

Figure 4 Effect of nimotuzumab on the response of NSCLC cells to radiation in vivo. H460 (A), H292 (B), or Ma-I (C) cells were injected subcutaneously in athymic nude mice. Treatment was initiated when turnours in each group achieved an average volume of approximately 170-200 mm Mice were treated with a single dose of nimotuzumab (1.0 mg per mouse) intraperitoneally, a single dose of γ-radiation (10 Gy), or neither (control) or both modalities, and tumour volume was determined at the indicated time points thereafter. Data are means ± s.d. for seven to eight mice per group.

Table 2 Tumour growth delay in nude mice treated with nimotuzumab, radiation, or both modalities

	H460		H292		Ma-I	
Treatment	Daysa	GD ^b	Days	GD	Days	GD
Control	10.4		13.2		15.1	
Nimotuzumab alone	11.8	1.4	40.4	27.2	41,8	26.7
Radiation alone	20.4	0.01	32.8	19.6	28.1	13.0
Nimotuzumab+radiation	20.5	10.1	66.8	53.6	93.4	78.3
Enhancement factor	0.86		1.3		4.0	

GD = growth delay a Time required for xenografts in each group to achieve a fivefold increase in volume. bThe additional time (days) required for xenografts in each treatment group to achieve a fivefold increase in volume relative to the corresponding time for xenografts in the control group.

than additive. No pronounced tissue damage or toxicities such as diarrhoea or a decrease in body weight of > 10% were observed in mice in any of the four treatment groups. These results thus suggested that nimotuzumab potentiated the antitumor activity of radiation in H292 and Ma-1 cells in vivo as well as in vitro.

DISCUSSION

Somatic mutations in the EGFR kinase domain and EGFR amplification have been associated with a better response to EGFR-TKIs, such as gefitinib and erlotinib, in patients with NSCLC (Lynch et al, 2004; Paez et al, 2004; Pao et al, 2004; Cappuzzo et al, 2005; Mitsudomi et al, 2005; Takano et al, 2005). Given that little is known of the relation between such EGFR alterations and the response to treatment with anti-EGFR mAbs, we investigated the antitumor effect of combined treatment with the anti-EGFR mAb nimotuzumab and radiation in NSCLC cell lines of differing EGFR status.

The antitumor effect of EGFR-specific mAbs has been thought to result from inhibition of ligand binding to EGFR and consequent inhibition of EGFR activation (Li et al, 2005; Marshall, 2006). We, therefore, examined the effect of nimotuzumab on EGF-dependent EGFR signalling. Nimotuzumab inhibited the EGF-induced or constitutive phosphorylation of EGFR in H292 and Ma-1 cells (with high and moderate levels of surface EGFR expression, respectively), consistent with the mode of action of this antibody. However, nimotuzumab did not block EGF-induced or constitutive EGFR phosphorylation in H460, H1299, or H1975 cells (all with a

low level of surface EGFR expression). These observations suggest that the inhibitory effect of nimotuzumab on EGFR signalling depends on the expression level of EGFR on the cell surface. A clonogenic cell survival assay revealed that nimotuzumab enhanced the cytotoxic effect of radiation in H292 and Ma-1 cells, but not that in H460, H1299, or H1975 cells. These findings support the notion that the inhibition of EGFR signalling by nimotuzumab is responsible, at least in part, for the enhancement of the cytotoxic effect of radiation by this antibody. Irradiation of tumour cells has been shown to activate EGFR via ligand-independent and liganddependent mechanisms, possibly accounting for radiation-induced acceleration of tumour cell repopulation and the development of radioresistance (Schmidt-Ullrich et al, 1997, 2003; Dent et al, 2003). Such radiation-induced activation of EGFR-dependent processes may represent a rationale for combined treatment with radiation and EGFR inhibitors. It remains to be determined whether nimotuzumab is able to block radiation-induced activation of EGFR.

Consistent with our in vitro results, we found that nimotuzumab enhanced the antitumor effect of radiation on H292 or Ma-1 cells in nude mice. Such enhancement was not apparent for tumours formed by H460 cells. Nimotuzumab alone also manifested a substantial antitumor effect for xenografts formed by H292 or Ma-1 cells but not for those formed by H460 cells. Together these results suggest that the efficacy of nimotuzumab monotherapy is a prerequisite for augmentation of radioresponse by this mAb. Nimotuzumab was previously shown to induce the regression of A431 tumour xenografts in vivo as a result of inhibition of both tumour cell proliferation and tumour angiogenesis (Crombet-Ramos et al, 2002). Immunohistochemical analysis of tumour specimens from head and neck cancer patients treated with the combination of nimotuzumab and radiation also showed evidence of antiproliferative and antiangiogenic (Crombet et al, 2004). These observations suggest that effects of nimotuzumab on both NSCLC cell proliferation and tumour angiogenesis might contribute to the enhancement of the antitumor efficacy of radiation by this antibody observed in the present study. Enhancement of the anticancer effect of radiation by the anti-EGFR mAb cetuximab was previously shown to be increased by transfection of cells to upregulate the level of EGFR expression, suggesting that potentiation of the antitumor efficacy of radiation by anti-EGFR mAbs is related to the absolute level of EGFR expression (Liang et al, 2003; Bonner et al, 2004). This finding is consistent with our present results showing that potentiation of the antitumor activity of radiation by nimotuzumab was related to the level of surface EGFR expression. The nimotuzumab-resistant cell line H460 harbours a mutant form of KRAS (Balko et al, 2006) that has been associated with resistance to cetuximab (Lievre et al, 2006). However, we found that nimotuzumab also failed to inhibit EGF-induced EGFR phosphorylation and to enhance the cytotoxic effect of radiation in H1299 cells, which harbour wild-type KRAS (Coldren et al, 2006). These observations thus support the notion that a low level of EGFR expression at the cell surface is related to resistance to combined treatment with nimotuzumab and radiation, irrespective of KRAS status.

We demonstrated that nimotuzumab inhibited EGFR phosphorylation and enhanced the antitumor effect of radiation in EGFR mutant Ma-1 cells (with a moderate level of surface EGFR expression) but not in EGFR-mutant H1975 cells (with a low level of surface EGFR expression). Nimotuzumab also potentiated the cytotoxic effect of radiation in H292 cells, which harbour wild-type EGFR alleles and have a high level of surface EGFR expression. These findings support the notion that EGFR mutation is not the major determining factor for enhancement of the antitumor effect of radiation by nimotuzumab, consistent with previous observations with cetuximab (Barber et al, 2004; Tsuchihashi et al, 2005). However, the mechanisms underlying such enhancement of the antitumor effect of radiation may differ between NSCLC cells harbouring wild-type or mutant EGFR alleles. We and others have previously shown that mutations in the tyrosine kinase domain of EGFR are associated with increased ligand-independent tyrosine kinase activity of EGFR (Lynch et al, 2004) and aberrant EGFR signalling (Amann et al, 2005; Okabe et al, 2007). Given that cellcycle checkpoints activated by ionising radiation are defective in EGFR-mutant NSCLC cell lines (Das et al, 2006), the constitutive activity of EGFR in such cells may result in unchecked DNA synthesis and in apoptosis on exposure to ionising radiation. It is possible that these defects in EGFR-mutant cells affect the enhancement of the antitumor efficacy of radiation by nimotuzumab.

In summary, we have shown that nimotuzumab enhanced the antitumor efficacy of radiation in vitro and in vivo, providing a rationale for future clinical investigations of the therapeutic efficacy of nimotuzumab in combination with radiotherapy. Our data suggest that potentiation of the antitumor activity of radiation by nimotuzumab may be related to the level of EGFR expression at the cell surface rather than to EGFR mutation. The preselection of patients on the basis of genetic factors that predict treatment sensitivity or resistance may thus be required for the combination therapy with nimotuzumab and radiation.

ACKNOWLEDGEMENTS

We thank S Ono for technical assistance.

REFERENCES

Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H, Peyton M, Juroske D, Huang Y, Stuart Salmon J, Kim YH, Pollack JR, Yanagisawa K, Gazdar A, Minna JD, Kurie JM, Carbone DP (2005) Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res 65: 226-235

Balko JM, Potti A, Saunders C, Stromberg A, Haura EB, Black EP (2006) Gene expression patterns that predict sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer cell lines and human lung tumors. BMC Genomics 7: 289

Barber TD, Vogelstein B, Kinzler KW, Velculescu VE (2004) Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 351: 2883
 Baselga J (2002) Why the epidermal growth factor receptor? The rationale

for cancer therapy. Oncologist 7(Suppl 4): 2-8
Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23: 2445-2459

Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72: 257-266

Bonner JA, Buchsbaum DJ, Russo SM, Fiveash JB, Trummell HQ, Curiel DT, Raisch KP (2004) Anti-EGFR-mediated radiosensitization as a result of augmented EGFR expression. *Int J Radiat Oncol Biol Phys* 59: 2-10

Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567-578

Buchsbaum DJ, Bonner JA, Grizzle WE, Stackhouse MA, Carpenter M, Hicklin DJ, Bohlen P, Raisch KP (2002) Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. Int J Radiat Oncol Biol Phys 54: 1180-1193

- Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn Jr PA, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97: 643-655
- Coldren CD, Helfrich BA, Witta SE, Sugita M, Lapadat R, Zeng C, Baron A, Franklin WA, Hirsch FR, Geraci MW, Bunn Jr PA (2006) Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines. *Mol Cancer Res* 4: 521-528
- Crombet T, Osorio M, Cruz T, Roca C, del Castillo R, Mon R, Iznaga-Escobar N, Figueredo R, Koropatnick J, Renginfo E, Fernandez E, Alvarez D, Torres O, Ramos M, Leonard I, Perez R, Lage A (2004) Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J Clin Oncol 22: 1646-1654
- Crombet T, Torres L, Neninger E, Catala M, Solano ME, Perera A, Torres O, Iznaga N, Torres F, Perez R, Lage A (2003) Pharmacological evaluation of humanized anti-epidermal growth factor receptor, monoclonal antibody h-R3, in patients with advanced epithelial-derived cancer. J Immunother 26: 139-148
- Crombet-Ramos T, Rak J, Perez R, Viloria-Petit A (2002) Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: a humanized anti-EGFR antibody. *Int J Cancer* 101: 567-575
- Das AK, Sato M, Story MD, Peyton M, Graves R, Redpath S, Girard L, Gazdar AF, Shay JW, Minna JD, Nirodi CS (2006) Non-small cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation. Cancer Res 66: 9601-9608
- Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159: 283-300
- Ettinger DS (2006) Clinical implications of EGFR expression in the development and progression of solid tumors: focus on non-small cell lung cancer. Oncologist 11: 358-373
- Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4: 361-370
- Harari PM, Huang S (2006) Radiation combined with EGFR signal inhibitors: head and neck cancer focus. Semin Radiat Oncol 16: 38-44
- Huang SM, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59: 1935-1940
- Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6: 714-727
- Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, Johnson BE, Eck MJ, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352: 786-792
- Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7: 301-311
- Liang K, Ang KK, Milas L, Hunter N, Fan Z (2003) The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol Biol Phys 57: 246-254
- Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 66: 3992-3995
- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal

- growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129-2139
- Marshall J (2006) Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer 107: 1207-1218
- Milas I., Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, Mendelsohn J, Fan Z (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6: 701-708
- Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S, Hatooka S, Shinoda M, Takahashi T, Yatabe Y (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23: 2513-2520
- Okabe T, Okamoto I, Tamura K, Terashima M, Yoshida T, Satoh T, Takada M, Fukuoka M, Nakagawa K (2007) Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res 67: 2046-2053
- Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497-1500
- Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, Mardis E, Kupfer D, Wilson R, Kris M, Varmus H (2004) EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. *Proc Natl Acad Sci USA* 101: 13306-13311
- Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. *PLoS Med* 2: 225-235
- Prewett MC, Hooper AT, Bassi R, Ellis LM, Waksal HW, Hicklin DJ (2002) Enhanced antitumor activity of anti-epidermal growth factor receptor monoclonal antibody IMC-C225 in combination with irinotecan (CPT-11) against human colorectal tumor xenografts. Clin Cancer Res 8: 994-1003
- Raben D, Helfrich B, Chan DC, Ciardiello F, Zhao L, Franklin W, Baron AE, Zeng C, Johnson TK, Bunn Jr PA (2005) The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 11: 795-805
- Schmidt-Ullrich RK, Contessa JN, Lammering G, Amorino G, Lin PS (2003) ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene 22: 5855-5865
- Schmidt-Ullrich RK, Mikkelsen RB, Dent P, Todd DG, Valerie K, Kavanagh BD, Contessa JN, Rorrer WK, Chen PB (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15: 1191-1197
- Takano T, Ohe Y, Sakamoto H, Tsuta K, Matsuno Y, Tateishi U, Yamamoto S, Nokihara H, Yamamoto N, Sekine I, Kunitoh H, Shibata T, Sakiyama T, Yoshida T, Tamura T (2005) Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 23: 6829-6837
- Tsuchihashi Z, Khambata-Ford S, Hanna N, Janne PA (2005) Responsiveness to cetuximab without mutations in EGFR. N Engl J Med 353: 208-209
- Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J, Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J (1998) United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) Guidelines for the Welfare of Animals in Experimental Neoplasia 2nd edn. Br J Cancer 77: 1-10

Large Cell Neuroendocrine Carcinoma of the Mediastinum with α -Fetoprotein Production

Ken Takezawa, MD, * Isamu Okamoto, MD, PhD, * Junya Fukuoka, MD, PhD, † Kaoru Tanaka, MD, * Hiroyasu Kaneda, MD, * Hisao Uejima, MD, ‡ Hyung-Eun Yoon, MD, PhD, ‡ Masami Imakita, MD, PhD, § Masahiro Fukuoka, MD, PhD, * and Kazuhiko Nakagawa, MD, PhD*

Large cell neuroendocrine carcinoma (LCNEC) is a relatively new category of pulmonary neuroendocrine tumor. Although it was first detected in the lung, LCNEC has since been found in a variety of extrapulmonary sites. We now describe a patient who was diagnosed with LCNEC originating from the mediastinum, an extremely rare disorder. An increased serum concentration of α -fetoprotein (AFP) in the patient was reduced by chemotherapy in association with tumor shrinkage. Furthermore, the tumor was confirmed immunohistochemically to produce AFP. To our knowledge, this is the first report of a LCNEC that produces AFP.

Key Words: Large cell neuroendocrine carcinoma, α -Fetoprotein, Mediastinal tumor.

(J Thorac Oncol. 2008;3: 187-189)

arge cell neuroendocrine carcinoma (LCNEC) is a highgrade neuroendocrine tumor that was first detected in the lung by Travis et al.¹ The prognosis of individuals with LCNEC has been reported to be poor, with a 5-year survival rate similar to that for small cell carcinoma.²⁻⁴ Although originally found in the lung, LCNEC has since been described in a variety of extrapulmonary locations.⁵⁻⁷ Among these locations, mediastinal LCNEC is extremely rare, with only a few cases having been reported.^{8,9} We now report the first case of mediastinal LCNEC with α -fetoprotein (AFP) production.

CASE REPORT

A previously healthy 35-year-old Japanese man was found to have an abnormal mass in his right mediastinum on a chest radiograph during a health checkup. The patient's general condition was fair, and symptoms such as chest pain,

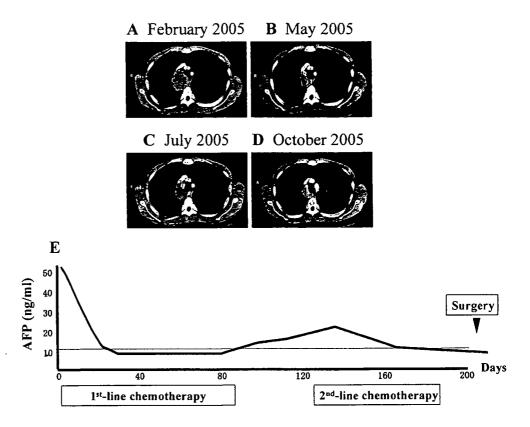
Computed tomography imaging of the chest revealed a 65 × 50 mm mass in the middle mediastinum (Figure 1A). Serum laboratory data were within normal limits. A bronchoscopic examination revealed a compression against the outside of the trachea. No other organs appeared to be affected on extensive examination. Subsequent evaluation for serum tumor markers revealed an increased level of AFP. Other examined markers, including β -human chorionic gonadotropin, carcinoembryonic antigen, and CA19-9, were within normal limits. Thoracoscopic examination revealed that the tumor was not invading into the adjacent lung. On the basis of these findings, we considered the tumor to have originated from the middle mediastinum. A biopsy revealed poorly differentiated carcinoma with neuroendocrine features. Thymic neuroendocrine carcinoma is exclusively located in the anterior-superior mediastinum.1 Given the tumor's location, the increase in the serum concentration of AFP, and the patient's young age, the diagnosis of embryonal carcinoma was initially favored over purely neuroendocrine neoplasm. The patient received neoadjuvant chemotherapy with bleomycin (30 mg/body) on days 2, 9, and 16, etoposide (100 mg/m²) on days 1 to 5, and cisplatin (20 mg/m²) on days 1 to 5. Treatment cycles were repeated every 21 days for 4 cycles. The serum AFP level had decreased to within normal limits in association with shrinkage of the tumor by the end of the third cycle of chemotherapy (Figure 1B, E). However, the AFP concentration started to increase thereafter, and progression of the tumor was confirmed after the fourth cycle of chemotherapy (Figure 1C, E). The patient then received second-line chemotherapy with cisplatin (80 mg/m²) on day 1 and paclitaxel (200 mg/m²) on day 1 every 21 days for three cycles before surgery. The serum AFP level again decreased in association with tumor shrinkage (Figure 1D, E). Eight months after initial detection of the tumor, the patient underwent a tumorectomy combined with right upper lobectomy and tracheoplasty, given that the tumor was found to invade the adjacent right upper lobe and trachea at the time of surgery. Histopathologic examination of the surgical specimen revealed a solid tumor nest with massive necrosis. The tumor was relatively homogeneous throughout the resection, showing sheets of cells with a high nucleus-to-cytoplasm ratio. High-power magnification of the tumor revealed that the tumor cells manifested marked neu-

weight loss, or fever were not noted. He was a current

smoker, having smoked 20 cigarettes a day for 15 years.

Disclosure: The authors declare no conflict of interest.

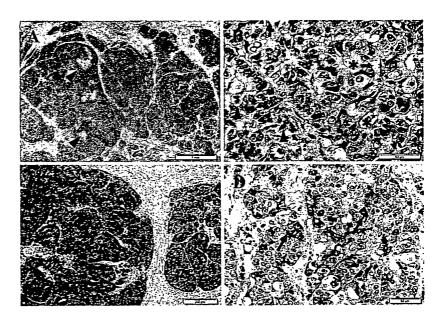
Copyright © 2008 by the International Association for the Study of Lung Cancer


Cancer

ISSN: 1556-0864/08/0302-0187

^{*}Department of Medical Oncology, Kinki University School of Medicine, Osaka; †Laboratory of Pathology, Toyama University Hospital, Toyama; †Division of Respirology; and §Division of Pathology, Rinku General Medical Center, Osaka, Japan.

Address for correspondence: Isamu Okamoto, MD, PhD, Department of Medical Oncology, Kinki University School of Medicine, 377-2 Ohnohigashi, Osaka-Sayama, Osaka 589-8511. E-mail: chi-okamoto@dotd.med.kindai.ac.jp


FIGURE 1. Chest computed tomography (CT) findings and serum AFP levels in the patient. A-D, Chest CT findings. A mass in the middle mediastinum was initially detected (A). The tumor had shrunk after three cycles of neoadiuvant chemotherapy (B), but its progression had resumed after the fourth cycle (C). The tumor shrank again in response to second-line chemotherapy (D). E, Time course of the serum concentration of AFP. The AFP level was initially increased, it decreased to within normal limits (dotted line) in association with tumor shrinkage during first-line chemotherapy, but it started to increase again after the third cycle. The serum, AFP level again decreased in association with tumor shrinkage during second-line chemotherapy.

roendocrine features, such as frequent rosette structures and trabecular arrangements, nuclear moldings, and prominent mitoses (Figure 2A, B). The tumor cells also had abundant nucleoli. Immunohistochemical analysis showed the tumor cells to be diffusely positive for CK7 and neuroendocrine markers including CD56, chromogranin A (Figure 2C), and synaptophysin as well as negative for CD5, CD30, human chorionic gonadotropin, placental alkaline phosphatase, hepatocyte antigen, and thyroid transcription factor-1. No re-

gions of the specimen showed features of a germ cell tumor or hepatoid carcinoma. On the basis of the morphology and staining characteristics of the tumor, a pathologic diagnosis of LCNEC was made. A small number of tumor cells showed subtle but unequivocal positive staining for AFP (Figure 2D). Thoracic radiotherapy was not able to be given because the patient suffered from thoracic empyema after surgery. Despite intensive chemotherapy, he died of extensive recurrence of carcinoma 4 months after the surgery.

FIGURE 2. Histology and immunohistochemical analysis of the tumor specimen obtained at surgery. A, Hematoxylin-eosin staining revealed solid tumor nests with areas of necrosis (arrow heads). Note the homogeneous appearance of the tumor. B, High-power magnification of the tumor stained as in (A), showing numerous rosettes (asterisk), abundant cytoplasm, chromatin clearing with occasionally prominent nucleoli, nuclear molding (arrows), and frequent mitosis (arrow heads). C, Immunohistochemical staining for chromogranin A revealed diffuse and intense cytoplasmic staining. D, Immunohistochemical staining for AFP, showing a focus of tumor cells positive for AFP (arrows). Scale bars: 1 mm, 50 μ .

