁹ may be rare in the Japanese population. However, a relationship of obstructive impairment with hypercapnia in patients with OSAS cannot be ruled out because our study population was a convenient sample of patients attending a sleep clinic.

The poor responders to CPAP therapy showed a decrease of AHI after receiving auto-CPAP therapy, and their clinical conditions (the degree of daytime sleepiness decreased) improved, although the levels of daytime Paco₂ did not decrease ≥ 5 mm Hg. Current therapeutic options available for hypoventilation syndrome include bilevel pressure support ventilation with or without supplemental oxygen.²⁰ A future challenge is to investigate whether poor responders to CPAP therapy would respond to bilevel pressure support ventilation.

FIGURE 5. The responses of Paco₂ to CPAP therapy. Closed circle with solid line represents good responder, while open circle with dashed line represents poor responder.

REFERENCES

- Krieger J, Sforza E, Apprill M, et al. Pulmonary hypertension, hypoxemia, and hypercapnia in obstructive sleep apnea patients. *Chest* 1989; 96:729-737
- Bradley TD, Rutherford R, Lue F, et al. Role of diffuse airway obstruction in the hypercapnia of obstructive sleep apnea. *Am Rev Respir Dis* 1986; 134:920-924
- Resta O, Barbaro MPF, Brindice C, et al. Hypercapnia in overlap syndrome: possible determinant factors. *Sleep Breath* 2002; 6:11-17
- Chaouat A, Weitzenblum E, Krieger J, et al. Association of chronic obstructive pulmonary disease and sleep apnea syndrome. *Am J Respir Crit Care Med* 1995; 151:82-86
- Laaban JP, Chailleux E. Daytime hypercapnia in adult patients with obstructive sleep apnea syndrome in France, before initiating nocturnal nasal continuous positive airway pressure therapy. *Chest* 2005; 127:710-715
- Leech JA, Oual E, Baer P, et al. Determinant of hypercapnia in occlusive sleep apnea syndrome. *Chest* 1987; 92:807-813
- Weitzenblum E, Chaouat A, Kessler R, et al. Daytime hypoventilation in obstructive sleep apnea syndrome. *Sleep Med Rev* 1999; 3:79-93
- Rapoport DM, Garay SM, Epstein H, et al. Hypercapnia in the obstructive sleep apnea syndrome: a reevaluation of the Pickwickian syndrome. *Chest* 1986; 89:627-635
- Kim J, In K, Kim J, et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. *Am J Respir Crit Care Med* 2004; 170:1108-1113
- Ip MS, Lam B, Laufer IJ, et al. A community study of sleep-disordered breathing in middle-aged Chinese men in Hong Kong. *Chest* 2001; 119:62-69
- Udwadia ZF, Doshi AV, Lonkar SG, et al. Prevalence of sleep-disordered breathing and sleep apnea in middle-aged urban Indian men. *Am J Respir Crit Care Med* 2004; 169:168-173
- Akashiba T, Kawahara S, Kosaka N, et al. Determinants of chronic hypercapnia in Japanese men with obstructive sleep apnea syndrome. *Chest* 2002; 121:415-421
- Rechtschaffen A, Kales AA, eds. A manual of standardized terminology, techniques and scoring for sleep stages of human subjects. Washington, DC: Government Printing Office, 1968; NIH Publication No. 204
- Kushida CA, Littner MR, Morgenthaler T, et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. *Sleep* 2005; 28:499-521
- Report of WHO consultation: obesity; preventing and managing the global epidemic. Geneva WHO Technical Report Series 2000; 894:1-253
- Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. *Am J Respir Crit Care Med* 2002; 165:1217-1239
- Han F, Chen E, Wei H, et al. Treatment effects on carbon dioxide retention in patients with obstructive sleep apnea-hypopnea syndrome. *Chest* 2001; 119:1814-1819
- Sugerman HJ, Fairman PR, Sood RK, et al. Long-term effects of gastric surgery for treating respiratory insufficiency of obesity. *Am J Clin Nutr* 1992; 55:597S-601S
- Flemley DC. Sleep in chronic obstructive lung disease. *Clin Chest Med* 1985; 6:51-61
- Porter P. Consensus conference report: clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation. *Chest* 1999; 116:521-534

Daytime Hypercapnia in Obstructive Sleep Apnea Syndrome
Naoko Kawata, Koichiro Tatsumi, Jiro Terada, Yuji Tada, Nobuhiro Tanabe,
Yuichi Takiguchi and Takayuki Kuriyama
Chest 2007;132:1832-1838;
DOI 10.1378/chest.07-0673

This information is current as of December 13, 2007

Updated Information & Services	Updated information and services, including high-resolution figures, can be found at: http://chestjournal.org/cgi/content/full/132/6/1832
References	This article cites 19 articles, 12 of which you can access for free at: http://chestjournal.org/cgi/content/full/132/6/1832#BIBL
Citations	This article has been cited by 1 HighWire-hosted articles: http://chestjournal.org/cgi/content/full/132/6/1832
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://chestjournal.org/miscreprints.shtml
Reprints	Information about ordering reprints can be found online: http://chestjournal.org/miscreprints.shtml
Email alerting service	Receive free email alerts when new articles cite this article sign up in the box at the top right corner of the online article.
Images in PowerPoint format	Figures that appear in CHEST articles can be downloaded for teaching purposes in PowerPoint slide format. See any online article figure for directions.