DISCUSSION

LCNEC is a relatively new category of pulmonary neuroendocrine tumor, with affected individuals reported to have a prognosis intermediate between those with atypical carcinoid lung cancer and those with small cell lung cancer. 10 Recent clinical studies indicate a 5-year survival rate of 27 to 67% even if patients are at pathologic stage I.2-4 Since its original detection in the lung, LCNEC has been found in a variety of extrapulmonary locations including gastrointestinal sites and the uterine cervix.5-7 The present case was identified as LCNEC originating in the mediastinum. Given the age of the patient and the tumor location, a diagnosis of embryonal carcinoma was initially considered, but no morphologic or immunohistochemical features indicative of embryonal carcinoma were found on extensive pathologic analysis of the surgical specimen. Primary mediastinal LCNEC is an extremely rare disorder and has been described in only a few case reports to date.8-9

In the present case, the increased serum AFP level decreased in association with tumor shrinkage in response to chemotherapy, and the tumor was confirmed immunohistochemically to produce AFP. AFP is the main component of fetal serum in mammals. It is synthesized by visceral endoderm of the yolk sac and fetal liver, but expression of the AFP gene is greatly reduced at the time of birth. AFPproducing carcinoma has been recognized for decades and reported in various locations including the lung and mediastinum.11 In contrast to the present case, however, most cancers that produce AFP show morphologic features similar to hepatocellular carcinoma. With regard to neuroendocrine tumors, some case reports indicate that small cell carcinoma can also produce AFP.12,13 As far as we are aware, however, the present case is the first reported example of LCNEC producing AFP. Given that the concept of LCNEC is relatively new, this may not be that surprising, and previous reports of small cell carcinoma may actually have been diagnosed as LCNEC today. Our case raises the possibility that the origin of mediastinal neuroendocrine tumors including LCNEC may be mediastinal primordial germ cells. Examination of germ cell tumor markers in neuroendocrine tumors may shed light on this matter.

REFERENCES

- Travis WD, Linnoila RI, Tsokos MG, et al. Neuroendocrine turnors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 1991;15:529-553.
- Iyoda A, Hiroshima K, Toyozaki T, et al. Clinical characterization of pulmonary large cell neuroendocrine carcinoma and large cell carcinoma with neuroendocrine morphology. Cancer 2001;91:1992~2000.
- Takei H, Asamura H, Maeshima A, et al. Large cell neuroendocrine carcinoma of the lung: a clinicopathologic study of eighty-seven cases. J Thorac Cardiovasc Surg 2002;124:285-292.
- Travis WD, Rush W, Flieder DB, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 1998;22:934-944.
- Jiang SX, Mikami T, Umezawa A, et al. Gastric large cell neuroendocrine carcinomas: a distinct clinicopathologic entity. Am J Surg Pathol 2006;30:945-953.
- Selvakumar E, Vimalraj V, Rajendran S, et al. Large cell neuroendocrine carcinoma of the ampulla of Vater. Hepatobiliary Pancreat Dis Int 2006:5:465-467.
- Tangjitgamol S, Manusirivithaya S, Choomchuay N, et al. Paclitaxel and carboplatin for large cell neuroendocrine carcinoma of the uterine cervix. J Obstet Gynaecol Res 2007;33:218-224.
- Chetty R, Batitang S, Govender D. Large cell neuroendocrine carcinoma of the thymus. *Histopathology* 1997;31:274-276.
- Nagata Y, Ohno K, Utsumi T, et al. Large cell neuroendocrine thymic carcinoma coexisting within large WHO type AB thymoma. Jpn J Thorac Cardiovasc Surg 2006;54:256-259.
- Moran CA, Suster S. Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am J Clin Pathol 2000;114:100-110.
- Nasu M, Soma T, Fukushima H, et al. Hepatoid carcinoma of the lung with production of alpha-fetoprotein and abnormal prothrombin: an autopsy case report. Mod Pathol 1997;10:1054-1058.
- Morikawa T, Kobayashi S, Yamadori I, et al. Three cases of extrapulmonary small cell carcinoma occurring in the prostate, stomach, and pancreas. *Indian J Cancer* 1994;31:268-273.
- Yamaguchi T, Imamura Y, Nakayama K, et al. Paranuclear blue inclusions of small cell carcinoma of the stomach: report of a case with cytologic presentation in peritoneal washings. Acta Cytol 2005;49:207-212.

Synergistic antitumor effect of S-1 and the epidermal growth factor receptor inhibitor gefitinib in non-small cell lung cancer cell lines: role of gefitinib-induced down-regulation of thymidylate synthase

Takafumi Okabe,¹ Isamu Okamoto,¹ Sayaka Tsukioka,³ Junji Uchida,³ Tsutomu Iwasa,¹ Takeshi Yoshida,¹ Erina Hatashita,¹ Yuki Yamada,¹ Taroh Satoh,¹ Kenji Tamura,⁴ Masahiro Fukuoka,² and Kazuhiko Nakagawa¹

¹Department of Medical Oncology, Kinki University School of Medicine; ²Department of Internal Medicine, Kinki University School of Medicine, Sakai Hospital, Osaka, Japan; ³Tokushima Research Center, Taiho Pharmaceutical Co. Ltd., Tokushima, Japan; and ⁴Medical Oncology, National Cancer Center Hospital, Tokyo, Japan

Abstract

Somatic mutations in the epidermal growth factor receptor (EGFR) gene are associated with the therapeutic response to EGFR tyrosine kinase inhibitors (TKI) in patients with advanced non-small cell lung cancer (NSCLC). The response rate to these drugs remains low, however, in NSCLC patients with wild-type EGFR alleles. Combination therapies with EGFR-TKIs and cytotoxic agents are considered a therapeutic option for patients with NSCLC expressing wild-type EGFR. We investigated the antiproliferative effect of the combination of the oral fluorouracil S-1 and the EGFR-TKI gefitinib in NSCLC cells of differing EGFR status. The combination of 5-fluorouracil and gefitinib showed a synergistic antiproliferative effect in vitro in all NSCLC cell lines tested. Combination chemotherapy with S-1 and gefitinib in vivo also had a synergistic antitumor effect on NSCLC xenografts regardless of the absence or presence of EGFR mutations. Gefitinib inhibited the expression of the transcription factor E2F-1, resulting in the down-regulation of thymidylate synthase at the mRNA and protein levels. These observations suggest that gefitinib-induced down-regulation of thymidylate synthase is responsible, at least in part, for the synergistic antitumor effect of combined treatment with S-1 and gefitinib and provide a basis for clinical evaluation of combination chemotherapy with S-1 and EGFR-TKIs in patients with solid tumors. [Mol Cancer Ther 2008;7(3):599 – 606]

Introduction

Targeted therapy in the treatment of cancer has made substantial progress over the last few years. The ErbB family of receptor tyrosine kinases includes the epidermal growth factor receptor (EGFR; ErbB1), ErbB2 (HER2/neu), ErbB3, and ErbB4 and is important for normal development as a result of its roles in cell proliferation and differentiation (1-3). Aberrant expression of EGFR has been detected in a wide range of human epithelial malignancies, including non-small cell lung cancer (NSCLC), and is correlated with poor prognosis and reduced survival time (4, 5). Agents that specifically target EGFR are therefore under development as anticancer drugs. Indeed, two inhibitors of the tyrosine kinase activity of EGFR (EGFR-TKI), gefitinib and erlotinib, both of which compete with ATP for binding to the catalytic pocket of the receptor, have been extensively studied in individuals with NSCLC (6-9). Somatic mutations in the region of EGFR that encodes the tyrosine kinase domain have been associated with tumor responsiveness to EGFR-TKIs in a subset of NSCLC patients (10-17). In contrast, achievement of a clinical benefit of these drugs in NSCLC patients who express wildtype EGFR has been problematic.

S-1 (Taiho Pharmaceutical) is an oral anticancer agent composed of tegafur, 5-chloro-2,4-dihydroxypyridine (CDHP), and potassium oxonate in a molar ratio of 1:0.4:1 (18). Tegafur is a prodrug that generates 5-fluorouracil (5-FU) in blood largely as a result of its metabolism by cytochrome P450 in the liver. CDHP increases the plasma concentration of 5-FU through competitive inhibition of dihydropyrimidine dehydrogenase (DPD), which catalyzes 5-FU catabolism (19). Oxonate reduces the gastrointestinal toxicity of 5-FU (20). A response rate of 22% and a median survival time of 10.2 months were obtained in a clinical trial of S-1 in patients with advanced NSCLC not subjected previously to chemotherapy (21). Few severe gastrointestinal or hematologic adverse events were reported. Moreover, a phase II trial of S-1 plus cisplatin in NSCLC patients revealed a 47% response rate and an acceptable safety profile (22).

Based on this background, we examined the anticancer effect of the combination of S-1 and gefitinib in NSCLC cell lines of differing *EGFR* status. We found that the combination of S-1 (or 5-FU) and gefitinib exhibited a marked and synergistic antiproliferative effect both *in vivo*

Fax: 81-72-360-5000; E-mail: chi-okamoto@dotd.med.kindai.ac.jp.

Copyright © 2008 American Association for Cancer Research.

doi:10.1158/1535-7163.MCT-07-0567

Received 8/16/07; revised 10/24/07; accepted 1/25/08.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Requests for reprints: Isamu Okamoto, Department of Medical Oncology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511, Japan. Phone: 81-72-366-0221;

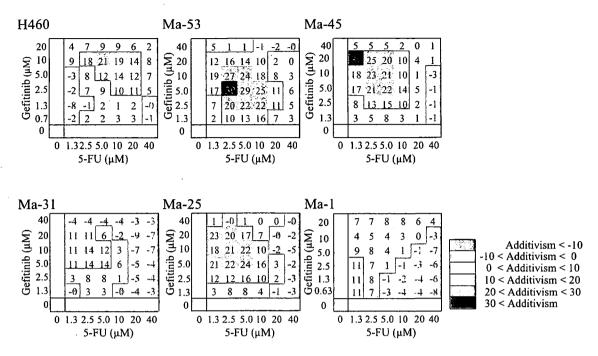


Figure 1. Inhibition of NSCLC cell growth by the combination of 5-FU and gefitinib in vitro. Cells with wild-type (H460, Ma-53, Ma-45, Ma-31, and Ma-25) or mutant (Ma-1) EGFR alleles were exposed for 72 h to 5-FU and gefitinib at the indicated concentrations, after which cell viability was measured with a colorimetric assay. The observed excess inhibition (%) relative to that predicted by the Bliss additivism model is shown color-coded in a drug concentration matrix for each cell line. Yellow, orange, pink, and red, synergy; light and dark blue, antagonism. Mean of triplicates from a representative experiment.

and in vitro in cells regardless of the absence or presence of EGFR mutations. Furthermore, we assessed the effects of gefitinib on the expression of enzymes that function in 5-FU metabolism, including thymidylate synthase (TS), DPD, and orotate phosphoribosyltransferase (OPRT), to gain insight into the mechanism underlying the synergistic effect of combination therapy with S-1 and gefitinib.

Materials and Methods

Cell Lines and Reagents

The human NSCLC cell lines NCI-H460 (H460), Ma-1, Ma-25, Ma-31, Ma-45, and Ma-53 were obtained as described previously (23). MiaPaca-2 cells were obtained from Japan Health Sciences Foundation. These cell lines were cultured under a humidified atmosphere of 5% CO₂ at 37°C in RPMI 1640 (Sigma) supplemented with 10% fetal bovine serum. Gefitinib was provided by AstraZeneca. S-1 and CDHP were provided by Taiho Pharmaceutical. 5-FU was obtained from Wako.

Growth Inhibition Assay In vitro

Cells (2.0×10^3) were plated in 96-well flat-bottomed plates and cultured for 24 h before the addition of various concentrations of 5-FU and gefitinib and incubation for an additional 72 h. Cell Counting Kit-8 solution (Dojindo) was then added to each well, and the cells were incubated for 3 h at 37°C before measurement of absorbance at 450 nm. Absorbance values were expressed as a percentage of that for untreated cells, and the concentration of 5-FU or gefitinib resulting in 50% growth inhibition (IC50) was

calculated. The effect of combining 5-FU and gefitinib was classified as additive, synergistic, or antagonistic with the Bliss additivism model (24-26). A theoretical curve was calculated for combined inhibition with the equation: $E_{\text{bliss}} = E_{\text{A}} + E_{\text{B}} - (E_{\text{A}} \times E_{\text{B}})$, where E_{A} and E_{B} are the fractional inhibitory effects of drug A alone and drug B alone at specific concentrations. $E_{\rm bliss}$ is then the fractional inhibition that would be expected if the effect of the combination of the two drugs was exactly additive. In this study, the Bliss variable is expressed as percentage decrease in cell growth above what would be expected for the combination. Bliss = 0 indicates that the effect of the combination is additive; Bliss > 0 is indicative of synergy; and Bliss < 0 indicates antagonism.

Animals

Male athymic nude mice were exposed to a 12-h light, 12-h dark cycle and provided with food and water ad libitum in a barrier facility. All experiments were done in compliance with the regulations of the Animal Experimentation Committee of Taiho Pharmaceutical.

Growth Inhibition Assay In vivo

Cubic fragments of tumor tissue ($\sim 2 \times 2 \times 2$ mm) were implanted s.c. into the axilla of 5- to 6-week-old male athymic nude mice. Treatment was initiated when tumors in each group achieved an average volume of 100 to 150 mm³. Treatment groups consisted of control, S-1 alone, gefitinib alone, and the combination of S-1 and gefitinib. Each treatment group contained seven mice. S-1 (10 mg/kg body mass) and gefitinib (50 or 3 mg/kg) were administered by oral gavage once a day for 14 days; control animals

received 0.5% (w/v) hydroxypropylmethylcellulose as vehicle. Tumor volume was determined from caliper measurements of tumor length (L) and width (W) according to the formula LW^2 / 2. Both tumor size and body weight were measured two or three times per week.

Immunoblot Analysis

Cell lysates were fractionated by SDS-PAGE on 12% gels (NuPAGE Bis-Tris Gels; Invitrogen), and the separated proteins were transferred to a nitrocellulose membrane. After blocking of nonspecific sites with 5% skim milk, the membrane was incubated overnight at room temperature with primary antibodies. Antibodies to DPD, OPRT, and TS were obtained from Taiho Pharmaceutical; those to E2F-1 were from Santa Cruz Biotechnology; and those to β-actin (loading control) were from Sigma. Immune complexes were detected by incubation of the membrane for 1 h at room temperature with horseradish peroxidase-conjugated goat antibodies to mouse or rabbit immunoglobulin and by subsequent exposure to enhanced chemiluminescence reagents (Pierce).

Immunoprecipitation Analysis

Immunoprecipitation of EGFR was done according to standard procedures. Whole-cell lysates (800 µg protein) were incubated overnight at 4°C with antibodies to EGFR (Santa Cruz Biotechnology), after which Protein G Plus/ Protein A-Agarose Suspension (Calbiochem) was added and the mixtures were incubated for an additional 1 h at 4°C. Immunoprecipitates were isolated, washed, resolved by SDS-PAGE on a 7.5% gel (Bio-Rad), and subjected to immunoblot analysis with antibodies to phosphotyrosine (PY20) and EGFR (Zymed).

Reverse Transcription and Real-time PCR Analysis

Total RNA (1 µg) extracted from cells with the use of an RNeasy Mini Kit (Qiagen) was subjected to reverse transcription with the use of a SuperScript Preamplification System (Invitrogen Life Technologies). The resulting cDNA was then subjected to real-time PCR analysis with the use of a TaqMan PCR Reagent Kit and a Gene Amp 5700 Sequence Detection System (Applied Biosystems). The forward and reverse primers and TaqMan probe for TS cDNA were 5-GCCTCGGTGTGCCTTTCA-3 and 5-CCCGTGATGTGCGCAAT-3 and 6-FAM-5'-TCGCCA-GCTACGCCCTGCTCA-3'-TAMRA, respectively. Glyceraldehyde-3-phosphate dehydrogenase mRNA were used as an internal standard.

Statistical Analysis

Data are presented as mean \pm SE and were analyzed by the Aspin-Welch t test. P < 0.05 was considered statistically significant.

Results

Effect of the Combination of 5-FU and Gefitinib on NSCLC Cell Growth In vitro

Tegafur, which is a component of S-1, is metabolized to 5-FU in the liver and exerts antitumor effects. We first examined the antiproliferative activity of the combination of 5-FU and gefitinib in six NSCLC cell lines. Five of the cell lines (H460, Ma-53, Ma-45, Ma-31, and Ma-25) possess wild-type EGFR alleles, whereas Ma-1 cells harbor an EGFR mutation (E746_A750del) that is associated with a high response rate to the EGFR-TKIs gefitinib and erlotinib in individuals with advanced NSCLC. We assessed

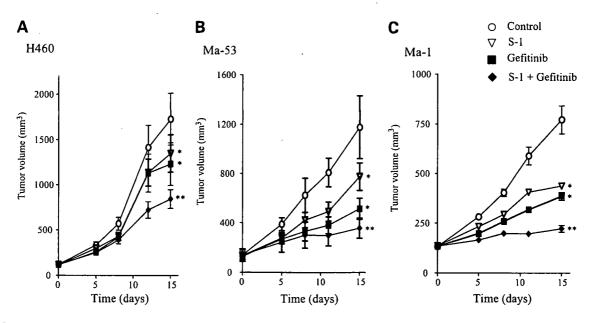


Figure 2. Antitumor activity of the combination of S-1 and gefitinib in vivo. A and B, nude mice with tumor xenografts established by s.c. implantation of NSCLC cells (H460 and Ma-53) possessing wild-type EGFR were treated daily for 2 wk with vehicle (control), S-1 (10 mg/kg), gefitinib (50 mg/kg), or both drugs by oral gavage. C, nude mice with tumor xenografts derived from NSCLC cells (Ma-1) expressing mutant EGFR were treated daily for 2 weeks with vehicle (control), S-1 (10 mg/kg), gefitinib (3 mg/kg), or both drugs by oral gavage. Tumor volume in all animals was determined at the indicated times after the onset of treatment. Mean ± SE of values from seven mice per group. *, P < 0.05 versus control; **, P < 0.05 versus S-1 or gefitinib alone for values 15 d after treatment onset (Aspin-Welch t test).

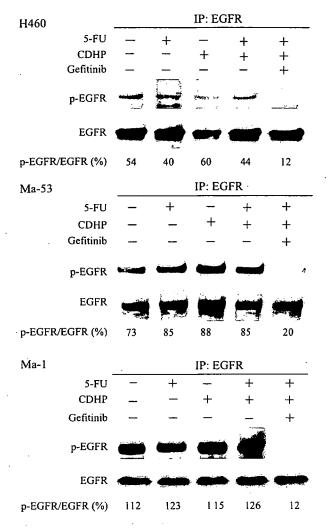


Figure 3. Lack of effect of 5-FU and CDHP on EGFR phosphorylation in NSCLC cell lines. NSCLC cells (H460, Ma-53, and Ma-1) were incubated for 24 h in medium supplemented with 2% fetal bovine serum and with 5-FU (10 μ mol/L), CDHP (3 μ mol/L), or gefitinib (5 μ mol/L). Cell lysates were then prepared and subjected to immunoprecipitation (IP) with antibodies to EGFR, and the resulting precipitates were subjected to immunoblot analysis with antibodies to phosphotyrosine (for detection of phosphorylated EGFR) and with antibodies to EGFR. The intensity of the phosphorylated EGFR band relative to that of the EGFR band was determined by densitometry and is expressed as a percentage below each

whether 5-FU and gefitinib showed additivity, synergy, or antagonism based on the Bliss additivism model (24-26). We chose this model rather than isobologram or combination index analysis because it would allow us to evaluate the nature of drug interactions even in instances in which the maximal inhibition by 5-FU or gefitinib alone was too low to obtain a reliable IC50 value. The six test concentrations for each agent were chosen after first determining the corresponding IC_{50} values. The IC_{50} values for 5-FU chemosensitivity were not associated with EGFR status and ranged from 7 to 11 µmol/L. The effect of combined treatment with 5-FU and gefitinib on the proliferation of the six NSCLC cell lines was tested in triplicate in a 6×6 concentration matrix. Calculation of the percentage inhibition in excess of that predicted by the Bliss additivism model revealed synergistic effects of Bliss > 0 for 5-FU and gefitinib in all of the six cell lines tested (Fig. 1). These results suggested that 5-FU and gefitinib act synergistically to inhibit cell growth in NSCLC cells.

Effect of Combined Treatment with S-1 and Gefitinib on NSCLC Cell Growth In vivo

We therefore next investigated whether combined treatment with S-1 and gefitinib might also exert a synergistic effect on NSCLC cell growth in vivo. Doses of both agents were selected so that their independent effects on tumor growth would be moderate. Nude mice were implanted s.c. with H460, Ma-53, or Ma-1 tumor fragments to establish tumor xenografts. When the H460 or Ma-53 tumors, which harbor wild-type EGFR, became palpable (100-150 mm³), the mice were divided into four groups for daily treatment with vehicle, S-1 (10 mg/kg), gefitinib (50 mg/kg), or both drugs by oral gavage over 2 weeks. For xenografts formed by H460 or Ma-53 cells, combination therapy with S-1 and gefitinib resulted in a significant reduction in tumor size compared with that apparent in animals treated with S-1 or gefitinib alone (Fig. 2A and B). Mice bearing Ma-1 tumors, which express mutant EGFR, were treated with vehicle, S-1 (10 mg/kg), gefitinib (3 mg/kg), or both agents daily over 2 weeks. Combination treatment with S-1 and gefitinib significantly inhibited the growth of Ma-1 xenografts relative to that apparent in mice treated with either agent alone (Fig. 2C). None of the drug treatments induced a weight loss of >20% during the 2-week period, and no signs of overt drug toxicity were apparent (data not shown). These results thus suggested that combination chemotherapy with S-1 and gefitinib in vivo had a synergistic antitumor effect on NSCLC xenografts regardless of the absence or presence of EGFR mutations, consistent with our results in vitro.

Effects of 5-FU and CDHP on EGFR Phosphorylation in NSCLC Cell Lines

To investigate the mechanism responsible for the observed interaction between S-1 and gefitinib, we examined the effect of 5-FU on EGFR signal transduction in NSCLC cells expressing wild-type (H460 and Ma-53) or mutant (Ma-1) EGFR. Immunoprecipitation analysis revealed that exposure of H460 or Ma-53 cells to 5-FU (10 µmol/L) for 24 h had no effect on the basal level of EGFR phosphorylation (Fig. 3). We have shown previously that EGFR is constitutively phosphorylated in Ma-1 cells maintained in serum-free medium (23). Exposure of Ma-1 cells to 5-FU for 24 h did not affect this constitutive level of EGFR phosphorylation (Fig. 3). We next examined the effects of both CDHP, which is a component of S-1, and the combination of CDHP and 5-FU on EGFR phosphorylation in H460, Ma-53, and Ma-1 cells. Neither CDHP alone nor the combination of CDHP and 5-FU affected the level of EGFR phosphorylation in any of these three cell lines (Fig. 3). These results thus indicated that 5-FU and CDHP have no effect on EGFR signal transduction.