Downloaded from chestjournal.org on December 13, 2007
Copyright © 2007 by American College of Chest Physicians

Decreased Lipoprotein Lipase in Obstructive Sleep Apnea Syndrome

Ken Iesato, MD; Koichiro Tatsumi, MD; Toshiji Saibara, MD*;
Akira Nakamura, MD; Jiro Terada, MD; Yuji Tada, MD;
Seiichiro Sakao, MD; Nobuhiro Tanabe, MD;
Yuichi Takiguchi, MD; Takayuki Kuriyama, MD

Background Lipoprotein lipase (LPL) might play a major role in lipid metabolism by hydrolyzing triglyceride-rich lipoproteins. Decreased LPL activity can trigger early inflammatory responses central to atherosclerosis. However, whether repeated apnea-related hypoxemia influences lipid metabolism in patients with obstructive sleep apnea syndrome (OSAS) remain undefined. This investigation determined whether circulating LPL was influenced by repeated apnea-related hypoxemia, and the effect of nasal continuous positive airway pressure (CPAP) therapy on LPL concentrations in OSAS patients.

Methods and Results The participants of the study were 155 men with OSAS and 39 men without OSAS. Circulating LPL concentrations decreased with the severity of OSAS. They correlated negatively with serum triglyceride, and the linear regression lines between LPL concentrations and triglyceride in OSAS patients were shifted downward compared with those in non-OSAS patients, suggesting that any pathophysiological factor might decrease LPL activity in OSAS patients. Some OSAS patients were subjected to CPAP therapy for 3 months. CPAP therapy increased LPL concentrations and decreased C-reactive protein (CRP) concentrations.

Conclusions The present study suggests that repeated apnea-related hypoxemia might affect lipid metabolism and augment inflammatory responses, and CPAP therapy could be effective to decrease inflammatory responses and ameliorate lipid metabolism in patients with OSAS. (Circ J 2007; 71: 1293–1298)

Key Words: Atherosclerosis; Inflammation; Lipid metabolism; Sleep apnea

Increased concentrations of triglyceride (TG)-rich lipoproteins provoke lipid accumulation in the artery wall, triggering early inflammatory responses central to atherosclerosis.¹ Lipoprotein lipase (LPL) might play a major role in lipid metabolism by hydrolyzing TG-rich lipoproteins and releasing fatty acids.² Peroxisome proliferators-activated receptor (PPAR)- α might be activated by fatty acids to induce the transcription of genes involved in the oxidation of fatty acids. Then, LPL could act on circulating lipoproteins to generate PPAR- α ligands. PPAR- α activation might exert cardiovascular protective effects in hypertension or other forms of cardiovascular disease.³

There is a continuous dissociation of LPL from the endothelium to blood.⁴ Therefore, blood levels of LPL might be associated with the pathogenesis of cardiovascular diseases,⁵ including the complications of obstructive sleep apnea syndrome (OSAS). However, the roles of LPL in inflammatory responses, atherosclerosis and cardiovascular complications in patients with OSAS remain undefined. Assuming that the pathophysiology of OSAS manifests a systemic inflammatory response, repeated hypoxemia and recovery to normoxemia could affect LPL activity.

Serum levels of TG and body mass index (BMI) have been reported to correlate negatively with the blood concentrations of LPL.^{5–7} We hypothesized that the pathophysiological conditions, related to the severity of OSAS, might affect the blood concentrations of LPL.^{3–5} The purpose of the present study was to examine whether the blood concentrations of LPL are influenced by repeated apnea-related hypoxemia in patients with OSAS and to determine whether nasal continuous positive airway pressure (CPAP) therapy ameliorate the levels of LPL.

Methods

Subjects

A consecutive male population with clinical symptoms of sleep apnea (n=260), who were examined by polysomnography (PSG) from August 2003 to October 2004, was first divided into 2 groups according to their apnea-hypopnea index (AHI) (AHI \geq 5: n=214, AHI <5: n=46). The patients were recruited from the sleep clinic where they had been referred for further investigation regarding snoring or possible OSAS. Presenting symptoms were either snoring or daytime sleepiness or both. The subjects were all Japanese, and no other ethnic group was included to avoid the effects of ethnic difference.

Patients with heart failure, or other respiratory problems, including chronic obstructive pulmonary disease were excluded from the study. Subjects with kidney disease and hormonal disease were also excluded. Subjects on medication known to affect insulin action, including the treatments for diabetes mellitus, or plasma lipoprotein concentrations,

(Received March 5, 2007; revised manuscript received April 23, 2007; accepted May 11, 2007)

Department of Respiratory, Graduate School of Medicine, Chiba University, Chiba, *Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Nankoku, Japan

Mailing address: Koichiro Tatsumi, MD, Department of Respiratory, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba 260-8670, Japan. E-mail: tatsumi@faculty.chiba-u.jp