Effects of Gefitinib on the Expression of DPD, OPRT, and TS in NSCLC Cell Lines

We next investigated whether gefitinib might affect the expression of DPD, OPRT, or TS, enzymes that are major determinants of the sensitivity of cells to 5-FU. We first examined the abundance of these enzymes in the NSCLC cell lines H460, Ma-53, and Ma-1 by immunoblot analysis. The expression of DPD was detected in MiaPaca-2 cells (positive control) but not in H460, Ma-53, or Ma-1 cells (Fig. 4A). In contrast, OPRT and TS were detected in all three NSCLC cell lines and their abundance did not appear related to EGFR status (Fig. 4A). Treatment of H460, Ma-53, or Ma-1 cells with gefitinib (5 μmol/L) for up to 48 h resulted in a time-dependent decrease in the amount of TS, whereas that of OPRT or DPD remained unaffected (Fig. 4B). A reduced level of TS expression in tumors has been associated previously with a higher response rate to 5-FU-based chemotherapy (27, 28). Our data thus suggested that the suppression of TS expression by gefitinib might increase the sensitivity of NSCLC cells to 5-FU.

The transcription factor E2F-1 regulates expression of the TS gene (29-31). We therefore examined the possible effect of gefitinib on E2F-1 expression in NSCLC cell lines. Incubation of H460, Ma-53, or Ma-1 cells with gefitinib for up to 48 h also induced a time-dependent decrease in the amount of E2F-1 (Fig. 4B), suggesting that this effect might contribute to the down-regulation of TS expression by gefitinib in these cell lines.

Effect of Gefitinib on TS mRNA Abundance in NSCLC **Cell Lines**

The abundance of TS mRNA would be expected to be decreased if the down-regulation of E2F-1 expression by gefitinib was responsible for the reduced level of TS. We determined the amount of TS mRNA in H460, Ma-53, or Ma-1 cells at various times after exposure to gefitinib with the use of reverse transcription and real-time PCR analysis. Gefitinib indeed induced a time-dependent decrease in the

amount of TS mRNA in all three NSCLC cell lines (Fig. 5), suggesting that the down-regulation of TS expression by gefitinib occurs at the transcriptional level and may be due to suppression of E2F-1 expression.

Discussion

The recent identification of activating somatic mutations of EGFR in NSCLC and their relevance to prediction of the therapeutic response to EGFR-TKIs such as gefitinib and erlotinib have had a major effect on NSCLC treatment (10-17). The response rate to these drugs remains low, however, in NSCLC patients with wild-tye EGFR alleles. Combination therapy with EGFR-TKIs and cytotoxic agents is a potential alternative strategy for NSCLC expressing wild-type EGFR. In the present study, we have evaluated the potential cooperative antiproliferative effect of combined treatment with the EGFR-TKI gefitinib and the new oral fluorouracil S-1 in NSCLC cell lines of differing EGFR status. We found that S-1 (or 5-FU) and gefitinib exert a synergistic antiproliferative effect on NSCLC cells both in vivo and in vitro regardless of the absence or presence of EGFR mutation. We chose a gefitinib dose of 50 mg/kg for treatment of mice bearing H460 or Ma-53 tumors. The median effective dose of gefitinib was shown previously to be ~50 mg/kg in athymic nude mice bearing A431 cellderived xenografts (32). A gefitinib dose of 50 mg/kg has therefore subsequently been widely used in tumor xenograft studies (33-36). The U.S. Food and Drug Administration recommends that drug doses in animals be converted to those in humans based on body surface area (37). According to this guideline, a gefitinib dose of 50 mg/kg in mouse xenograft models is approximately equivalent to the therapeutic dose (250 mg/d) of the drug in humans. In addition, the tumor concentrations of gefitinib in NSCLC xenografts of mice treated with this drug (50 mg/kg) ranged from 9.7 to 13.3 μg/g, values that were similar to the

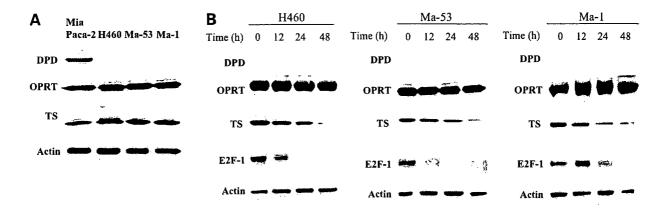


Figure 4. Effects of gefitinib on the expression of E2F-1, DPD, OPRT, and TS in NSCLC cell lines. A, lysates of H460, Ma-53, or Ma-1 cells were subjected to immunoblot analysis with antibodies to DPD, OPRT, TS, or β -actin (loading control). MiaPaca-2 cells were also examined as a positive control for DPD expression. B, NSCLC cells were incubated with gefitinib (5 µmol/L) for the indicated times in medium containing 10% serum, after which cell lysates were subjected to immunoblot analysis as in A, with the addition that E2F-1 expression was also examined.

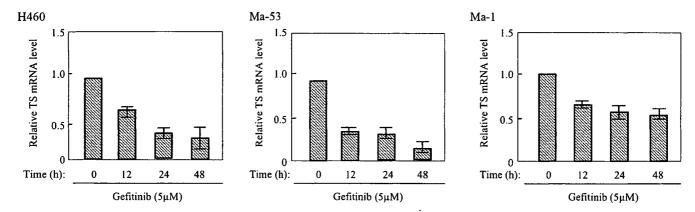


Figure 5. Down-regulation of TS mRNA by gefitinib in NSCLC cell lines. H460, Ma-53, or Ma-1 cells were incubated with gefitinib (5 μmol/L) for the indicated times in medium containing 10% serum, after which total RNA was extracted from the cells and subjected to reverse transcription and real-time PCR analysis of TS mRNA. The amount of TS mRNA was normalized by that of glyceraldehyde-3-phosphate dehydrogenase mRNA. Mean ± SE of values from three separate experiments.

achievable concentrations of gefitinib in tumor tissues of treated humans (34). These observations suggest that a gefitinib dose of 50 mg/kg in mouse xenograft models is appropriate for mimicking the therapeutic dose in humans.

EGFR-TKIs have been shown previously to act synergistically with radiation or cytotoxic agents such as cisplatin, paclitaxel, and irinotecan (38-40). These cytotoxic agents and radiation have been shown to increase the phosphorylation level of EGFR, possibly reflecting the activation of prosurvival signaling, and this effect is blocked by EGFR-TKIs, resulting in the synergistic antitumor effects of the combination therapies. Such a synergistic effect of 5-FU and gefitinib was attributed to 5-FU-induced EGFR phosphorylation in colorectal cancer cells (41). In contrast, we found that 5-FU had no effect on the level of EGFR phosphorylation in NSCLC cell lines. Further examination of different concentrations of 5-FU and different exposure times also failed to reveal an effect of 5-FU on EGFR phosphorylation in these cells (data not shown). These findings indicate that NSCLC cell lines respond differently to 5-FU than do colorectal cancer cells and that the synergistic antiproliferative effect of 5-FU and gefitinib in NSCLC cells is not mediated at the level of EGFR phosphorylation.

Our results indicate that the synergistic interaction of 5-FU (or S-1) and gefitinib is attributable, at least in part, to down-regulation of TS expression by gefitinib. The active metabolite of 5-FU, FdUMP, forms a covalent ternary complex with 5,10-methylenetetrahydrofolate and TS, resulting in inhibition of DNA synthesis (42). TS is thus an important therapeutic target of 5-FU. The amount of TS in neoplastic cells has been found to increase after exposure to 5-FU, resulting in the maintenance of free enzyme in excess of that bound to 5-FU (43-47). Such an increase in TS expression and activity has been viewed as a mechanistic driver of 5-FU resistance in cancer cells (48-50). The development of a new therapeutic strategy that reduces TS expression would therefore be of interest. Indeed, preclinical studies have shown that the down-regulation of TS by antisense oligonucleotides or other means enhances the efficacy of 5-FU (51–54). Down-regulation of TS would be expected to enhance the cytotoxicity of 5-FU as a result of the decrease in the amount of its protein target (55). Consistent with these preclinical data, an inverse relation between TS expression and 5-FU sensitivity has been shown in various human solid tumors (27, 28, 56–60). We have now shown that gefitinib alone induced down-regulation of TS expression, suggesting that this effect of gefitinib contributes to its synergistic interaction with 5-FU (or S-1) in NSCLC cell lines.

We further explored the molecular mechanism by which gefitinib induces down-regulation of TS expression in NSCLC cells. Given that EGFR signal transduction has been shown to be involved in activity of E2F-1 that regulates the expression of several genes including TS (61, 62), which controls the expression of several genes including that for TS, we examined the possible effects of gefitinib on E2F-1 expression and on the abundance of TS mRNA. Gefitinib induced down-regulation of E2F-1 in NSCLC cell lines harboring wild-type EGFR, consistent with previous observations (63), as well as in those expressing mutant EGFR. In addition, gefitinib reduced the amount of TS mRNA in NSCLC cells, consistent with the notion that the suppression of TS expression by gefitinib is attributable to inhibition of gene transcription as a result of down-regulation of E2F-1. For our experiments examining the effects of gefitinib on TS and E2F-1 expression, we used a drug concentration of 5 µmol/L. The concentration of gefitinib in tumor xenografts was shown previously to be 5 to 14 times that in the plasma concentration of the mouse hosts (34). Daily oral administration of gefitinib (250 mg) in patients also gave rise to a drug concentration in tumor tissue that was substantially higher (mean, 42-fold) than that in plasma concentration (34). We showed previously that the maximal concentration of gefitinib in the plasma of patients with advanced solid tumors had a mean value of 0.76 µmol/L at a daily dose of 225 mg (64). Based on these data, we considered that a gefitinib concentration of 5 µmol/L was appropriate for our analyses of TS and E2F-1 expression. Together, our present findings suggest that down-regulation of E2F-1 and consequently that of TS by gefitinib is responsible, at least in part, for the synergistic antitumor effect of combined treatment with S-1 and gefitinib.

Somatic mutations of EGFR have been associated with sensitivity to EGFR-TKIs in patients with advanced NSCLC (13-16). However, although most NSCLCs with EGFR mutations initially respond to EGFR-TKIs, the vast majority of these tumors ultimately develop resistance to the drug. In the present study, the synergistic effect of combination chemotherapy with S-1 and gefitinib was observed even in EGFR mutant cells. Our findings thus suggest that the addition of S-1 (or 5-FU) to EGFR-TKIs might overcome chemoresistance to EGFR-TKIs and that exploration of the effect of such combination therapy in cells resistant to EGFR-TKIs is warranted. EGFR mutations appear to be largely limited to lung cancer, with few such mutations having been detected in other types of cancer (65-67). 5-FU is widely used as an anticancer agent and is considered a key drug in chemotherapy for solid tumors such as gastrointestinal and cervical cancer (68-70). Our present results show that gefitinib suppressed the expression of TS in NSCLC cell lines regardless of the absence or presence of EGFR mutations, suggesting that the addition of EGFR-TKIs to a 5-FU-containing regimen might increase the effectiveness of such treatment for solid cancers without EGFR mutations. Oral combined chemotherapy with drugs, such as S-1 and gefitinib, may also prove to be of low toxicity and therefore maintain quality of life. Our preclinical results provide a basis for future clinical investigations of combination chemotherapy with S-1 and EGFR-TKIs in patients with solid tumors.

References

- 1. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene 2000;19:6550 - 65.
- 2. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103:211 - 25.
- 3. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005;5:341 - 54.
- 4. Hirsch FR, Varella-Garcia M, Bunn PA, Jr., et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 2003;21:3798 - 807.
- 5. Suzuki S, Dobashi Y, Sakurai H, Nishikawa K, Hanawa M, Ooi A. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer 2005;103:1265 - 73.
- 6. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced nonsmall-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 2003;
- 7. Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 2004;22:3238 - 47.
- 8. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer; results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005;366:1527 - 37.
- 9. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005;353:

- 10. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-smallcell lung cancer to gefitinib. N Engl J Med 2004;350:2129 - 39.
- 11. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304: 1497 - 500.
- 12. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004:101:13306 - 11.
- 13. Mitsudomi T. Kosaka T. Endoh H. et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 2005;23:2513 - 20.
- 14. Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol 2005;23: 6829 – 37.
- 15. Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005;23: 2493 - 501.
- 16. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancermolecular and clinical predictors of outcome. N Engl J Med 2005;353:
- 17. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res 2005;11:1167 - 73.
- 18. Shirasaka T, Shimamoto Y, Fukushima M. Inhibition by oxonic acid of gastrointestinal toxicity of 5-fluorouracil without loss of its antitumor activity in rats. Cancer Res 1993;53:4004 - 9.
- 19. Tatsumi K, Fukushima M, Shirasaka T, Fujii S. Inhibitory effects of pyrimidine, barbituric acid and pyridine derivatives on 5-fluorouracil degradation in rat liver extracts. Jpn J Cancer Res 1987;78:748 - 55.
- 20. Shirasaka T, Shimamato Y, Ohshimo H, et al. Development of a novel form of an oral 5-fluorouracil derivative (S-1) directed to the potentiation of the tumor selective cytotoxicity of 5-fluorouracil by two biochemical modulators. Anticancer Drugs 1996;7:548 - 57.
- 21. Kawahara M, Furuse K, Segawa Y, et al. Phase II study of S-1, a novel oral fluorouracil, in advanced non-small-cell lung cancer. Br J Cancer 2001;85:939 - 43.
- 22. Ichinose Y, Yoshimori K, Sakai H, et al. S-1 plus cisplatin combination chemotherapy in patients with advanced non-small cell lung cancer: a multi-institutional phase II trial. Clin Cancer Res 2004;10:7860 - 4.
- 23. Okabe T, Okamoto I, Tamura K, et al. Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res 2007;67:2046 - 53.
- 24. Berenbaum MC. Criteria for analyzing interactions between biologically active agents. Adv Cancer Res 1981;35:269 - 335.
- 25. Borisy AA, Elliott PJ, Hurst NW, et al. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci U S A 2003;100:7977 -82. Epub 2003 Jun 10.
- 26. Buck E, Eyzaguirre A, Brown E, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 2006;5:2676 - 84.
- 27. Ichikawa W, Uetake H, Shirota Y, et al. Combination of dihydropyrimidine dehydrogenase and thymidylate synthase gene expressions in primary tumors as predictive parameters for the efficacy of fluoropyrimidine-based chemotherapy for metastatic colorectal cancer. Clin Cancer Res 2003:9:786 ~ 91.
- 28. Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6:1322 - 7.
- 29. DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 1995;15:4215-24.
- 30. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998;12:2245 - 62.
- 31. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002;3:11 - 20.

- 32. Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa); an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002;62:5749 - 54.
- 33. Matar P. Rojo F. Cassia R. et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over singleagent receptor targeting. Clin Cancer Res 2004;10:6487-501.
- 34. McKillop D, Partridge EA, Kemp JV, et al. Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther 2005;4:641 - 9.
- 35. Zhang X, Chen ZG, Choe MS, et al. Tumor growth inhibition by simultaneously blocking epidermal growth factor receptor and cyclo-oxygenase-2 in a xenograft model. Clin Cancer Res 2005;11:6261 – 9.
- 36. Haura EB, Zheng Z, Song L, Cantor A, Bepler G, Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res 2005;11:8288 - 94.
- 37. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry, estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers; 2005. p. 1 - 27.
- 38. Koizumi F, Kanzawa F, Ueda Y, et al. Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib ("Iressa") and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 2004;108:464 - 72.
- 39. Chinnaiyan P, Huang S, Vallabhaneni G, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res 2005;65:3328 - 35.
- 40. Van Schaeybroeck S, Kyula J, Kelly DM, et al. Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non-small cell lung cancer cells. Mol Cancer Ther 2006;5:1154 - 65.
- 41. Van Schaeybroeck S, Karaiskou-McCaul A, Kelly D, et al. Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clin Cancer Res 2005;11:7480 - 9.
- 42. Peters GJ, van der Wilt CL, van Triest B, et al. Thymidylate synthase and drug resistance. Eur J Cancer 1995;31A;1299 - 305.
- 43. Spears CP, Shahinian AH, Moran RG, Heidelberger C, Corbett TH. In vivo kinetics of thymidylate synthetase inhibition of 5-fluorouracilsensitive and -resistant murine colon adenocarcinomas. Cancer Res
- 44. Washtien WL. Increased levels of thymidylate synthetase in cells exposed to 5-fluorouracil. Mol Pharmacol 1984;25:171 - 7.
- 45. Spears CP, Gustavsson BG, Berne M, Frosing R, Bernstein L, Hayes AA. Mechanisms of innate resistance to thymidylate synthase inhibition after 5-fluorouracil, Cancer Res 1988;48;5894 - 900.
- 46. Swain SM, Lippman ME, Egan EF, Drake JC, Steinberg SM, Allegra CJ. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. J Clin Oncol 1989;7:890 - 9.
- 47. Chu E, Zinn S, Boarman D, Allegra CJ. Interaction of γ interferon and 5-fluorouracil in the H630 human colon carcinoma cell line. Cancer Res 1990:50:5834 - 40.
- 48. Johnston PG, Drake JC, Trepel J, Allegra CJ. Immunological quantitation of thymidylate synthase using the monoclonal antibody TS 106 in 5-fluorouracil-sensitive and -resistant human cancer cell lines. Cancer Res 1992;52:4306 - 12.
- 49. Copur S, Aiba K, Drake JC, Allegra CJ, Chu E. Thymidylate synthase gene amplification in human colon cancer cell lines resistant to 5-fluorouracil. Biochem Pharmacol 1995;49:1419 - 26.
- 50. Kawate H, Landis DM, Loeb LA. Distribution of mutations in human thymidylate synthase yielding resistance to 5-fluorodeoxyuridine. J Biol Chem 2002;277:36304-11. Epub 2002 Jul 29.
- 51. Hsueh CT, Kelsen D, Schwartz GK. UCN-01 suppresses thymidylate synthase gene expression and enhances 5-fluorouracil-induced apoptosis in a sequence-dependent manner. Clin Cancer Res 1998;4:2201 - 6.

- 52. Ju J. Kane SE, Lenz HJ. Danenberg KD, Chu E. Danenberg PV. Desensitization and sensitization of cells to fluoropyrimidines with different antisenses directed against thymidylate synthase messenger RNA. Clin Cancer Res 1998;4:2229 - 36.
- 53. Lee JH, Park JH, Jung Y, et al. Histone deacetylase inhibitor enhances 5-fluorouracil cytotoxicity by down-regulating thymidylate synthase in human cancer cells. Mol Cancer Ther 2006;5:3085 - 95.
- 54. Wada Y, Yoshida K, Suzuki T, et al. Synergistic effects of docetaxel and S-1 by modulating the expression of metabolic enzymes of 5fluorouracil in human gastric cancer cell lines. Int J Cancer 2006;119: 783 - 91
- 55. Ferguson PJ. Collins O. Dean NM, et al. Antisense down-regulation of thymidylate synthase to suppress growth and enhance cytotoxicity of 5-FUdR, 5-FU and Tomudex in HeLa cells. Br J Pharmacol 1999;127:
- 56. Aaronson SA. Growth factors and cancer. Science 1991;254: 1146 - 53.
- 57. Johnston PG, Lenz HJ, Leichman CG, et al. Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors. Cancer Res 1995; 55-1407 - 12
- 58. Leichman CG, Lenz HJ, Leichman L, et al. Quantitation of intratumoral thymidylate synthase expression predicts for disseminated colorectal cancer response and resistance to protracted-infusion fluorouracil and weekly leucovorin. J Clin Oncol 1997;15:3223-9.
- 59. Pestalozzi BC, Peterson HF, Gelber RD, et al. Prognostic importance of thymidylate synthase expression in early breast cancer. J Clin Oncol 1997:15:1923 - 31.
- 60. Johnston PG, Mick R, Recant W, et al. Thymidylate synthase expression and response to neoadjuvant chemotherapy in patients with advanced head and neck cancer. J Natl Cancer Inst 1997;89:308 - 13.
- 61. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC. Coregulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 2006;45:10 - 7.
- 62. Ginsberg D. EGFR signaling inhibits E2F1-induced apoptosis in vivo: implications for cancer therapy. Sci STKE 2007;pe4.
- 63. Suenaga M, Yamaguchi A, Soda H, et al. Antiproliferative effects of gefitinib are associated with suppression of E2F-1 expression and telomerase activity. Anticancer Res 2006;26:3387 - 91.
- 64. Nakagawa K. Tamura T. Negoro S. et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib ("Iressa," ZD1839) in Japanese patients with solid malignant tumors. Ann Oncol 2003;14:922 - 30.
- 65. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med 2004;351:2883.
- 66. Lee JW, Soung YH, Kim SY, et al. Absence of EGFR mutation in the kinase domain in common human cancers besides non-small cell lung cancer. Int J Cancer 2005;113:510 - 1.
- 67. Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer 2006;118: 257 - 62.
- 68. Herskovic A, Martz K, al-Sarraf M, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med 1992;326:1593-8.
- 69. Vanhoefer U. Rougier P. Wilke H. et al. Final results of a randomized phase III trial of sequential high-dose methotrexate, fluorouracil, and doxorubicin versus etoposide, leucovorin, and fluorouracil versus infusional fluorouracil and cisplatin in advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cancer Cooperative Group. J Clin Oncol 2000;18:2648-57.
- 70. Gibson MK, Li Y, Murphy B, et al. Randomized phase III evaluation of cisplatin plus fluorouracil versus cisplatin plus paclitaxel in advanced head and neck cancer (E1395); an Intergroup Trial of the Eastern Cooperative Oncology Group. J Clin Oncol 2005;23:3562 - 7.

ORIGINAL PAPER

Epidermal growth factor receptor gene amplification and gefitinib sensitivity in patients with recurrent lung cancer

Hidefumi Sasaki · Katsuhiko Endo · Katsuhiro Okuda · Osamu Kawano · Naoto Kitahara · Hisaichi Tanaka · Akihide Matsumura · Keiji Iuchi · Minoru Takada · Masaaki Kawahara · Tomoya Kawaguchi · Haruhiro Yukiue · Tomoki Yokoyama · Motoki Yano · Yoshitaka Fujii

Received: 1 August 2007 / Accepted: 21 September 2007 © Springer-Verlag 2007

Abstract To evaluate the epidermal growth factor receptor (EGFR) protein expression, gene mutations and amplification as predictors of clinical outcome in patients with non-small-cell lung cancer (NSCLC) receiving gefitinib, we have performed fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We investigated the EGFR amplification and EGFR protein expression statuses in 27 surgically treated non-small-cell lung cancer (NSCLC) cases. These patients experienced relapse after surgery and received gefitinib 250 mg/day. The presence or absence of EGFR mutations of kinase domains was analyzed by genotyping analysis and sequences, and already reported. EGFR mutations were found from 15/27 lung cancer patients. EGFR mutation status was significantly correlated with better prognosis (log-rank test P = 0.0023). Smoking status (never smoker vs. smoker, P = 0.0032), and pathological subtypes (adenocarcinoma vs. non-adenocarcinoma, P = 0.0011), but not EGFR amplification (P = 0.1278), were correlated with survival of lung cancers. EGFR IHC results were correlated with FISH results (P = 0.0125), but not correlated with

(P = 0.7921). Thus, the EGFR gene amplification or protein expression is not a predictor of gefitinib efficacy in Japanese patients with NSCLC. We have also evaluated the EGFR mutation status and clinico-pathological features for 27 NSCLC patients who had undergone surgery followed by treatment with gefitinib at the National Hospital Organization, Kinki-chuo Chest Medical Center. The EGFR mutation status, especially exon19 mutation was correlated with good response to gefitinib than exon 21 point mutation.

Keywords EGFR · Lung cancer · Mutations · Amplification · Exon 19

Introduction

Lung cancer is a major cause of death from malignant diseases, due to its high incidence, malignant behavior and lack of major advancements in treatment strategy (Ginsberg et al. 1993). There are much accumulated evidences that epidermal growth factor receptor (EGFR) and its family member are strongly implicated in the development and progression of numerous human tumors, including lung cancer (Nicolson et al. 2001; Onn et al. 2004). The EGFR tyrosine kinase inhibitor, gefitinib, was approved in Japan for the treatment of non-small-cell lung cancer (NSCLC) since 2002. Phase II and III trials have shown partial responses in 8-12% of unselected patients with progressive NSCLC after chemotherapy (Kris et al. 2003; Thatcher et al. 2005), especially higher response in never smokers, females and Asian ethnicity (more than 20%) (Fukuoka et al. 2003; Miller et al. 2004). Two original reports showed that EGFR mutations status at ATP binding pockets in NSCLC patients was correlated with the clinico-pathological features related

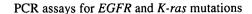
1 Kawasumi, Mizuho-cho, Mizuho-ku,

Nagoya 467-8601, Japan e-mail: hisasaki@med.nagoya-cu.ac.jp

N. Kitahara · H. Tanaka · A. Matsumura · K. Iuchi Department of Surgery, Kinki-chuo Chest Medical Center, Sakai, Japan

M. Takada · M. Kawahara · T. Kawaguchi Department of Internal Medicine, Kinki-chuo Chest Medical Center, Sakai, Japan

H. Sasaki (⋈) · K. Endo · K. Okuda · O. Kawano · H. Yukiue · T. Yokoyama · M. Yano · Y. Fujii Department of Surgery II, Nagoya City University Medical School,


to good response to gefitinib (Paez et al. 2004; Lynch et al. 2004). These EGFR mutations were predominantly found in Japanese lung cancer patients (about 25-40%) (Paez et al. 2004; Kosaka et al. 2004; Shigematsu et al. 2005; Tokumo et al. 2005; Endo et al. 2005) when compared to USA patients (about 8-10%) (Paez et al. 2004; Lynch et al. 2004; Shigematsu et al. 2005; Pao et al. 2004) or European patients (Shigematsu et al. 2005; Marchetti et al. 2005). Actually, EGFR mutations in lung cancer have been correlated with clinical response to gefitinib therapy (Paez et al. 2004; Lynch et al. 2004; Pao et al. 2004; Mitsudomi et al. 2005). On the other hands, Cappuzzo et al. (2005) reported that EGFR amplification by fluorescence in situ hybridization (FISH) and high EGFR protein expression has been associated with responsiveness to gefitinib. Takano et al. (2005) showed that both EGFR gene mutation and increased copy numbers predicted gefitinib sensitivity in patients with recurrent NSCLC. However, this Japanese report is based on polymerase chain reaction (PCR) assay.

To determine the EGFR amplification and EGFR mutation statuses and correlation with clinico-pathological features in Japanese gefitinib-treated lung carcinoma, we retrospectively performed FISH and immunohistochemistry. The findings were compared to the clinico-pathologic features of lung cancer.

Materials and methods

Patients and samples

This was a retrospective study and the study group included 27 lung cancer patients who were treated with gefitinib for their recurrent diseases after they had undergone surgery at the Department of Surgery II, Nagoya City University Medical School. Written informed consent was obtained and the institutional ethics committee of the Nagoya City University Medical School approved the study. We have also investigated EGFR mutation status for 27 NSCLC patients who were treated with gefitinib for their recurrent diseases after they had undergone surgery at the National Hospital Organization, Kinki-chuo Chest Medical Center (Endo et al. 2005). The lung tumors were classified according to the general rule for clinical and pathological record of lung cancer in Japan. All tumor samples were immediately frozen and stored at -80°C until assayed. The clinical and pathological characteristics of the 27 lung cancer patients are as follows; 14 (67.7%) were male and 13 were female. Twenty-two (63%) were diagnosed as adenocarcinoma, and five were diagnosed as other types of carcinoma. Fourteen (52%) were never smokers and 13 were smokers.

Genomic DNA was extracted using Wizard SV Genomic DNA purification Systems (Promega) according to the manufacturers' instructions. The primers and TaqMan MGB probe were designed with Primer Express 2.0 software (Applied Biosystems). The sequences of 13 allelespecific probes and primer sets used in the TaqMan PCR assay are already shown (Endo et al. 2005). The results of TaqMan PCR assays were already reported (Endo et al. 2005). K-ras codon 12/13 mutation status was investigated by direct sequencing using the primers reported by Krypuy et al. (2006). Total RNA was extracted from the lung cancer tissues using Isogen kit (Nippon gene, Tokyo, Japan) according to the manufacturers' instructions. RNA (1 µg) was reverse transcribed by Superscript II enzyme (Gibco BRL, Gaithersburg, MD, USA) with 0.5 μg oligo (dT)₁₂₋₁₆ (Amersham Pharmacia Biotech Inc. Piscataway, NJ, USA). The direct sequencing for EGFR genes was performed from genomic DNA (Paez et al. 2004) or cDNA (Sasaki et al. 2006). Some cases were genotyped using LightCycler (Sasaki et al. 2005) and confirmed.

FISH analysis

Tumor specimens were obtained at surgical operation and embedded in paraffin. Serial sections (6 µm) containing representative malignant cell were stained with hematoxylin and eosin. Gene copy number per cell was investigated by FISH using the LSI EGFR SpectrumOrange/CEP 7 SpectrumGreen probe (Vysis, Abbott laboratories, IL, USA) according to a published protocol (Hirsch et al. 2003). Sections were incubated at 56°C overnight, deparaffinized and dehydrated. After incubation in 2× saline sodium citrate buffer (2× SSC; pH 7.0) at 75°C for 15-25 min, sections were digested with protein K (0.25 mg/ml in $2 \times$ SSC; pH 7.0) at 37°C for 15-25 min, rinsed in $2 \times$ SSC at room temperature for 5 min, and dehydrated using ethanol in a series of increasing concentrations. The EGFR/CEP 7 probe set was applied per the manufacture's instructions onto the selected area based on the presence of tumor foci on each slide. The slides were incubated at 80°C for 8-10 min for codenaturation of chromosomal and probe DNA and then placed in a humidified chamber at 37°C for 20-24 h to allow hybridization to occur. Post hybridization washes were performed in 1.5 M urea and $0.1 \times SSC$ at 45°C for 30 min and in $2 \times SSC$ for 2 min at room temperature. Pathologist who was blinded to the patients' clinical characteristics and all other molecular variables performed FISH analysis independently. Patients were classified according to the Cappuzzo et al. (2005) criteria with ascending number of copies of the EGFR gene

per cell and the frequency of tumor cells with specific number of copies of the EGFR gene and chromosome 7 centromere: high polysomy (≥ 4 copies in $\geq 40\%$ of cells) and gene amplification (defined by presence of tight EGFR gene clusters and a ratio of EGFR gene to chromosome of ≥ 2 or \geq copies of EGFR per cell in $\geq 10\%$ of analyzed cells) were considered as FISH positive. Disomy (≤ 2 copies in $\geq 90\%$ of cells); low trisomy (≤ 2 copies in $\geq 40\%$ of cells, 3 copies in 10-40% of cells, 4 \geq copies in $\leq 40\%$ of cells); high trisomy (≤ 2 copies in $\leq 40\%$ of cells, 3 copies in $\leq 40\%$ of cells, ≤ 4 copies in $\leq 40\%$ of cells) and low polysomy (≤ 4 copies in $\leq 40\%$ of cells) were considered as FISH negative.

Immunohistochemistry

EGFR protein expression was evaluated by immunohistochemistry using the mouse anti-human EGFR, clone 2-18C9 monoclonal antibody (Dako NorthAmerica, Inc., Via Real, Carpinteria, CA, USA). Four micrometer sections were made from paraffin tissue blocks from lung tumors. The slides were treated with xylenes, and then dehydrated in alcohol. After treated with proteinase K for 5 min, endogenous peroxidase was blocked with Peroxidase (H2O2) Block. After washed with Wash Buffer (Dako NorthAmerica Inc., USA), the slides were incubated with the monoclonal antibody against EGFR (ready-to use) for 30 min at room temperature. Labeled Polymer, HRP (30 min) and 3,3-diaminobenzidine (DAB) substrate (10 min) were used to visualize the antibody binding, and the sections were counterstained with hematoxylin. The intensity score was defined according to Cappuzzo et al. (2005); 1 = barely detectable, 2 = readily appreciable brown staining, 3 = dark brown staining, 4 = very strong staining. The total score was calculated by multiplying the intensity score and the fraction score (positive cells; 0-100%). Scores of 201-400 were considered positive.

Statistical methods

Statistical analyses were done using the Mann-Whitney U test for unpaired samples and Wilcoxon's signed rank test for paired samples. Linear relationships between the variables were determined by means of simple linear regression. Correlation coefficients were determined by rank correlation using Spearman's test and χ^2 test. The overall survival of lung cancer patients was examined by the Kaplan-Meier methods, and differences were examined by the log-rank test. All analyses were done using the Stat-View software package (Abacus Concepts Inc. Berkeley, CA, USA), and were considered significant when the P-value was less than 0.05.

Results

EGFR gene copy number and clinical outcome

First we assessed EGFR copy number by FISH according to Cappuzzo et al. criteria (2005). High polysomy for the EGFR gene was present in 44.4% (n=12), and low polysomy in 11.1% (n=3) (Fig.1). However no association was observed between gene amplification and clinical characteristics (Table 1). Smoking status (never smoker vs. smoker, P=0.1283), pathological subtypes (adenocarcinoma vs. non-adenocarcinoma, P=0.6280), or gender (male vs. female, P=0.2519) did not correlate with the EGFR amplification status. FISH positive results were obtained in 40% of the patients with EGFR mutations. Three other patients with EGFR mutations had low polysomy.

A partial response (PR) was achieved in 14 patients, 5 patients had stable disease (SD), and 8 had progressive disease (PD). EGFR amplification status was not associated with gefitinib response (P = 0.7036). EGFR amplification status was not significantly correlated with prognosis (logrank test, P = 0.1278; Breslow-Gehan-Wilcoxon test, P = 0.0528) (Fig. 2).

EGFR protein expression and clinical outcome

EGFR protein expression was evaluated by immunohistochemisry (Fig. 3) and the outcome of patients according to the protein score is shown in Fig. 2. Patients with EGFR immunohistochemistry positive (n = 13) did not have any advantage for outcomes after treated with gefitinib therapy (P = 0.7921).

EGFR gene mutation status in Japanese lung cancer patients


Among 27 patients, 15 had EGFR mutations, including four deletion 1a type mutations (2235-2249 del GGAATTAA GAGAAGC), two other types of exon 19 deletion mutations and six L858R mutations. Interestingly, exon 20 insertion mutant patients experienced progressive disease (manuscript submitted). We also compared associations between EGFR mutation status, FISH status, and protein expression in each tumor with patient's outcome. Summarized data are shown in Table 2. The overall survival of 27 gefitinib treated-lung cancer patients from Nagoya City University, with follow-up through 30 April 2007, was studied in reference to EGFR mutation status. EGFR mutations were not associated with FISH+ status, and high protein expression (wild type; 57.1% vs. P > 0.9999). Gene mutations were statistically significantly associated with better response (P = 0.0018) and longer survival. Patients

Table 1 Clinico-pathological data of 27 lung cancer patients

EGFR gene status					
Factors	FISH positive patients	FISH negative patients	P value		
Mean age (years) 64.0 ± 11.9	12	15			
Pathological subtypes					
Adeno	9 (40.9%)	13 (59.1%)	0.6260		
Non-adeno	3 (60.0%)	2 (40.0%)			
Gender					
Male	8 (57.1%)	6 (42.9%)	0.2519		
Female	4 (30.8%)	9 (69.2%)			
Smoking status					
Never smoker	4 (28.6%)	10 (71.4%)	0.1283		
Smoker	8 (61.5%)	5 (38.5%)			
Differentiation	•				
Well	6 (35.3%)	11 (64.7%)	0.2566		
Moderately or poorly or Others	6 (60.0%)	4 (40.0%)			
Gefitinib response					
Responder	7 (50.0%)	7 (50.0%)	0.7036		
Non-responder	5 (38.5%)	8 (61.5%)			
EGFR mutations					
Wild type	6 (50.0%)	6 (50.0%)	0.8052		
Mutant	6 (40.0%)	9 (60.0%)			
IHC					
Positive	9 (69.2%)	4 (30.8%)	0.0213		
Negative	3 (21.4%)	11 (78.6%)			

IHC immunohistochemistry, Adeno adenocarcinoma

Fig. 1 FISH analysis for lung cancer tissues. *Left* high polysomy case (4 copy numbers in cells >40%), *right* disomy case

with EGFR mutations were significantly better in prognosis than the patients with wild type (log-rank test P=0.0023, Breslow-Gehan-Wilcoxon test, P=0.0012) (Fig. 4). Smoking status (never smoker vs. smoker, log-rank test P=0.0032; Breslow-Gehan-Wilcoxon test, P=0.0012), and pathological subtypes (adenocarcinoma vs. non-adenocarcinoma, log-rank test P=0.0011, Breslow-Gehan-Wilcoxon test, P=0.0019), but neither gender (male vs. female, log-rank test P=0.0709, Breslow-Gehan-Wilcoxon test, P=0.0353), nor response (log-rank test P=0.2465, Breslow-Gehan-Wilcoxon test, P=0.0588)

were correlated with better prognosis. Using the Cox hazard regression model, EGFR mutations (P = 0.0208) and smoking status (P = 0.0218) were independent prognostic factors, but not pathological subtypes (0.1121). In this analysis, only one K-ras codon 12 mutation was found among 27 patients. This patient was wild type for EGFR and did not respond to gefitinib therapy.

We have sequenced 27 NSCLC patients who had undergone surgery followed by treatment with gefitinib at the National Hospital Organization, Kinki-chuo Chest Medical Center and already reported. We have added these data

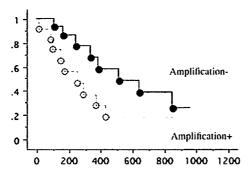
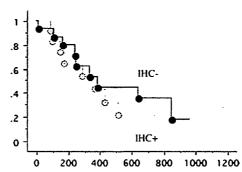
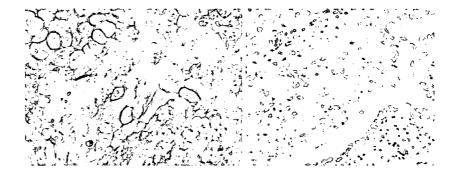




Fig. 2 The overall survival of 27 gefitinib untreated lung cancer patients was studied in reference to the EGFR amplification status (left) and EGFR protein expression (right). Prognosis from patients with EGFR amplification (n = 12, 9 were dead) and without EGFR amplification (n = 15, 8 were dead) was not significantly different (log-rank

test, P = 0.1278; Breslow-Gehan-Wilcoxon test, P = 0.0528). Prognosis from patients with positive EGFR expression (n = 13, 8 were dead) and without negative EGFR expression (n = 14, 9 were dead) was not significantly different (log-rank test, P = 0.7921; Breslow-Gehan-Wilcoxon test; P = 0.9105)

Fig. 3 EGFR protein expression by immunohistochemistry. *Left* positive case, *right* negative case

(Table 3). Ten patients had EGFR mutations, including two L858R, one deletion type 1a, and one G719S at exon 18. Three patients had deletion 1b type mutation (2236–2250 del GAATTAAGAGAAGCA). Of 54 patients, 25 were male and 29 female. Twenty-eight were never smokers and 26 were smokers. Forty-eight patients had adenocarcinoma, four had squamous cell carcinoma and one had adenosquamous cell carcinoma. EGFR mutation status was significantly correlated with better prognosis (log-rank test P=0.0128, Breslow-Gehan-Wilcoxon test P=0.0051). Patients with EGFR mutation at exon 19 deletion 1 types had significantly better prognosis than wild type patients (P=0.0032). However, the prognosis of patients with L858R mutation and wild type was not significantly different (P=0.2823) (Fig. 5).

Discussion

We obtained the findings that the EGFR amplification, detected by FISH according to Cappuzzo et al. criteria, was not associated with the response to gefitinib. EGFR mutations, smoking history, and pathological subtype of lung cancers were correlated with survival of gefitinib-treated patients. This was in agreement with the recent reports that

EGFR gene mutations are prognostic factor for gefitinib therapy (Takano et al. 2005; Mitsudomi et al. 2005; Sone et al. 2007). In addition, our analysis also suggested that the deletion type EGFR mutation might be more correlated with the survival for gefitinib-treated patients.

Some limitations to the study must be taken into consideration. Our finding is so far based on a single retrospective study with a relatively small number of patients, and the data need to be verified in a large cohort of patients and prospectively. The *EGFR* status was determined on the tumor tissue at the time of primary diagnosis, and possible changes after chemotherapy were not determined in this study (Cappuzzo et al. 2007).

Previous report suggested that NSCLC patients with resected tumors carrying high EGFR gene copy number have a tendency to a shorter survival (Hirsch et al. 2003). This might affect the controversial results of Cappuzo et al. (2005) In our analysis, FISH positive population did not correlate with the gender, smoking status and pathological subtypes. The presence of EGFR gene amplification did not reach statistical significance. An interesting finding was the association between EGFR mutations and increased gene copy number, a phenomenon that was recently described in the human lung cancer cell line H3255 (Tracy et al. 2004) and is probably relevant to gestinib sensitivity. In fact,

Table 2 EGFR mutation and amplification statuses in 27 gefitinib treated patients

Age	Gender	Smoking	Pathology	EGFR mutation	EGFR amplification	IHC score	Survival (day)
71	F	0	Adeno	Della	High polysomy	220	1,080 (A)
72	M	600	Adeno	L858R	Low polysomy	240	885 (A)
76	M	800	Adeno	WT	High polysomy	. 90	248 (D)
72	M	0	Adeno	exon 20 ins V	Disomy	80	660 (A)
70	M	1,000	Adeno	L858R	Disomy	210	515 (D)
61	F	0	Adeno	WT	Disomy	160	854 (D)
51	M	500	Adeno	Della	High polysomy	220	286 (D)
76	F	0	Adeno	WT	Disomy	30	640 (D)
57	M	20	Adeno	WT	High polysomy	210	101 (D)
77	M	1,200	Adeno	WT	Disomy	0	168 (D)
38	M	300	Adeno	L858R	High polysomy	210	430 (D)
73	F	0	Adeno	G719S	Disomy	180	339 (D)
42	F	0	Adeno	Del4	High polysomy	100	700 (A)
76	F	920	SCC	WT	High polysomy	220	145 (D)
56	F	0	Adeno	L858R	High polysomy	200	368 (D)
56	M	1,200	Adeno	WT	High polysomy	200	85 (D)
78	M	1200	SCC	WT	High polysomy	250	174 (D)
42	M	400	SCC	WT	Disomy	120	110 (D)
67	M	800	Adeno	WT	Disomy	80	384 (D)
63	M	600	Adsq	WT	High polysomy	90	11 (D)
47	F	0	Adeno	Del5	Disomy	210	945 (A)
62	F	0	Adeno	L858R	Disomy	80	245 (D)
71	F	0	Adeno	L861Q	Low polysomy	210	210 (A)
61	F	0	Adeno	Della	Low polysomy	120	180 (A)
64	F	0	Adeno	WT	Disomy	180	230 (A)
72	M	0	Adeno	L858R	High polysomy	210	110 (A)
77	F	0	Adsq	Della	Disomy	60	210 (A)

F Female, M male, Adeno adenocarcinoma, SCC squamous cell carcinoma, Adsq adenosquamous cell carcinoma, WT wild type, IHC immunohistochemistry, A alive, D death

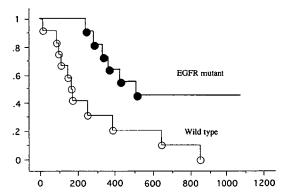


Fig. 4 The overall survival of 27 gefitinib-treated lung cancer patients was studied in reference to the *EGFR* mutation status. Prognosis from patients with EGFR mutations (n = 15, 6 were dead) was significantly better than the patients without *EGFR* mutations (n = 12, 11 were dead) (log-rank test, P = 0.0023, Breslow-Gehan-Wilcoxon test; P = 0.0012)

among the 15 patients with EGFR mutations who responded to gefitinib therapy, six were also FISH positive (high polysomy) and three were low polysomy. However, between the two non-responding patients with EGFR mutations, both were FISH negative. Sone et al. (2007) reported that the EGFR mutations and not the gene amplifications were the predictors of gefitinib efficacy in Japanese lung cancers. They evaluated the biopsy specimens and 5/59 samples were small and inadequate for FISH analysis. Another possible explanation for the discrepancies between the findings from the studies described by Cappuzo et al. and our findings is the difference in EGFR mutation statuses according to ethnicity. Han et al. (2006) investigated EGFR gene mutations, gene amplification, K-ras mutation, and Akt phosphorylation in tumor samples from East-Asian patients with NSCLC and demonstrated that EGFR mutation was an independent predictor of response and survival

